Information and Coding Theory
 MA41024/ MA60020/ MA60262

Bibhas Adhikari

Spring 2022-23, IIT Kharagpur
Lecture 11
February 27, 2023

Review

\rightarrow Shannon demonstrated that with a proper encoding of the information, the errors induced by a noisy channel or storage medium can be reduced to any desired level as long as the information rate is less than the capacity of the channel

Review

\rightarrow Shannon demonstrated that with a proper encoding of the information, the errors induced by a noisy channel or storage medium can be reduced to any desired level as long as the information rate is less than the capacity of the channel
\rightarrow The source encoder transform the source output into a string of bits, called the information sequence
\triangle The number of bits per unit time required to represent the source output is minimized
\triangle The source output can be perfectly reconstructed from the information sequence $\mathbf{u}=\left(u_{0}, u_{1}, \ldots, u_{k-1}\right)$

Review

\rightarrow Shannon demonstrated that with a proper encoding of the information, the errors induced by a noisy channel or storage medium can be reduced to any desired level as long as the information rate is less than the capacity of the channel
\rightarrow The source encoder transform the source output into a string of bits, called the information sequence
\triangle The number of bits per unit time required to represent the source output is minimized
\triangle The source output can be perfectly reconstructed from the information sequence $\mathbf{u}=\left(u_{0}, u_{1}, \ldots, u_{k-1}\right)$
\rightarrow The channel encoder transforms the information sequence \mathbf{u} into a string of bits $\mathbf{v}=\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)$ called a codeword

Review

\rightarrow The modulator transforms each output symbol of the channel encoder into a waveform of duration, say T seconds which is suitable for transmission
\triangle This waveform enters the channel and get corrupted by noise

Review

\rightarrow The modulator transforms each output symbol of the channel encoder into a waveform of duration, say T seconds which is suitable for transmission
\triangle This waveform enters the channel and get corrupted by noise
\triangle Examples of transmission channels - telephone lines, mobile cellular technology, high-frequency (HF) radio, microwave and satellite links, optical fiber cables

Review

\rightarrow The modulator transforms each output symbol of the channel encoder into a waveform of duration, say T seconds which is suitable for transmission
\triangle This waveform enters the channel and get corrupted by noise
\triangle Examples of transmission channels - telephone lines, mobile cellular technology, high-frequency (HF) radio, microwave and satellite links, optical fiber cables
\triangle Examples of storage media - semiconductor memories, magnetic tapes, compact discs

Review

\rightarrow The modulator transforms each output symbol of the channel encoder into a waveform of duration, say T seconds which is suitable for transmission
\triangle This waveform enters the channel and get corrupted by noise
\triangle Examples of transmission channels - telephone lines, mobile cellular technology, high-frequency (HF) radio, microwave and satellite links, optical fiber cables
\triangle Examples of storage media - semiconductor memories, magnetic tapes, compact discs
\triangle Examples of noise - On a telephone line, disturbances may come from: switching impulse noise, crosstalk from other lines. On compact discs: dust particles

Review

\rightarrow The modulator transforms each output symbol of the channel encoder into a waveform of duration, say T seconds which is suitable for transmission
\triangle This waveform enters the channel and get corrupted by noise
\triangle Examples of transmission channels - telephone lines, mobile cellular technology, high-frequency (HF) radio, microwave and satellite links, optical fiber cables
\triangle Examples of storage media - semiconductor memories, magnetic tapes, compact discs
\triangle Examples of noise - On a telephone line, disturbances may come from: switching impulse noise, crosstalk from other lines. On compact discs: dust particles
\rightarrow The demodulator processes each received waveform of duration T and produces either a discrete or continuous output

Review

\rightarrow The modulator transforms each output symbol of the channel encoder into a waveform of duration, say T seconds which is suitable for transmission
\triangle This waveform enters the channel and get corrupted by noise
\triangle Examples of transmission channels - telephone lines, mobile cellular technology, high-frequency (HF) radio, microwave and satellite links, optical fiber cables
\triangle Examples of storage media - semiconductor memories, magnetic tapes, compact discs
\triangle Examples of noise - On a telephone line, disturbances may come from: switching impulse noise, crosstalk from other lines. On compact discs: dust particles
\rightarrow The demodulator processes each received waveform of duration T and produces either a discrete or continuous output
\rightarrow The sequence of demodulator outputs corresponding to the encoded sequence \mathbf{v}, called the received sequence \mathbf{r}

Review

\rightarrow The channel decoder transforms the received sequence \mathbf{r} into a binary sequence $\widehat{\mathbf{u}}$, called the estimated information sequence
\triangle The decoding strategy is based on the rules of channel encoding and the noise characteristics of the channel or the storage medium
\triangle Ideally, $\widehat{\mathbf{u}}=\mathbf{u}$, although noise may cause decoding errors

Review

\rightarrow The channel decoder transforms the received sequence \mathbf{r} into a binary sequence $\widehat{\mathbf{u}}$, called the estimated information sequence
\triangle The decoding strategy is based on the rules of channel encoding and the noise characteristics of the channel or the storage medium
\triangle Ideally, $\widehat{\mathbf{u}}=\mathbf{u}$, although noise may cause decoding errors
The big picture

$$
\mathbf{u} \rightarrow \mathbf{v} \rightarrow \mathbf{r} \rightarrow \widehat{\mathbf{u}}
$$

Review

\rightarrow The channel decoder transforms the received sequence \mathbf{r} into a binary sequence $\widehat{\mathbf{u}}$, called the estimated information sequence
\triangle The decoding strategy is based on the rules of channel encoding and the noise characteristics of the channel or the storage medium
\triangle Ideally, $\widehat{\mathbf{u}}=\mathbf{u}$, although noise may cause decoding errors
The big picture

$$
\mathbf{u} \rightarrow \mathbf{v} \rightarrow \mathbf{r} \rightarrow \widehat{\mathbf{u}}
$$

Problem Design and implementation of encoder/decoder pair such that information can be transmitted in noisy environment, and the information can be reliably reproduced at the output of the channel decoder

Codes

Observation
\rightarrow The k-tuple $\mathbf{u}=\left(u_{0}, u_{1}, \ldots, u_{k-1}\right)$, called a message (sometimes \mathbf{u} is used to denote a k-bit message rather than the entire information sequence)

Codes

Observation
\rightarrow The k-tuple $\mathbf{u}=\left(u_{0}, u_{1}, \ldots, u_{k-1}\right)$, called a message (sometimes \mathbf{u} is used to denote a k-bit message rather than the entire information sequence)
\rightarrow There are 2^{k} different possible messages

Codes

Observation

\rightarrow The k-tuple $\mathbf{u}=\left(u_{0}, u_{1}, \ldots, u_{k-1}\right)$, called a message (sometimes \mathbf{u} is used to denote a k-bit message rather than the entire information sequence)
\rightarrow There are 2^{k} different possible messages
\rightarrow The encoder transform each message \mathbf{u} into an n-tuple $\mathbf{v}=\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)$, called a codeword (sometimes \mathbf{v} is used to denote an n-symbol block rather than the entire encoded sequence)

Codes

Observation

\rightarrow The k-tuple $\mathbf{u}=\left(u_{0}, u_{1}, \ldots, u_{k-1}\right)$, called a message (sometimes \mathbf{u} is used to denote a k-bit message rather than the entire information sequence)
\rightarrow There are 2^{k} different possible messages
\rightarrow The encoder transform each message \mathbf{u} into an n-tuple $\mathbf{v}=\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)$, called a codeword (sometimes \mathbf{v} is used to denote an n-symbol block rather than the entire encoded sequence)
\rightarrow Therefore, corresponding to 2^{k} different possible messages, there are 2^{k} different possible codewords at the endoder output

Codes

Observation

\rightarrow The k-tuple $\mathbf{u}=\left(u_{0}, u_{1}, \ldots, u_{k-1}\right)$, called a message (sometimes \mathbf{u} is used to denote a k-bit message rather than the entire information sequence)
\rightarrow There are 2^{k} different possible messages
\rightarrow The encoder transform each message \mathbf{u} into an n-tuple $\mathbf{v}=\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)$, called a codeword (sometimes \mathbf{v} is used to denote an n-symbol block rather than the entire encoded sequence)
\rightarrow Therefore, corresponding to 2^{k} different possible messages, there are 2^{k} different possible codewords at the endoder output
\rightarrow This set of 2^{k} codewords of length n is called an (n, k) block code

Codes

Observation

\rightarrow The k-tuple $\mathbf{u}=\left(u_{0}, u_{1}, \ldots, u_{k-1}\right)$, called a message (sometimes \mathbf{u} is used to denote a k-bit message rather than the entire information sequence)
\rightarrow There are 2^{k} different possible messages
\rightarrow The encoder transform each message \mathbf{u} into an n-tuple $\mathbf{v}=\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)$, called a codeword (sometimes \mathbf{v} is used to denote an n-symbol block rather than the entire encoded sequence)
\rightarrow Therefore, corresponding to 2^{k} different possible messages, there are 2^{k} different possible codewords at the endoder output
\rightarrow This set of 2^{k} codewords of length n is called an (n, k) block code
\rightarrow The ratio $R=k / n$ is called the code rate, and it can be interpreted as the number of information bits entering the encoder per transmitted symbol

Codes

Observation

\rightarrow The k-tuple $\mathbf{u}=\left(u_{0}, u_{1}, \ldots, u_{k-1}\right)$, called a message (sometimes \mathbf{u} is used to denote a k-bit message rather than the entire information sequence)
\rightarrow There are 2^{k} different possible messages
\rightarrow The encoder transform each message \mathbf{u} into an n-tuple $\mathbf{v}=\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)$, called a codeword (sometimes \mathbf{v} is used to denote an n-symbol block rather than the entire encoded sequence)
\rightarrow Therefore, corresponding to 2^{k} different possible messages, there are 2^{k} different possible codewords at the endoder output
\rightarrow This set of 2^{k} codewords of length n is called an (n, k) block code
\rightarrow The ratio $R=k / n$ is called the code rate, and it can be interpreted as the number of information bits entering the encoder per transmitted symbol
\rightarrow Each message is encoded independently, so the encoder is memoryless and can be implemented with a combinatorial logic circuit

Linear block codes

Definition A block code of length n and 2^{k} codewords is called a linear (n, k)-code if and only if its 2^{k} codewords form a k-dimensional subspace of the vector space of all n-tuples over the field $G F(2)$, the Galois Field of order 2

Linear block codes

Definition A block code of length n and 2^{k} codewords is called a linear (n, k)-code if and only if its 2^{k} codewords form a k-dimensional subspace of the vector space of all n-tuples over the field $G F(2)$, the Galois Field of order 2

Conclusion

\triangle A binary block code is linear if and only if the modulo-2 sum of two codewords is also a codeword
\triangle Since (n, k) linear block code C is a k-dimension subspace of V_{n}, the vector space of all binary n-tuples, it is possible to find k linearly independent codewords $\mathbf{g}_{0}, \mathbf{g}_{1}, \ldots, \mathbf{g}_{k-1}$ in C such that any codeword \mathbf{v} in C can be written as

$$
v=u_{0} \mathbf{g}_{0}+u_{1} \mathbf{g}_{1}+\ldots u_{k-1} \mathbf{g}_{k-1}
$$

where $u_{i} \in\{0,1\}, 0 \leq i \leq k-1$

Linear block codes

Write

$$
\mathbf{G}=\left[\begin{array}{c}
\mathbf{g}_{0} \\
\mathbf{g}_{1} \\
\vdots \\
\mathbf{g}_{k-1}
\end{array}\right]=\left[\begin{array}{cccc}
g_{00} & g_{01} & \cdots & g_{0, n-1} \\
g_{10} & g_{11} & \cdots & g_{1, n-1} \\
\vdots & \vdots & \vdots & \vdots \\
g_{k-1,0} & g_{k-1,1} & \cdots & g_{k-1, n-1}
\end{array}\right]_{k \times n}
$$

where

$$
\mathbf{g}_{i}=\left(g_{i 0}, g_{i 1}, \ldots, g_{i, n-1}\right), 0 \leq i \leq k-1
$$

Linear block codes

Write

$$
\mathbf{G}=\left[\begin{array}{c}
\mathbf{g}_{0} \\
\mathbf{g}_{1} \\
\vdots \\
\mathbf{g}_{k-1}
\end{array}\right]=\left[\begin{array}{cccc}
g_{00} & g_{01} & \cdots & g_{0, n-1} \\
g_{10} & g_{11} & \cdots & g_{1, n-1} \\
\vdots & \vdots & \vdots & \vdots \\
g_{k-1,0} & g_{k-1,1} & \cdots & g_{k-1, n-1}
\end{array}\right]_{k \times n}
$$

where

$$
\mathbf{g}_{i}=\left(g_{i 0}, g_{i 1}, \ldots, g_{i, n-1}\right), 0 \leq i \leq k-1
$$

Then

$$
\begin{aligned}
\mathbf{v} & =\mathbf{u} \cdot \mathbf{G} \\
& =u_{0} \mathbf{g}_{0}+u_{1} \mathbf{g}_{1}+\ldots+\ldots, u_{k-1} \mathbf{g}_{k-1}
\end{aligned}
$$

Linear block codes

Since \mathbf{G} generate the (n, k) linear code C, the matrix \mathbf{G} is called a generator matrix for C.

Linear block codes

Since \mathbf{G} generate the (n, k) linear code C, the matrix \mathbf{G} is called a generator matrix for C.
Example

$$
\mathbf{G}=\left[\begin{array}{l}
\mathbf{g}_{0} \\
\mathbf{g}_{1} \\
\mathbf{g}_{2} \\
\mathbf{g}_{3}
\end{array}\right]=\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

generates a $(7,4)$ linear code

Linear block codes

Since \mathbf{G} generate the (n, k) linear code C, the matrix \mathbf{G} is called a generator matrix for C.
Example

$$
\mathbf{G}=\left[\begin{array}{l}
\mathbf{g}_{0} \\
\mathbf{g}_{1} \\
\mathbf{g}_{2} \\
\mathbf{g}_{3}
\end{array}\right]=\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

generates a $(7,4)$ linear code
Question Verify that $\mathbf{v}=(0001101)$ is a codeword for the above generator matrix

Linear block codes

Systematic format of a codeword A codeword is divided into two parts the message part and the redundant checking part

Linear block codes

Systematic format of a codeword A codeword is divided into two parts the message part and the redundant checking part
The message part consists of k unaltered information digits, and the redundant checking part consists of $n-k$ parity-check digits

A linear block with this structure is referred to as linear systematic block code

Linear block code

Thus a linear systematic (n, k) code is completely described by a $k \times n$ matrix \mathbf{G} of the following form

$$
\mathbf{G}=\left[\begin{array}{ll}
\mathbf{P} & I_{k}
\end{array}\right], \mathbf{P}=\left[p_{i j}\right] \in\{0,1\}^{k \times(n-k)}
$$

Linear block code

Thus a linear systematic (n, k) code is completely described by a $k \times n$ matrix \mathbf{G} of the following form

$$
\mathbf{G}=\left[\begin{array}{ll}
\mathbf{P} & I_{k}
\end{array}\right], \mathbf{P}=\left[p_{i j}\right] \in\{0,1\}^{k \times(n-k)}
$$

Let $\mathbf{u}=\left(u_{0}, u_{1}, \ldots, u_{k-1}\right)$ be the message to be encoded. Then the corresponding codeword is

$$
\mathbf{v}=\mathbf{u} \cdot \mathbf{G}
$$

which gives two equations

$$
\begin{align*}
v_{n-k+i} & =u_{i}, 0 \leq i \leq k-1 \tag{1}\\
v_{j} & =u_{0} p_{0 j}+u_{1} p_{1 j}+\ldots+u_{k-1} p_{k-1, j}, 0 \leq j \leq n-k-1 \tag{2}
\end{align*}
$$

Linear block code

Thus a linear systematic (n, k) code is completely described by a $k \times n$ matrix \mathbf{G} of the following form

$$
\mathbf{G}=\left[\begin{array}{ll}
\mathbf{P} & I_{k}
\end{array}\right], \mathbf{P}=\left[p_{i j}\right] \in\{0,1\}^{k \times(n-k)}
$$

Let $\mathbf{u}=\left(u_{0}, u_{1}, \ldots, u_{k-1}\right)$ be the message to be encoded. Then the corresponding codeword is

$$
\mathbf{v}=\mathbf{u} \cdot \mathbf{G}
$$

which gives two equations

$$
\begin{align*}
v_{n-k+i} & =u_{i}, 0 \leq i \leq k-1 \tag{1}\\
v_{j} & =u_{0} p_{0 j}+u_{1} p_{1 j}+\ldots+u_{k-1} p_{k-1, j}, 0 \leq j \leq n-k-1 \tag{2}
\end{align*}
$$

The ($n-k$) equations given by equation (2) are called parity-check equations.

Linear block code

Parity-check matrix
\triangle The generator matrix \mathbf{G} has k linearly independent rows from $\{0,1\}^{n}$

Linear block code

Parity-check matrix
\triangle The generator matrix \mathbf{G} has k linearly independent rows from $\{0,1\}^{n}$
\triangle Then there can be $n-k$ linearly independent rows from $\{0,1\}^{n}$, say $\mathbf{h}_{0}, \mathbf{h}_{1}, \ldots, \mathbf{h}_{n-k}$ such that any vector in the row space of \mathbf{G} is orthogonal to $\mathbf{h}_{j}, 0 \leq j \leq n-1$

Linear block code

Parity-check matrix
\triangle The generator matrix \mathbf{G} has k linearly independent rows from $\{0,1\}^{n}$
\triangle Then there can be $n-k$ linearly independent rows from $\{0,1\}^{n}$, say $\mathbf{h}_{0}, \mathbf{h}_{1}, \ldots, \mathbf{h}_{n-k}$ such that any vector in the row space of \mathbf{G} is orthogonal to $\mathbf{h}_{j}, 0 \leq j \leq n-1$
\triangle Define

$$
\mathbf{H}=\left[\begin{array}{c}
\mathbf{h}_{0} \\
\mathbf{h}_{1} \\
\vdots \\
\mathbf{h}_{n-k}
\end{array}\right]
$$

Linear block code

Parity-check matrix
\triangle The generator matrix \mathbf{G} has k linearly independent rows from $\{0,1\}^{n}$
\triangle Then there can be $n-k$ linearly independent rows from $\{0,1\}^{n}$, say $\mathbf{h}_{0}, \mathbf{h}_{1}, \ldots, \mathbf{h}_{n-k}$ such that any vector in the row space of \mathbf{G} is orthogonal to $\mathbf{h}_{j}, 0 \leq j \leq n-1$
\triangle Define

$$
\mathbf{H}=\left[\begin{array}{c}
\mathbf{h}_{0} \\
\mathbf{h}_{1} \\
\vdots \\
\mathbf{h}_{n-k}
\end{array}\right]
$$

Then an n-tuple \mathbf{v} is a codeword in the code C generated by \mathbf{G} if and only if $\mathbf{v} \cdot \mathbf{H}^{T}=\mathbf{0}$

Linear block code

Then the code C is just the null-space of H, which is called a parity-check matrix of the code.
Note The rows of \mathbf{H} also generate a $(n, n-k)$ linear code C_{d}, which is called the dual code of C.

Linear block code

Then the code C is just the null-space of H, which is called a parity-check matrix of the code.
Note The rows of \mathbf{H} also generate a $(n, n-k)$ linear code C_{d}, which is called the dual code of C.
Problem The code C_{d} is the null space \mathbf{G}.

Linear block code

Then the code C is just the null-space of H, which is called a parity-check matrix of the code.
Note The rows of \mathbf{H} also generate a $(n, n-k)$ linear code C_{d}, which is called the dual code of C.
Problem The code C_{d} is the null space \mathbf{G}.
If the generator matrix of an (n, k) linear code is in the systematic form then the parity-check matrix can be in the following form:

$$
\mathbf{H}=\left[\begin{array}{ll}
I_{n-k} & \mathbf{P}^{T}
\end{array}\right] .
$$

Linear block code

Then the code C is just the null-space of H, which is called a parity-check matrix of the code.
Note The rows of \mathbf{H} also generate a $(n, n-k)$ linear code C_{d}, which is called the dual code of C.
Problem The code C_{d} is the null space \mathbf{G}.
If the generator matrix of an (n, k) linear code is in the systematic form then the parity-check matrix can be in the following form:

$$
\mathbf{H}=\left[\begin{array}{ll}
I_{n-k} & \mathbf{P}^{T}
\end{array}\right] .
$$

Then see that

$$
\mathbf{G} \cdot \mathbf{H}^{T}=\mathbf{0} .
$$

