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Fano’s inequality

For a Markov chain X → Y → X̂ , interpret X as the choice of an
unknown parameter from some finite set X , Y as the data generated from
this, say sequence of independent samples, and X̂ is a guess for X , which
depends only on the data.

Then Fano’s inequality provides the probability of error in the guess,
denoted as pe = P[X̂ ̸= X ].

Fano’s inequality Let X → Y → X̂ be a Markov chain, and let
pe = P[X̂ ̸= X ]. Suppose H(pe) denotes the entropy function computed at
pe . Then

H(pe) + pe · log(|X | − 1) ≥ H(X |X̂ ) ≥ H(X |Y )
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Fano’s inequality

Proof of Fano’s inequality Define a rv E corresponding to the error i.e.
E = 1 if X̂ = X and E = 0 if X̂ = X .

Then

H(X ,E |X̂ ) = H(X |X̂ ) + H(E |X , X̂ ) = H(X |X̂ )

since H(E |X , X̂ ) = 0. Further

H(X ,E |X̂ ) = H(E |X̂ ) + H(X |E , X̂ )

= H(E |X̂ ) + pe · H(X |E = 1, X̂ )

+(1− pe) · H(X |E = 0, X̂ )

≤ H(E ) + pe · H(X |E = 1, X̂ )

≤ H(pe) + pe · log(|X | − 1)
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