Indian Institute of Technology Kharagpur
Course: MA41024/ MA60020/ MA60262 Information and Coding Theory Spring Semester 2022-23

Assignment - II
Last date of submission : April 16, 2023

1. Consider the following map from $\{0,1\}^{3}$ to $\{0,1\}^{5}$ defined as follows.

$$
\begin{aligned}
(000) & \mapsto(00000),(001)
\end{aligned} \mapsto(11011),(010) \mapsto(10110),(011) \mapsto(01101), ~ \mapsto(01001),(101) \mapsto(10010),(110) \mapsto(11111),(111) \mapsto(00100) .
$$

Does this map correspond to a linear block code? If yes, determine a generator matrix. Is the generator matrix unique? Find a standard array of the code.
2. Encode an information sequence (10101010101) for $(15,11)$ Hamming code. How many errors can the code detect and correct? Suppose (111111000000) is a received coreword for this codeing scheme. Then determine the correct codeword.
3. Conside a linear code with the generator matrix

$$
G=\left[\begin{array}{l}
111000 \\
100110 \\
010101
\end{array}\right]
$$

Then determine generator matrix and parity-check matrix in the systematic form. What is the minimum distance of the code?
4. Find the dual code of a code whose generator matrix is given by

$$
G=\left[\begin{array}{l}
100100000000 \\
010000000010 \\
001000000011 \\
000100000001 \\
000010000011 \\
000001000000 \\
000000100011 \\
000000010001 \\
000000001010 \\
000000110100
\end{array}\right]
$$

5. Consider the cyclic code with block code length 7 and the generator polynomial $g(x)=$ $1+x+x^{3}$. Then determine the generator matrix in systematic form, parity-check polynomial, and the parity-check matrix. Is the code equivalent to a Hamming code? Justify your answer.
6. Let a $g(x)$ be a (binary) cyclic code C with $g(1) \neq 0$. Then show that the code with generator polynomial $(x-1) g(x)$ is a subcode of C having sum of the entries of a codeword as 0.
7. How many cyclic codes of block code length 8 can exist over F_{3} ? Give a generator polynomial of each such code.
