Programming Language Lab

Bibhas Adhikari

IIT Kharagpur

October 6, 2020

Bibhas Adhikari (IIT Kharagpur)

Programming Language Lab

। October 6, 2020 1/7

(日) (四) (日) (日) (日)

Arrays

A programming construct which facilitates to group like variables for easy access during coding:

- Variables in an array share the same name
- Variables in an array share the same data type
- Individual variables in an array are called elements
- Elements in an array are accessed with an index number

• off-by-one error

One-dimensional array

Example

- The number of pages in each chapter of a book
- A list of students' CGPAs
- A list of phone numbers

Creating one-dimensional arrays

int iArray[10]; //Integer data type array with 10 elements
float fArray[10]; //Float data type array with 10 elements
double dArray[3]; //Double data type array with 3 elements
short sSalaries[9]; //Short data type array with 9 elements
char cName[19]; //Char array - 18 character elements and one null
character

< □ > < □ > < □ > < □ > < □ > < □ >

Floating point number system

A floating point number system $F \subset \mathbb{R}$ is a subset of real numbers whose elements are of the form

$$y=\pm m\times\beta^{e-t}.$$

The system F is characterized by four integer parameters:

- the base β (sometimes called the radix)
- the precision t, and
- the exponent range $e_{\min} < e < e_{\max}$.
- The significand/mantissa m is an integer satisfying $0 \leq m \leq eta^t 1$
- To ensure a unique representation for each nonzero y ∈ F it is assumed that m ≥ β^{t-1} so that the system is normalized
- The number 0 is a special case in that it does not have a normalized representation
- The range of the nonzero floating point numbers in F is given by $\beta^{e_{\min}-1} \leq |y| \leq \beta^{e_{\max}-1}$

Floating point number system

An alternative (and more common) way of expressing y is

$$y = \pm \beta^{e} \left(\frac{d_1}{\beta} + \frac{d_2}{\beta^2} + \ldots + \frac{d_t}{\beta^t} \right) = \pm \beta^{e} \times .d_1 d_2 \ldots d_t.$$

where each digit d_i satisfies $0 < d_i < \beta - 1$, and $d_1 \neq 0$ for normalized numbers. d_1 is called the most significant digit and d_t the least significant digit.

Floating point arithmetic parameters.

Machine and arithmetic	β	t	e_{\min}	e_{\max}
Cray-1 single	2	48	-8192	8191
Cray-1 double	2	96	-8192	8191
DEC VAX G format, double	2	53	-1023	1023
DEC VAX D format, double	2	56	-127	127
HP 28 and 48G calculators	10	12	-499	499
IBM 3090 single	16	6	-64	63
IBM 3090 double	16	14	-64	63
IBM 3090 extended	16	28	-64	63
IEEE single	2	24	-125	128
IEEE double	2	53	-1021	1024
IEEE extended (typical)	2	64	-16381	16384

IEEE 754 precision

- Single Precision: It occupies 32(1+23+8) (sign, mantissa, exponent) bits in computer memory
- Double Precision: It occupies 64(1 + 52 + 11) (sign, mantissa, exponent) bits in computer memory

Bibhas Adhikari (IIT Kharagpur)

Programming Language Lab

Initializing One-Dimensional Arrays

There are two ways:

- within the array declaration: *int iArray*[5] = {0, 1, 2, 3, 4}; or *int iArray*[5] = {0};
- outside of the array declaration: initialize your array elements is to use looping structures such as the for loop

```
int x;

int iArray[5];

for (x = 0; x < 5; x++)

iArray[x] = 0;

//print array element contents

for (x = 0; x < 5; x++)

printf("\n The value of iArray index %d is %d\n", x, x);
```

< □ > < 同 > < 回 > < 回 > < 回 >