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Singular value decomposition
Define

ui =
1

σi
Avi

i.e. σiui is a vector whose coordinates correspond to the projections of the
rows of A onto vi

Claim A =
∑r

i=1 σiuivi
T

Proof Obvious!!

SVD Then we have n × d

 = A = UΣV T =

 n × r


[

r × r
] [

r × d
]

where ui is the ith column of U, vi
T is the ith row of V T , and Σ is a

diagonal matrix with σi as the ith entry on its diagonal. vis are called
right singular vectors and uis are called left singular vectors

Question Is this decomposition unique?
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Singular value decomposition

Let

Ak =
k∑

i=1

σiuivi
T , 1 ≤ k ≤ r

Then Ak =
∑k

i=1 σiuivi
T , the matrix whose rows are the projections of the

rows of A onto Vk

Theorem For any matrix B of rank at most k, ∥A− Ak∥F ≤ ∥A− B∥F
→ Suppose B minimizes ∥A− B∥2F among all rank k or less matrices

→ Let V be the row space of B

→ Then each row of B is the projection of the corresponding row of A
onto V

→ Then ∥A− B∥2F is the sum of squared distances of rows of A to V

→ Since Ak minimizes the sum of squared distance of rows of A to any
k-dimensional subspace, ∥A− Ak∥F ≤ ∥A− B∥F
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Singular value decomposition

Observation Suppose we want to compute Ax, where A is an n × d large
matrix

→ It takes O(nd) to compute Ax

→ Suppose we approximate A by Ak , and then approximate Ax by Akx,
which can be done in O(kd + kn), where k ≪ min{d , n}

→ How much will be the error?

max
∥x∥2=1

∥(A− Ak)x = ∥A− Ak∥2

Homework ∥A∥2 = σ1(A), called the spectral norm of A!!
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Singular value decomposition
Theorem The left singular vectors are pairwise orthogonal

Proof Let i be the smallest integer such that ui is not orthogonal to some
other uj, j > i

→ Without loss of generality assume that ui
Tuj = δ > 0

→ For ϵ > 0, let

v′i =
vi + ϵvj

∥vi + ϵvj∥2

→ Then Av′i =
σiui+ϵσjuj√

1+ϵ2
which has length at least as large as its

component along ui given by

ui
T

(
σiui + ϵσjuj√

1 + ϵ2

)
> (σi + ϵσjδ)

(
1− ϵ2

2

)
= σi −

ϵ2

2
σi + ϵσjδ −

ϵ3

2
σjδ

≈ σi
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Singular value decomposition

Note that the above inequality is true for sufficiently small ϵ.

However this
is a contradiction!!

Lemma ∥A− Ak∥22 = σ2
k+1

Proof Let A =
∑r

i=1 σiuivi
T be the SVD of A, and Ak =

∑k
i=1 σiuivi

T .
Then

A− Ak =
r∑

i=k+1

σiuivi
T .

Let {v1, v2, . . . , vr, vr+1, . . . , vd︸ ︷︷ ︸
extended portion

} be an ONB of Rd . Then for the top

singular vector v of A− Ak , writing v =
∑d

j=1 cjvj, we have

∥(A− Ak)v∥2 =

∥∥∥∥∥∥
r∑

j=1

ciσiui

∥∥∥∥∥∥
2

=

√√√√ r∑
i=k+1

c2i σ
2
i
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singular vector v of A− Ak , writing v =
∑d

j=1 cjvj, we have

∥(A− Ak)v∥2 =

∥∥∥∥∥∥
r∑

j=1

ciσiui

∥∥∥∥∥∥
2

=

√√√√ r∑
i=k+1

c2i σ
2
i
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Singular value decomposition

Question Which vector v gives the maximum value of ∥(A− Ak)v∥2 in the
above expression?

Since
∑r

i=1 c
2
i = 1, set ck+1 = 1 and rest of the ci = 0. This completes

the proof
Question What is the conclusion from the above lemma?

Theorem For any matrix B of rank at most k,

∥A− Ak∥2 ≤ ∥A− B∥2

Proof Homework!!
Analog of eigenvalues and eigenvectors

Avi = σiui and ATui = σivi
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