Big Data Analysis (MA60306)

Bibhas Adhikari

Spring 2022-23, IIT Kharagpur

Lecture 8 January 19, 2023

Bibhas Adhikari (Spring 2022-23, IIT Kharag

Big Data Analysis

Lecture 8 January 19, 2023 1 / 8

э

< 回 > < 三 > < 三 >

Regression problem Can we construct a plane which contains a given set of data points!

Regression problem Can we construct a plane which contains a given set of data points!

Let A be an $n \times d$ data matrix.

Regression problem Can we construct a plane which contains a given set of data points!

- Let A be an $n \times d$ data matrix.
 - \rightarrow Consider each row of A as a point in *d*-dimensional space i.e. a data point has *d* features

Regression problem Can we construct a plane which contains a given set of data points!

- Let A be an $n \times d$ data matrix.
 - \rightarrow Consider each row of A as a point in *d*-dimensional space i.e. a data point has *d* features
 - \rightarrow The problem: find the best-fitting k-dimensional subspace that is close to all the given data points

Regression problem Can we construct a plane which contains a given set of data points!

- Let A be an $n \times d$ data matrix.
 - \rightarrow Consider each row of A as a point in *d*-dimensional space i.e. a data point has *d* features
 - \rightarrow The problem: find the best-fitting k-dimensional subspace that is close to all the given data points
 - $\rightarrow\,$ "best" meaning minimizing the sum of the squares of the perpendicular distances of the points to the subspace

A B b A B b

Regression problem Can we construct a plane which contains a given set of data points!

- Let A be an $n \times d$ data matrix.
 - \rightarrow Consider each row of A as a point in *d*-dimensional space i.e. a data point has *d* features
 - \rightarrow The problem: find the best-fitting k-dimensional subspace that is close to all the given data points
 - $\rightarrow\,$ "best" meaning minimizing the sum of the squares of the perpendicular distances of the points to the subspace
 - $\rightarrow\,$ Thus the is to maximize the sum of squares of the lengths of the projections of the points onto the subspace

< □ > < □ > < □ > < □ > < □ > < □ >

Regression problem Can we construct a plane which contains a given set of data points!

- Let A be an $n \times d$ data matrix.
 - \rightarrow Consider each row of A as a point in *d*-dimensional space i.e. a data point has *d* features
 - \rightarrow The problem: find the best-fitting k-dimensional subspace that is close to all the given data points
 - $\rightarrow\,$ "best" meaning minimizing the sum of the squares of the perpendicular distances of the points to the subspace
 - $\rightarrow\,$ Thus the is to maximize the sum of squares of the lengths of the projections of the points onto the subspace
 - \rightarrow What should be the value of k?

< □ > < □ > < □ > < □ > < □ > < □ >

Consider a data point $\mathbf{a_i}^T = (a_{i1}, a_{i2}, \dots, a_{id})$, which represents a vector (line) through the origin. Then

 $a_{i1}^2 + a_{i2}^2 + \ldots + a_{id}^2 = (\text{length of projection})^2 + (\text{distance of point to line})^2$ i.e.

(distance of point to line)² = $a_{i1}^2 + a_{i2}^2 + \ldots + a_{id}^2 - (\text{length of projection})^2$

Given the data matrix A with rows of A as the data points, and for a unit vector \mathbf{v} , the length of projection of $\mathbf{a_i}^T$, the *i*th row of A, onto \mathbf{v} is $|\mathbf{a_i}^T \mathbf{v}|$

Given the data matrix A with rows of A as the data points, and for a unit vector \mathbf{v} , the length of projection of $\mathbf{a_i}^T$, the *i*th row of A, onto \mathbf{v} is $|\mathbf{a_i}^T \mathbf{v}|$

Now

$$||A\mathbf{v}||_{2}^{2} = |\mathbf{a_{1}}^{T}\mathbf{v}|^{2} + \ldots + |\mathbf{a_{n}}^{T}\mathbf{v}|^{2}$$

= sum of squres of projection lengths

Given the data matrix A with rows of A as the data points, and for a unit vector \mathbf{v} , the length of projection of $\mathbf{a_i}^T$, the *i*th row of A, onto \mathbf{v} is $|\mathbf{a_i}^T \mathbf{v}|$

Now

$$||A\mathbf{v}||_2^2 = |\mathbf{a_1}^T \mathbf{v}|^2 + \ldots + |\mathbf{a_n}^T \mathbf{v}|^2$$

= sum of squres of projection lengths

Since best-fit line is the one that maximizes $||A\mathbf{v}||_2^2$ (equivalent to saying minimizing the sum of the squared distances of the points to the line), define

$$\mathbf{v_1} = rg\max_{\|\mathbf{v}\|_2=1} \|A\mathbf{v}\|_2$$

Given the data matrix A with rows of A as the data points, and for a unit vector \mathbf{v} , the length of projection of $\mathbf{a_i}^T$, the *i*th row of A, onto \mathbf{v} is $|\mathbf{a_i}^T \mathbf{v}|$

Now

$$||A\mathbf{v}||_2^2 = |\mathbf{a_1}^T \mathbf{v}|^2 + \ldots + |\mathbf{a_n}^T \mathbf{v}|^2$$

= sum of squres of projection lengths

Since best-fit line is the one that maximizes $||A\mathbf{v}||_2^2$ (equivalent to saying minimizing the sum of the squared distances of the points to the line), define

$$\mathbf{v_1} = \arg \max_{\|\mathbf{v}\|_2=1} \|A\mathbf{v}\|_2$$

 $\rightarrow\,$ Let us call v_1 as the first singular vector

Given the data matrix A with rows of A as the data points, and for a unit vector \mathbf{v} , the length of projection of $\mathbf{a_i}^T$, the *i*th row of A, onto \mathbf{v} is $|\mathbf{a_i}^T \mathbf{v}|$

Now

$$||A\mathbf{v}||_{2}^{2} = |\mathbf{a_{1}}^{T}\mathbf{v}|^{2} + \ldots + |\mathbf{a_{n}}^{T}\mathbf{v}|^{2}$$

= sum of squres of projection lengths

Since best-fit line is the one that maximizes $||A\mathbf{v}||_2^2$ (equivalent to saying minimizing the sum of the squared distances of the points to the line), define

$$\mathbf{v_1} = \arg \max_{\|\mathbf{v}\|_2 = 1} \|A\mathbf{v}\|_2$$

 $\rightarrow\,$ Let us call v_1 as the first singular vector

 \rightarrow The value $\sigma_1(A) = ||A\mathbf{v}_1||_2$ is called the first singular value of A.

Given the data matrix A with rows of A as the data points, and for a unit vector \mathbf{v} , the length of projection of $\mathbf{a_i}^T$, the *i*th row of A, onto \mathbf{v} is $|\mathbf{a_i}^T \mathbf{v}|$

Now

$$||A\mathbf{v}||_{2}^{2} = |\mathbf{a_{1}}^{T}\mathbf{v}|^{2} + \ldots + |\mathbf{a_{n}}^{T}\mathbf{v}|^{2}$$

= sum of squres of projection lengths

Since best-fit line is the one that maximizes $||A\mathbf{v}||_2^2$ (equivalent to saying minimizing the sum of the squared distances of the points to the line), define

$$\mathbf{v_1} = \arg \max_{\|\mathbf{v}\|_2=1} \|A\mathbf{v}\|_2$$

 $\rightarrow\,$ Let us call v_1 as the first singular vector

 \rightarrow The value $\sigma_1(A) = \|A\mathbf{v}_1\|_2$ is called the first singular value of A. Then

$$\sigma_1^2 = \sum_{i=1}^n (\mathbf{a_i}^T \mathbf{v_1})^2$$

Then

 $\sigma_1^2 ~=~$ the sum of the squared lengths of the projections of the points onto the line ${\bf v_1}$

э

(B)

Image: Image:

Then

- $\sigma_1^2 ~=~$ the sum of the squared lengths of the projections of the points onto the line ${\bf v_1}$
- $\rightarrow\,$ If the data points lie on a line or close to a line then ν_1 is the desired line

Then

- $\sigma_1^2 ~=~$ the sum of the squared lengths of the projections of the points onto the line ${\bf v_1}$
- $\rightarrow\,$ If the data points lie on a line or close to a line then v_1 is the desired line
- \to If the data points are not close to a line but a 2-dimensional subspace then we should look for a 2-d subspace that contains v_1

Then

- $\sigma_1^2 ~=~$ the sum of the squared lengths of the projections of the points onto the line ${\bf v_1}$
- $\rightarrow\,$ If the data points lie on a line or close to a line then v_1 is the desired line
- \to If the data points are not close to a line but a 2-dimensional subspace then we should look for a 2-d subspace that contains v_1
- \rightarrow For every 2-d subspace containing v_1 , the sum of squared lengths of the projections onto the subspace equals the sum of squared projections onto v_1 + the sum of squared projections along a vector perpendicular to v_1 in the subspace

< □ > < □ > < □ > < □ > < □ > < □ >

Then

- $\sigma_1^2 ~=~$ the sum of the squared lengths of the projections of the points onto the line ${\bf v_1}$
- $\rightarrow\,$ If the data points lie on a line or close to a line then v_1 is the desired line
- \to If the data points are not close to a line but a 2-dimensional subspace then we should look for a 2-d subspace that contains v_1
- → For every 2-d subspace containing $\mathbf{v_1}$, the sum of squared lengths of the projections onto the subspace equals the sum of squared projections onto $\mathbf{v_1}$ + the sum of squared projections along a vector perpendicular to $\mathbf{v_1}$ in the subspace
- \rightarrow Thus, instead of looking for the best 2-d subspace containing v_1 , look for a unit vector v_2 perpendicular to $\mathbf{v_1}$ that maximizes $||A\mathbf{v}||_2^2$ among all such unit vectors.

イロト 不得 トイヨト イヨト

Then

- $\sigma_1^2 ~=~$ the sum of the squared lengths of the projections of the points onto the line ${\bf v_1}$
- $\rightarrow\,$ If the data points lie on a line or close to a line then v_1 is the desired line
- \to If the data points are not close to a line but a 2-dimensional subspace then we should look for a 2-d subspace that contains v_1
- \rightarrow For every 2-d subspace containing v_1 , the sum of squared lengths of the projections onto the subspace equals the sum of squared projections onto v_1 + the sum of squared projections along a vector perpendicular to v_1 in the subspace
- \rightarrow Thus, instead of looking for the best 2-d subspace containing v_1 , look for a unit vector v_2 perpendicular to $\mathbf{v_1}$ that maximizes $||A\mathbf{v}||_2^2$ among all such unit vectors.
- \rightarrow And the process goes on.... using the greedy strategy

The second singular vector, $\mathbf{v_2}$ is given by

$$\mathbf{v_2} = \arg \max_{\mathbf{v} \perp \mathbf{v_1}, \|\mathbf{v}\|_2 = 1} \|A\mathbf{v}\|_2$$

э

(B)

The second singular vector, $\mathbf{v_2}$ is given by

$$\mathbf{v}_2 = \arg \max_{\mathbf{v} \perp \mathbf{v}_1, \|\mathbf{v}\|_2 = 1} \|A\mathbf{v}\|_2$$

$$\sigma_2(A) = \|A\mathbf{v}_2\|_2$$

is called the second singular value of A.

The second singular vector, $\mathbf{v_2}$ is given by

$$\mathbf{v_2} = \arg \max_{\mathbf{v} \perp \mathbf{v_1}, \|\mathbf{v}\|_2 = 1} \|A\mathbf{v}\|_2$$

$$\sigma_2(A) = \|A\mathbf{v}_2\|_2$$

is called the second singular value of A.

The process continues, and finally, we can obtain singular vectors v_1,v_2,\ldots,v_r such that

$$\max_{\mathbf{v}\perp\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_r,\|\mathbf{v}\|_2=1}\|A\mathbf{v}\|_2=0$$

The second singular vector, $\mathbf{v_2}$ is given by

$$\mathbf{v_2} = \arg \max_{\mathbf{v} \perp \mathbf{v_1}, \|\mathbf{v}\|_2 = 1} \|A\mathbf{v}\|_2$$

$$\sigma_2(A) = \|A\mathbf{v}_2\|_2$$

is called the second singular value of A.

The process continues, and finally, we can obtain singular vectors v_1,v_2,\ldots,v_r such that

$$\max_{\mathbf{v}\perp\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_r,\|\mathbf{v}\|_2=1}\|A\mathbf{v}\|_2=0$$

Theorem Let A be an $n \times d$ matrix with singular vectors $\mathbf{v_1}, \mathbf{v_2}, \ldots, \mathbf{v_r}$. For $1 \le k \le r$, let V_k be the subspace spanned by $\mathbf{v_1}, \mathbf{v_2}, \ldots, \mathbf{v_k}$. For each k, V_k is the best-fit k-dimensional subspace for A.

A B A A B A

Theorem Let A be an $n \times d$ matrix with singular vectors $\mathbf{v_1}, \mathbf{v_2}, \ldots, \mathbf{v_r}$. For $1 \le k \le r$, let V_k be the subspace spanned by $\mathbf{v_1}, \mathbf{v_2}, \ldots, \mathbf{v_k}$. For each k, V_k is the best-fit k-dimensional subspace for A.

Proof For k = 1 the statement if obviously true. For k = 2, let W be the best fit 2-d subspace for A.

A B < A B </p>

Theorem Let A be an $n \times d$ matrix with singular vectors $\mathbf{v_1}, \mathbf{v_2}, \ldots, \mathbf{v_r}$. For $1 \le k \le r$, let V_k be the subspace spanned by $\mathbf{v_1}, \mathbf{v_2}, \ldots, \mathbf{v_k}$. For each k, V_k is the best-fit k-dimensional subspace for A.

Proof For k = 1 the statement if obviously true. For k = 2, let W be the best fit 2-d subspace for A.

 \rightarrow For any orthonormal basis $(\mathbf{w_1}, \mathbf{w_2})$ of W, $||A\mathbf{w_1}||_2^2 + ||A\mathbf{w_2}||_2^2$ is the sum of squared lengths of the projections of the rows of A onto W

Theorem Let A be an $n \times d$ matrix with singular vectors $\mathbf{v_1}, \mathbf{v_2}, \ldots, \mathbf{v_r}$. For $1 \le k \le r$, let V_k be the subspace spanned by $\mathbf{v_1}, \mathbf{v_2}, \ldots, \mathbf{v_k}$. For each k, V_k is the best-fit k-dimensional subspace for A.

Proof For k = 1 the statement if obviously true. For k = 2, let W be the best fit 2-d subspace for A.

- \rightarrow For any orthonormal basis $(\mathbf{w_1}, \mathbf{w_2})$ of W, $||A\mathbf{w_1}||_2^2 + ||A\mathbf{w_2}||_2^2$ is the sum of squared lengths of the projections of the rows of A onto W
- $\rightarrow\,$ Choose (w_1,w_2) such that w_2 is perpendicular to v_1

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem Let A be an $n \times d$ matrix with singular vectors $\mathbf{v_1}, \mathbf{v_2}, \ldots, \mathbf{v_r}$. For $1 \le k \le r$, let V_k be the subspace spanned by $\mathbf{v_1}, \mathbf{v_2}, \ldots, \mathbf{v_k}$. For each k, V_k is the best-fit k-dimensional subspace for A.

Proof For k = 1 the statement if obviously true. For k = 2, let W be the best fit 2-d subspace for A.

- \rightarrow For any orthonormal basis $(\mathbf{w_1}, \mathbf{w_2})$ of W, $||A\mathbf{w_1}||_2^2 + ||A\mathbf{w_2}||_2^2$ is the sum of squared lengths of the projections of the rows of A onto W
- $\rightarrow\,$ Choose (w_1,w_2) such that w_2 is perpendicular to v_1
- \rightarrow Choose w_2 as the unit vector in ${\it W}$ perpendicular to the projection of v_1 onto ${\it W}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem Let A be an $n \times d$ matrix with singular vectors $\mathbf{v_1}, \mathbf{v_2}, \ldots, \mathbf{v_r}$. For $1 \le k \le r$, let V_k be the subspace spanned by $\mathbf{v_1}, \mathbf{v_2}, \ldots, \mathbf{v_k}$. For each k, V_k is the best-fit k-dimensional subspace for A.

Proof For k = 1 the statement if obviously true. For k = 2, let W be the best fit 2-d subspace for A.

- \rightarrow For any orthonormal basis $(\mathbf{w_1}, \mathbf{w_2})$ of W, $||A\mathbf{w_1}||_2^2 + ||A\mathbf{w_2}||_2^2$ is the sum of squared lengths of the projections of the rows of A onto W
- $\rightarrow\,$ Choose (w_1,w_2) such that w_2 is perpendicular to v_1
- \rightarrow Choose w_2 as the unit vector in ${\it W}$ perpendicular to the projection of v_1 onto ${\it W}$
- \rightarrow Since \textbf{v}_1 maximizes $\|A\textbf{v}\|_2^2,\,\|A\textbf{w}_1\|_2^2\leq\|A\textbf{v}_1\|_2^2$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem Let A be an $n \times d$ matrix with singular vectors $\mathbf{v_1}, \mathbf{v_2}, \ldots, \mathbf{v_r}$. For $1 \le k \le r$, let V_k be the subspace spanned by $\mathbf{v_1}, \mathbf{v_2}, \ldots, \mathbf{v_k}$. For each k, V_k is the best-fit k-dimensional subspace for A.

Proof For k = 1 the statement if obviously true. For k = 2, let W be the best fit 2-d subspace for A.

- \rightarrow For any orthonormal basis $(\mathbf{w_1}, \mathbf{w_2})$ of W, $||A\mathbf{w_1}||_2^2 + ||A\mathbf{w_2}||_2^2$ is the sum of squared lengths of the projections of the rows of A onto W
- $\rightarrow\,$ Choose (w_1,w_2) such that w_2 is perpendicular to v_1
- \rightarrow Choose w_2 as the unit vector in ${\it W}$ perpendicular to the projection of v_1 onto ${\it W}$
- \rightarrow Since $\textbf{v_1}$ maximizes $\|A\textbf{v}\|_2^2,\,\|A\textbf{w_1}\|_2^2 \leq \|A\textbf{v_1}\|_2^2$
- \rightarrow Thus $\|A\mathbf{w_1}\|_2^2 + \|A\mathbf{w_2}\|_2^2 \le \|A\mathbf{v_1}\|_2^2 + \|A\mathbf{v_2}\|_2^2$

イロト 不得 トイヨト イヨト 二日

Theorem Let A be an $n \times d$ matrix with singular vectors $\mathbf{v_1}, \mathbf{v_2}, \ldots, \mathbf{v_r}$. For $1 \le k \le r$, let V_k be the subspace spanned by $\mathbf{v_1}, \mathbf{v_2}, \ldots, \mathbf{v_k}$. For each k, V_k is the best-fit k-dimensional subspace for A.

Proof For k = 1 the statement if obviously true. For k = 2, let W be the best fit 2-d subspace for A.

- \rightarrow For any orthonormal basis $(\mathbf{w_1}, \mathbf{w_2})$ of W, $||A\mathbf{w_1}||_2^2 + ||A\mathbf{w_2}||_2^2$ is the sum of squared lengths of the projections of the rows of A onto W
- $\rightarrow\,$ Choose (w_1,w_2) such that w_2 is perpendicular to v_1
- \rightarrow Choose w_2 as the unit vector in ${\it W}$ perpendicular to the projection of v_1 onto ${\it W}$
- \rightarrow Since $\textbf{v_1}$ maximizes $\|A\textbf{v}\|_2^2,\,\|A\textbf{w_1}\|_2^2 \leq \|A\textbf{v_1}\|_2^2$
- $\rightarrow \text{ Thus } \|A \textbf{w_1}\|_2^2 + \|A \textbf{w_2}\|_2^2 \leq \|A \textbf{v_1}\|_2^2 + \|A \textbf{v_2}\|_2^2$
- $\rightarrow\,$ Then use induction hypothesis

イロト 不得 トイヨト イヨト 二日

Observation Note that for any row $\mathbf{a_i}^T$ of A,

$$\sum_{i=1}^r (\mathbf{a_j^\mathsf{T} v_i})^2 = \|\mathbf{a_j}\|_2^2$$

э

Observation Note that for any row $\mathbf{a_j}^T$ of A,

$$\sum_{i=1}^r (\mathbf{a_j^T v_i})^2 = \|\mathbf{a_j}\|_2^2$$

Observation Note that for any row $\mathbf{a_j}^T$ of A,

$$\sum_{i=1}^r (\mathbf{a_j^\mathsf{T} v_i})^2 = \|\mathbf{a_j}\|_2^2$$

Then

$$\sum_{j=1}^{n} \|\mathbf{a}_{j}\|_{2}^{2} = \sum_{j=1}^{n} \sum_{i=1}^{r} (\mathbf{a}_{j}^{T} \mathbf{v}_{i})^{2} = \sum_{i=1}^{r} \|A\mathbf{v}_{i}\|_{2}^{2} = \sum_{i=1}^{r} \sigma_{i}^{2}(A)$$
Also, $\|A\|_{F} = \sqrt{\sum_{j,k} a_{jk}^{2}} = \sqrt{\sum_{j=1}^{n} \|\mathbf{a}_{j}\|_{2}^{2}} = \sqrt{\sum_{i=1}^{r} \sigma_{i}^{2}(A)}$

Bibhas Adhikari (Spring 2022-23, IIT Kharag

э

Observation Note that for any row $\mathbf{a_j}^T$ of A,

$$\sum_{i=1}^r (\mathbf{a_j^\mathsf{T} v_i})^2 = \|\mathbf{a_j}\|_2^2$$

Then $\sum_{j=1}^{n} \|\mathbf{a}_{j}\|_{2}^{2} = \sum_{j=1}^{n} \sum_{i=1}^{r} (\mathbf{a}_{j}^{T} \mathbf{v}_{i})^{2} = \sum_{i=1}^{r} \|A\mathbf{v}_{i}\|_{2}^{2} = \sum_{i=1}^{r} \sigma_{i}^{2}(A)$ Also, $\|A\|_{F} = \sqrt{\sum_{j,k} a_{jk}^{2}} = \sqrt{\sum_{j=1}^{n} \|\mathbf{a}_{j}\|_{2}^{2}} = \sqrt{\sum_{i=1}^{r} \sigma_{i}^{2}(A)}$ Conclusion The sum of squares of the singular values of A is the square of the "whole content of A", i.e., the sum of squares of all the entries