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Singular value decomposition

Regression problem Can we construct a plane which contains a given set of
data points!

Let A be an n × d data matrix.

→ Consider each row of A as a point in d-dimensional space i.e. a data
point has d features

→ The problem: find the best-fitting k-dimensional subspace that is
close to all the given data points

→ “best” meaning - minimizing the sum of the squares of the
perpendicular distances of the points to the subspace

→ Thus the is to maximize the sum of squares of the lengths of the
projections of the points onto the subspace

→ What should be the value of k?
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Singular value decomposition

Consider a data point ai
T = (ai1, ai2, . . . , aid), which represents a vector

(line) through the origin.
Then

a2i1 + a2i2 + . . .+ a2id = (length of projection)2 + (distance of point to line)2

i.e.

(distance of point to line)2 = a2i1 + a2i2 + . . .+ a2id − (length of projection)2
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Singular value decomposition
Given the data matrix A with rows of A as the data points, and for a unit
vector v, the length of projection of ai

T , the ith row of A, onto v is |aiTv|

Now

∥Av∥22 = |a1Tv|2 + . . .+ |anTv|2

= sum of squres of projection lengths

Since best-fit line is the one that maximizes ∥Av∥22 (equivalent to saying
minimizing the sum of the squared distances of the points to the line),
define

v1 = arg max
∥v∥2=1

∥Av∥2

→ Let us call v1 as the first singular vector
→ The value σ1(A) = ∥Av1∥2 is called the first singular value of A. Then

σ2
1 =

n∑
i=1

(ai
Tv1)

2
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Singular value decomposition
Then

σ2
1 = the sum of the squared lengths of the projections of the points

onto the line v1

→ If the data points lie on a line or close to a line then v1 is the desired
line

→ If the data points are not close to a line but a 2-dimensional subspace
then we should look for a 2-d subspace that contains v1

→ For every 2-d subspace containing v1, the sum of squared lengths of
the projections onto the subspace equals the sum of squared
projections onto v1 + the sum of squared projections along a vector
perpendicular to v1 in the subspace

→ Thus, instead of looking for the best 2-d subspace containing v1, look
for a unit vector v2 perpendicular to v1 that maximizes ∥Av∥22 among
all such unit vectors.

→ And the process goes on.... using the greedy strategy
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Singular value decomposition

The second singular vector, v2 is given by

v2 = arg max
v⊥v1,∥v∥2=1

∥Av∥2

σ2(A) = ∥Av2∥2
is called the second singular value of A.

The process continues, and finally, we can obtain singular vectors
v1, v2, . . . , vr such that

max
v⊥v1,v2,...,vr,∥v∥2=1

∥Av∥2 = 0
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Singular value decomposition

Theorem Let A be an n× d matrix with singular vectors v1, v2, . . . , vr. For
1 ≤ k ≤ r , let Vk be the subspace spanned by v1, v2, . . . , vk. For each k,
Vk is the best-fit k-dimensional subspace for A.

Proof For k = 1 the statement if obviously true. For k = 2, let W be the
best fit 2-d subspace for A.

→ For any orthonormal basis (w1,w2) of W , ∥Aw1∥22 + ∥Aw2∥22 is the
sum of squared lengths of the projections of the rows of A onto W

→ Choose (w1,w2) such that w2 is perpendicular to v1

→ Choose w2 as the unit vector in W perpendicular to the projection of
v1 onto W

→ Since v1 maximizes ∥Av∥22, ∥Aw1∥22 ≤ ∥Av1∥22
→ Thus ∥Aw1∥22 + ∥Aw2∥22 ≤ ∥Av1∥22 + ∥Av2∥22
→ Then use induction hypothesis

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 8 January 19, 2023 7 / 8



Singular value decomposition

Theorem Let A be an n× d matrix with singular vectors v1, v2, . . . , vr. For
1 ≤ k ≤ r , let Vk be the subspace spanned by v1, v2, . . . , vk. For each k,
Vk is the best-fit k-dimensional subspace for A.

Proof For k = 1 the statement if obviously true. For k = 2, let W be the
best fit 2-d subspace for A.

→ For any orthonormal basis (w1,w2) of W , ∥Aw1∥22 + ∥Aw2∥22 is the
sum of squared lengths of the projections of the rows of A onto W

→ Choose (w1,w2) such that w2 is perpendicular to v1

→ Choose w2 as the unit vector in W perpendicular to the projection of
v1 onto W

→ Since v1 maximizes ∥Av∥22, ∥Aw1∥22 ≤ ∥Av1∥22
→ Thus ∥Aw1∥22 + ∥Aw2∥22 ≤ ∥Av1∥22 + ∥Av2∥22
→ Then use induction hypothesis

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 8 January 19, 2023 7 / 8



Singular value decomposition

Theorem Let A be an n× d matrix with singular vectors v1, v2, . . . , vr. For
1 ≤ k ≤ r , let Vk be the subspace spanned by v1, v2, . . . , vk. For each k,
Vk is the best-fit k-dimensional subspace for A.

Proof For k = 1 the statement if obviously true. For k = 2, let W be the
best fit 2-d subspace for A.

→ For any orthonormal basis (w1,w2) of W , ∥Aw1∥22 + ∥Aw2∥22 is the
sum of squared lengths of the projections of the rows of A onto W

→ Choose (w1,w2) such that w2 is perpendicular to v1

→ Choose w2 as the unit vector in W perpendicular to the projection of
v1 onto W

→ Since v1 maximizes ∥Av∥22, ∥Aw1∥22 ≤ ∥Av1∥22
→ Thus ∥Aw1∥22 + ∥Aw2∥22 ≤ ∥Av1∥22 + ∥Av2∥22
→ Then use induction hypothesis

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 8 January 19, 2023 7 / 8



Singular value decomposition

Theorem Let A be an n× d matrix with singular vectors v1, v2, . . . , vr. For
1 ≤ k ≤ r , let Vk be the subspace spanned by v1, v2, . . . , vk. For each k,
Vk is the best-fit k-dimensional subspace for A.

Proof For k = 1 the statement if obviously true. For k = 2, let W be the
best fit 2-d subspace for A.

→ For any orthonormal basis (w1,w2) of W , ∥Aw1∥22 + ∥Aw2∥22 is the
sum of squared lengths of the projections of the rows of A onto W

→ Choose (w1,w2) such that w2 is perpendicular to v1

→ Choose w2 as the unit vector in W perpendicular to the projection of
v1 onto W

→ Since v1 maximizes ∥Av∥22, ∥Aw1∥22 ≤ ∥Av1∥22
→ Thus ∥Aw1∥22 + ∥Aw2∥22 ≤ ∥Av1∥22 + ∥Av2∥22
→ Then use induction hypothesis

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 8 January 19, 2023 7 / 8



Singular value decomposition

Theorem Let A be an n× d matrix with singular vectors v1, v2, . . . , vr. For
1 ≤ k ≤ r , let Vk be the subspace spanned by v1, v2, . . . , vk. For each k,
Vk is the best-fit k-dimensional subspace for A.

Proof For k = 1 the statement if obviously true. For k = 2, let W be the
best fit 2-d subspace for A.

→ For any orthonormal basis (w1,w2) of W , ∥Aw1∥22 + ∥Aw2∥22 is the
sum of squared lengths of the projections of the rows of A onto W

→ Choose (w1,w2) such that w2 is perpendicular to v1

→ Choose w2 as the unit vector in W perpendicular to the projection of
v1 onto W

→ Since v1 maximizes ∥Av∥22, ∥Aw1∥22 ≤ ∥Av1∥22
→ Thus ∥Aw1∥22 + ∥Aw2∥22 ≤ ∥Av1∥22 + ∥Av2∥22
→ Then use induction hypothesis

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 8 January 19, 2023 7 / 8



Singular value decomposition

Theorem Let A be an n× d matrix with singular vectors v1, v2, . . . , vr. For
1 ≤ k ≤ r , let Vk be the subspace spanned by v1, v2, . . . , vk. For each k,
Vk is the best-fit k-dimensional subspace for A.

Proof For k = 1 the statement if obviously true. For k = 2, let W be the
best fit 2-d subspace for A.

→ For any orthonormal basis (w1,w2) of W , ∥Aw1∥22 + ∥Aw2∥22 is the
sum of squared lengths of the projections of the rows of A onto W

→ Choose (w1,w2) such that w2 is perpendicular to v1

→ Choose w2 as the unit vector in W perpendicular to the projection of
v1 onto W

→ Since v1 maximizes ∥Av∥22, ∥Aw1∥22 ≤ ∥Av1∥22

→ Thus ∥Aw1∥22 + ∥Aw2∥22 ≤ ∥Av1∥22 + ∥Av2∥22
→ Then use induction hypothesis

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 8 January 19, 2023 7 / 8



Singular value decomposition

Theorem Let A be an n× d matrix with singular vectors v1, v2, . . . , vr. For
1 ≤ k ≤ r , let Vk be the subspace spanned by v1, v2, . . . , vk. For each k,
Vk is the best-fit k-dimensional subspace for A.

Proof For k = 1 the statement if obviously true. For k = 2, let W be the
best fit 2-d subspace for A.

→ For any orthonormal basis (w1,w2) of W , ∥Aw1∥22 + ∥Aw2∥22 is the
sum of squared lengths of the projections of the rows of A onto W

→ Choose (w1,w2) such that w2 is perpendicular to v1

→ Choose w2 as the unit vector in W perpendicular to the projection of
v1 onto W

→ Since v1 maximizes ∥Av∥22, ∥Aw1∥22 ≤ ∥Av1∥22
→ Thus ∥Aw1∥22 + ∥Aw2∥22 ≤ ∥Av1∥22 + ∥Av2∥22

→ Then use induction hypothesis

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 8 January 19, 2023 7 / 8



Singular value decomposition

Theorem Let A be an n× d matrix with singular vectors v1, v2, . . . , vr. For
1 ≤ k ≤ r , let Vk be the subspace spanned by v1, v2, . . . , vk. For each k,
Vk is the best-fit k-dimensional subspace for A.

Proof For k = 1 the statement if obviously true. For k = 2, let W be the
best fit 2-d subspace for A.

→ For any orthonormal basis (w1,w2) of W , ∥Aw1∥22 + ∥Aw2∥22 is the
sum of squared lengths of the projections of the rows of A onto W

→ Choose (w1,w2) such that w2 is perpendicular to v1

→ Choose w2 as the unit vector in W perpendicular to the projection of
v1 onto W

→ Since v1 maximizes ∥Av∥22, ∥Aw1∥22 ≤ ∥Av1∥22
→ Thus ∥Aw1∥22 + ∥Aw2∥22 ≤ ∥Av1∥22 + ∥Av2∥22
→ Then use induction hypothesis

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 8 January 19, 2023 7 / 8



Singular value decomposition

Observation Note that for any row aj
T of A,

r∑
i=1

(aTj vi)
2 = ∥aj∥22

Then
n∑

j=1

∥aj∥22 =
n∑

j=1

r∑
i=1

(aj
Tvi)

2 =
r∑

i=1

∥Avi∥22 =
r∑

i=1

σ2
i (A)

Also, ∥A∥F =
√∑

j ,k a
2
jk =

√∑n
j=1 ∥aj∥22 =

√∑r
i=1 σ

2
i (A)

Conclusion The sum of squares of the singular values of A is the square of
the “whole content of A”, i.e., the sum of squares of all the entries
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