Big Data Analysis (MA60306)

Bibhas Adhikari

Spring 2022-23, IIT Kharagpur
Lecture 7
January 18, 2023

Computing with data

Question How much does a small change in the right hand side of a system $A x=b$ affect the solution?

Computing with data

Question How much does a small change in the right hand side of a system $A x=b$ affect the solution?
Let $A x=b$ and we let $A(x+\Delta x)=(b+\triangle b)$ where Δx is the change in the original solution x due to the change in the rhs of the system

Computing with data

Question How much does a small change in the right hand side of a system $A x=b$ affect the solution?
Let $A x=b$ and we let $A(x+\Delta x)=(b+\triangle b)$ where Δx is the change in the original solution x due to the change in the rhs of the system Norm of a matrix Let M be a a matrix. Then define 'induced norm' of M as

$$
\|M\|_{\nu}=\max _{x \neq 0} \frac{\|M x\|_{\nu}}{\|x\|_{\nu}}, 1 \leq \nu \leq \infty
$$

Computing with data

Question How much does a small change in the right hand side of a system $A x=b$ affect the solution?
Let $A x=b$ and we let $A(x+\Delta x)=(b+\triangle b)$ where Δx is the change in the original solution x due to the change in the rhs of the system Norm of a matrix Let M be a a matrix. Then define 'induced norm' of M as

$$
\|M\|_{\nu}=\max _{x \neq 0} \frac{\|M x\|_{\nu}}{\|x\|_{\nu}}, 1 \leq \nu \leq \infty
$$

Then (Homework)

$$
\rightarrow\|M x\|_{\nu} \leq\|M\|_{\nu}\|x\|_{\nu}
$$

Computing with data

Question How much does a small change in the right hand side of a system $A x=b$ affect the solution?
Let $A x=b$ and we let $A(x+\Delta x)=(b+\triangle b)$ where Δx is the change in the original solution x due to the change in the rhs of the system Norm of a matrix Let M be a a matrix. Then define 'induced norm' of M as

$$
\|M\|_{\nu}=\max _{x \neq 0} \frac{\|M x\|_{\nu}}{\|x\|_{\nu}}, 1 \leq \nu \leq \infty
$$

Then (Homework)

$$
\begin{aligned}
& \rightarrow\|M x\|_{\nu} \leq\|M\|_{\nu}\|x\|_{\nu} \\
& \rightarrow\|\alpha M\|_{\nu}=|\alpha|\|M\|_{\nu}
\end{aligned}
$$

Computing with data

Question How much does a small change in the right hand side of a system $A x=b$ affect the solution?
Let $A x=b$ and we let $A(x+\Delta x)=(b+\triangle b)$ where Δx is the change in the original solution x due to the change in the rhs of the system Norm of a matrix Let M be a a matrix. Then define 'induced norm' of M as

$$
\|M\|_{\nu}=\max _{x \neq 0} \frac{\|M x\|_{\nu}}{\|x\|_{\nu}}, 1 \leq \nu \leq \infty
$$

Then (Homework)

$$
\begin{aligned}
& \rightarrow\|M x\|_{\nu} \leq\|M\|_{\nu}\|x\|_{\nu} \\
& \rightarrow\|\alpha M\|_{\nu}=|\alpha|\|M\|_{\nu} \\
& \rightarrow\|M+N\|_{\nu} \leq\|M\|_{\nu}+\|N\|_{\nu}
\end{aligned}
$$

Computing with data

Question How much does a small change in the right hand side of a system $A x=b$ affect the solution?
Let $A x=b$ and we let $A(x+\Delta x)=(b+\triangle b)$ where Δx is the change in the original solution x due to the change in the rhs of the system Norm of a matrix Let M be a a matrix. Then define 'induced norm' of M as

$$
\|M\|_{\nu}=\max _{x \neq 0} \frac{\|M x\|_{\nu}}{\|x\|_{\nu}}, 1 \leq \nu \leq \infty
$$

Then (Homework)

$$
\begin{aligned}
& \rightarrow\|M x\|_{\nu} \leq\|M\|_{\nu}\|x\|_{\nu} \\
& \rightarrow\|\alpha M\|_{\nu}=|\alpha|\|M\|_{\nu} \\
& \rightarrow\|M+N\|_{\nu} \leq\|M\|_{\nu}+\|N\|_{\nu} \\
& \rightarrow\|M N\|_{\nu} \leq\|M\|_{\nu}\|N\|_{\nu}
\end{aligned}
$$

Computing with data

Question How much does a small change in the right hand side of a system $A x=b$ affect the solution?
Let $A x=b$ and we let $A(x+\Delta x)=(b+\triangle b)$ where Δx is the change in the original solution x due to the change in the rhs of the system Norm of a matrix Let M be a a matrix. Then define 'induced norm' of M as

$$
\|M\|_{\nu}=\max _{x \neq 0} \frac{\|M x\|_{\nu}}{\|x\|_{\nu}}, 1 \leq \nu \leq \infty
$$

Then (Homework)

$$
\begin{aligned}
& \rightarrow\|M x\|_{\nu} \leq\|M\|_{\nu}\|x\|_{\nu} \\
& \rightarrow\|\alpha M\|_{\nu}=|\alpha|\|M\|_{\nu} \\
& \rightarrow\|M+N\|_{\nu} \leq\|M\|_{\nu}+\|N\|_{\nu} \\
& \rightarrow\|M N\|_{\nu} \leq\|M\|_{\nu}\|N\|_{\nu}
\end{aligned}
$$

Question Is $\|M\|_{F}=\sqrt{\sum_{i, j}\left|m_{i j}\right|^{2}}$ a norm, where $M=\left[m_{i j}\right]$?

Computing with data

$$
A(x+\triangle x)=(b+\triangle b) \Rightarrow A(\triangle x)=(\triangle b) \Rightarrow\|\Delta x\| \leq\left\|A^{-1}\right\|\|\Delta b\|
$$

Computing with data

$$
\begin{aligned}
& A(x+\triangle x)=(b+\triangle b) \Rightarrow A(\triangle x)=(\triangle b) \Rightarrow\|\Delta x\| \leq\left\|A^{-1}\right\|\|\Delta b\| \\
& \text { Similarly, } b=A x \Rightarrow\|b\| \leq\|A\|\|x\| \Rightarrow \frac{1}{\|x\|} \leq\|A\| \frac{1}{\|b\|}
\end{aligned}
$$

Computing with data

$A(x+\triangle x)=(b+\triangle b) \Rightarrow A(\triangle x)=(\triangle b) \Rightarrow\|\Delta x\| \leq\left\|A^{-1}\right\|\|\Delta b\|$ Similarly, $b=A x \Rightarrow\|b\| \leq\|A\|\|x\| \Rightarrow \frac{1}{\|x\|} \leq\|A\| \frac{1}{\|b\|}$
Then

$$
\frac{\|\Delta x\|}{\|x\|} \leq\|A\|\left\|A^{-1}\right\| \frac{\|\triangle b\|}{\|b\|}
$$

Computing with data

$A(x+\Delta x)=(b+\Delta b) \Rightarrow A(\Delta x)=(\Delta b) \Rightarrow\|\Delta x\| \leq\left\|A^{-1}\right\|\|\Delta b\|$ Similarly, $b=A x \Rightarrow\|b\| \leq\|A\|\|x\| \Rightarrow \frac{1}{\|x\|} \leq\|A\| \frac{1}{\|b\|}$
Then

$$
\frac{\|\Delta x\|}{\|x\|} \leq\|A\|\left\|A^{-1}\right\| \frac{\|\triangle b\|}{\|b\|}
$$

Define $\kappa(A)=\|A\|\left\|A^{-1}\right\|$ is called the condition number of a nonsingular matrix

Computing with data

$A(x+\triangle x)=(b+\triangle b) \Rightarrow A(\triangle x)=(\triangle b) \Rightarrow\|\Delta x\| \leq\left\|A^{-1}\right\|\|\Delta b\|$ Similarly, $b=A x \Rightarrow\|b\| \leq\|A\|\|x\| \Rightarrow \frac{1}{\|x\|} \leq\|A\| \frac{1}{\|b\|}$
Then

$$
\frac{\|\Delta x\|}{\|x\|} \leq\|A\|\left\|A^{-1}\right\| \frac{\|\triangle b\|}{\|b\|}
$$

Define $\kappa(A)=\|A\|\left\|A^{-1}\right\|$ is called the condition number of a nonsingular matrix Obviously, $\kappa(A) \geq 1$
Now note that $\kappa\left(\left[\begin{array}{ll}4.1 & 2.8 \\ 9.7 & 6.6\end{array}\right]\right)=1.6230 e+03$ (too big!! for which choice of the norm?)

Computing with data

$A(x+\triangle x)=(b+\triangle b) \Rightarrow A(\triangle x)=(\triangle b) \Rightarrow\|\Delta x\| \leq\left\|A^{-1}\right\|\|\Delta b\|$ Similarly, $b=A x \Rightarrow\|b\| \leq\|A\|\|x\| \Rightarrow \frac{1}{\|x\|} \leq\|A\| \frac{1}{\|b\|}$
Then

$$
\frac{\|\Delta x\|}{\|x\|} \leq\|A\|\left\|A^{-1}\right\| \frac{\|\triangle b\|}{\|b\|}
$$

Define $\kappa(A)=\|A\|\left\|A^{-1}\right\|$ is called the condition number of a nonsingular matrix Obviously, $\kappa(A) \geq 1$
Now note that $\kappa\left(\left[\begin{array}{ll}4.1 & 2.8 \\ 9.7 & 6.6\end{array}\right]\right)=1.6230 e+03$ (too big!! for which choice of the norm?)
Question What is the condition number of an orthogonal matrix?

Computing with data

It can also be shown that

$$
\frac{\left\|(A+\triangle A)^{-1}-A^{-1}\right\|}{\left\|A^{-1}\right\|} \leq \kappa(A) \frac{\|\triangle A\|}{\|A\|}
$$

Computing with data

It can also be shown that

$$
\frac{\left\|(A+\triangle A)^{-1}-A^{-1}\right\|}{\left\|A^{-1}\right\|} \leq \kappa(A) \frac{\|\triangle A\|}{\|A\|}
$$

Question What is the conclusion?

Computing with data

It can also be shown that

$$
\frac{\left\|(A+\triangle A)^{-1}-A^{-1}\right\|}{\left\|A^{-1}\right\|} \leq \kappa(A) \frac{\|\triangle A\|}{\|A\|}
$$

Question What is the conclusion?
import numpy as np
$A=\operatorname{np} . \operatorname{array}([[1,2.0000000001],[2,4]])$
$\mathrm{b}=\mathrm{np} . \operatorname{array}([1,2])$
b2 $=$ np.array $([1,2.01])$
np.linalg.cond(A)
$x=$ np.linalg.solve $(A, b) \operatorname{print}(x)$
$x 2=n p . \operatorname{linalg} . \operatorname{solve}(A, b 2) \operatorname{print}(x 2)$

Cholesky decomposition
 Recall

\rightarrow If A is a positive definite matrix then A is nonsingular

Cholesky decomposition

Recall
\rightarrow If A is a positive definite matrix then A is nonsingular
\rightarrow If A is positive definite then the linear system $A x=b$ has exactly one solution

Cholesky decomposition

Recall

\rightarrow If A is a positive definite matrix then A is nonsingular
\rightarrow If A is positive definite then the linear system $A x=b$ has exactly one solution
\rightarrow If $A=M^{T} M$ for some nonsingular matrix M then A is positive definite

Cholesky decomposition

Recall

\rightarrow If A is a positive definite matrix then A is nonsingular
\rightarrow If A is positive definite then the linear system $A x=b$ has exactly one solution
\rightarrow If $A=M^{T} M$ for some nonsingular matrix M then A is positive definite
Example Let $M=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$. Then

$$
A=M^{T} M=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{array}\right]
$$

is positive definite

Cholesky decomposition

Recall
\rightarrow If A is a positive definite matrix then A is nonsingular
\rightarrow If A is positive definite then the linear system $A x=b$ has exactly one solution
\rightarrow If $A=M^{T} M$ for some nonsingular matrix M then A is positive definite
Example Let $M=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$. Then

$$
A=M^{T} M=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{array}\right]
$$

is positive definite
Question Is the converse true?

Cholesky decomposition

Theorem (Cholesky decomposition theorem) Any positive definite matrix A can be decomposed in exactly one way as $A=R^{T} R$ for some upper triangular matrix R whose diagonal entries are positive. R is called the Cholesky factor of A.

Cholesky decomposition

Theorem (Cholesky decomposition theorem) Any positive definite matrix A can be decomposed in exactly one way as $A=R^{T} R$ for some upper triangular matrix R whose diagonal entries are positive. R is called the Cholesky factor of A.
Question What are the advantages of this decomposition?

Cholesky decomposition

Theorem (Cholesky decomposition theorem) Any positive definite matrix A can be decomposed in exactly one way as $A=R^{T} R$ for some upper triangular matrix R whose diagonal entries are positive. R is called the Cholesky factor of A.
Question What are the advantages of this decomposition?

1. Suppose we want to solve $A x=b$, where $A>0$ (pd)

Cholesky decomposition

Theorem (Cholesky decomposition theorem) Any positive definite matrix A can be decomposed in exactly one way as $A=R^{T} R$ for some upper triangular matrix R whose diagonal entries are positive. R is called the Cholesky factor of A.
Question What are the advantages of this decomposition?

1. Suppose we want to solve $A x=b$, where $A>0$ (pd)
2. If we know Cholesky factor R, then $R^{T} R x=b$

Cholesky decomposition

Theorem (Cholesky decomposition theorem) Any positive definite matrix A can be decomposed in exactly one way as $A=R^{T} R$ for some upper triangular matrix R whose diagonal entries are positive. R is called the Cholesky factor of A.
Question What are the advantages of this decomposition?

1. Suppose we want to solve $A x=b$, where $A>0$ (pd)
2. If we know Cholesky factor R, then $R^{T} R x=b$
3. Let $y=R x$ then $R^{T} y=b$. Since R^{T} is lower triangular, we can easily solve by forward substitution

Cholesky decomposition

Theorem (Cholesky decomposition theorem) Any positive definite matrix A can be decomposed in exactly one way as $A=R^{T} R$ for some upper triangular matrix R whose diagonal entries are positive. R is called the Cholesky factor of A.
Question What are the advantages of this decomposition?

1. Suppose we want to solve $A x=b$, where $A>0$ (pd)
2. If we know Cholesky factor R, then $R^{T} R x=b$
3. Let $y=R x$ then $R^{T} y=b$. Since R^{T} is lower triangular, we can easily solve by forward substitution
4. Once y is obtained then we can solve the upper triangular system $R x=y$ to obtain x by back substitution

Cholesky decomposition

Theorem (Cholesky decomposition theorem) Any positive definite matrix A can be decomposed in exactly one way as $A=R^{T} R$ for some upper triangular matrix R whose diagonal entries are positive. R is called the Cholesky factor of A.
Question What are the advantages of this decomposition?

1. Suppose we want to solve $A x=b$, where $A>0$ (pd)
2. If we know Cholesky factor R, then $R^{T} R x=b$
3. Let $y=R x$ then $R^{T} y=b$. Since R^{T} is lower triangular, we can easily solve by forward substitution
4. Once y is obtained then we can solve the upper triangular system $R x=y$ to obtain x by back substitution
5. (Homework) The total flop count is $2 n^{2}$ when R is known!

Cholesky decomposition

Theorem (Cholesky decomposition theorem) Any positive definite matrix A can be decomposed in exactly one way as $A=R^{T} R$ for some upper triangular matrix R whose diagonal entries are positive. R is called the Cholesky factor of A.
Question What are the advantages of this decomposition?

1. Suppose we want to solve $A x=b$, where $A>0$ (pd)
2. If we know Cholesky factor R, then $R^{T} R x=b$
3. Let $y=R x$ then $R^{T} y=b$. Since R^{T} is lower triangular, we can easily solve by forward substitution
4. Once y is obtained then we can solve the upper triangular system $R x=y$ to obtain x by back substitution
5. (Homework) The total flop count is $2 n^{2}$ when R is known!

Question How do we obtain R ?

Cholesky decomposition

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \cdots & a_{n n}
\end{array}\right]=\left[\begin{array}{ccccc}
r_{11} & 0 & 0 & \cdots & 0 \\
r_{12} & r_{22} & 0 & \cdots & 0 \\
r_{13} & r_{23} & r_{33} & & 0 \\
\vdots & \vdots & \vdots & \ddots & \\
r_{1 n} & r_{2 n} & r_{3 n} & \cdots & r_{n n}
\end{array}\right]\left[\begin{array}{ccccc}
r_{11} & r_{12} & r_{13} & \ldots & r_{1 n} \\
0 & r_{22} & r_{23} & \ldots & r_{2 n} \\
0 & 0 & r_{33} & \ldots & r_{3 n} \\
\vdots & \vdots & & \ddots & \vdots \\
0 & 0 & 0 & \cdots & r_{n n}
\end{array}\right]
$$

Cholesky decomposition

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \cdots & a_{n n}
\end{array}\right]=\left[\begin{array}{ccccc}
r_{11} & 0 & 0 & \cdots & 0 \\
r_{12} & r_{22} & 0 & \cdots & 0 \\
r_{13} & r_{23} & r_{33} & & 0 \\
\vdots & \vdots & \vdots & \ddots & \\
r_{1 n} & r_{2 n} & r_{3 n} & \cdots & r_{n n}
\end{array}\right]\left[\begin{array}{ccccc}
r_{11} & r_{12} & r_{13} & \ldots & r_{1 n} \\
0 & r_{22} & r_{23} & \cdots & r_{2 n} \\
0 & 0 & r_{33} & \cdots & r_{3 n} \\
\vdots & \vdots & & \ddots & \vdots \\
0 & 0 & 0 & \cdots & r_{n n}
\end{array}\right]
$$

$\rightarrow a_{i j}=i$ th row of $R^{T} \times j$ th column of R

Cholesky decomposition

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \cdots & a_{n n}
\end{array}\right]=\left[\begin{array}{ccccc}
r_{11} & 0 & 0 & \cdots & 0 \\
r_{12} & r_{22} & 0 & \cdots & 0 \\
r_{13} & r_{23} & r_{33} & & 0 \\
\vdots & \vdots & \vdots & \ddots & \\
r_{1 n} & r_{2 n} & r_{3 n} & \cdots & r_{n n}
\end{array}\right]\left[\begin{array}{ccccc}
r_{11} & r_{12} & r_{13} & \ldots & r_{1 n} \\
0 & r_{22} & r_{23} & \ldots & r_{2 n} \\
0 & 0 & r_{33} & \ldots & r_{3 n} \\
\vdots & \vdots & & \ddots & \vdots \\
0 & 0 & 0 & \cdots & r_{n n}
\end{array}\right]
$$

$\rightarrow a_{i j}=i$ th row of $R^{T} \times j$ th column of R
\rightarrow In particular, $a_{1 j}=r_{11} r_{1 j}+0 r_{2 j}+0 r_{3 j}+\ldots+0 r_{n j}=r_{11} r_{1 j}$

Cholesky decomposition

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \cdots & a_{n n}
\end{array}\right]=\left[\begin{array}{ccccc}
r_{11} & 0 & 0 & \cdots & 0 \\
r_{12} & r_{22} & 0 & \cdots & 0 \\
r_{13} & r_{23} & r_{33} & & 0 \\
\vdots & \vdots & \vdots & \ddots & \\
r_{1 n} & r_{2 n} & r_{3 n} & \cdots & r_{n n}
\end{array}\right]\left[\begin{array}{ccccc}
r_{11} & r_{12} & r_{13} & \ldots & r_{1 n} \\
0 & r_{22} & r_{23} & \ldots & r_{2 n} \\
0 & 0 & r_{33} & \ldots & r_{3 n} \\
\vdots & \vdots & & \ddots & \vdots \\
0 & 0 & 0 & \cdots & r_{n n}
\end{array}\right]
$$

$\rightarrow a_{i j}=i$ th row of $R^{T} \times j$ th column of R
\rightarrow In particular, $a_{1 j}=r_{11} r_{1 j}+0 r_{2 j}+0 r_{3 j}+\ldots+0 r_{n j}=r_{11} r_{1 j}$
\rightarrow For $j=1, r_{11}=+\sqrt{a_{11}}$

Cholesky decomposition

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \cdots & a_{n n}
\end{array}\right]=\left[\begin{array}{ccccc}
r_{11} & 0 & 0 & \cdots & 0 \\
r_{12} & r_{22} & 0 & \cdots & 0 \\
r_{13} & r_{23} & r_{33} & & 0 \\
\vdots & \vdots & \vdots & \ddots & \\
r_{1 n} & r_{2 n} & r_{3 n} & \cdots & r_{n n}
\end{array}\right]\left[\begin{array}{ccccc}
r_{11} & r_{12} & r_{13} & \ldots & r_{1 n} \\
0 & r_{22} & r_{23} & \ldots & r_{2 n} \\
0 & 0 & r_{33} & \ldots & r_{3 n} \\
\vdots & \vdots & & \ddots & \vdots \\
0 & 0 & 0 & \cdots & r_{n n}
\end{array}\right]
$$

$\rightarrow a_{i j}=i$ th row of $R^{T} \times j$ th column of R
\rightarrow In particular, $a_{1 j}=r_{11} r_{1 j}+0 r_{2 j}+0 r_{3 j}+\ldots+0 r_{n j}=r_{11} r_{1 j}$
\rightarrow For $j=1, r_{11}=+\sqrt{a_{11}}$
\rightarrow Thus $r_{1 j}=a_{1 j} / r_{11}, j=2, \ldots, n$

Cholesky decomposition

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \cdots & a_{n n}
\end{array}\right]=\left[\begin{array}{ccccc}
r_{11} & 0 & 0 & \cdots & 0 \\
r_{12} & r_{22} & 0 & \cdots & 0 \\
r_{13} & r_{23} & r_{33} & & 0 \\
\vdots & \vdots & \vdots & \ddots & \\
r_{1 n} & r_{2 n} & r_{3 n} & \cdots & r_{n n}
\end{array}\right]\left[\begin{array}{ccccc}
r_{11} & r_{12} & r_{13} & \ldots & r_{1 n} \\
0 & r_{22} & r_{23} & \ldots & r_{2 n} \\
0 & 0 & r_{33} & \ldots & r_{3 n} \\
\vdots & \vdots & & \ddots & \vdots \\
0 & 0 & 0 & \cdots & r_{n n}
\end{array}\right]
$$

$\rightarrow a_{i j}=i$ th row of $R^{T} \times j$ th column of R
\rightarrow In particular, $a_{1 j}=r_{11} r_{1 j}+0 r_{2 j}+0 r_{3 j}+\ldots+0 r_{n j}=r_{11} r_{1 j}$
\rightarrow For $j=1, r_{11}=+\sqrt{a_{11}}$
\rightarrow Thus $r_{1 j}=a_{1 j} / r_{11}, j=2, \ldots, n$
\rightarrow From the 2nd row, $a_{2 j}=r_{12} r_{1 j}+r_{22} r_{2 j}$

Cholesky decomposition

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \cdots & a_{n n}
\end{array}\right]=\left[\begin{array}{ccccc}
r_{11} & 0 & 0 & \cdots & 0 \\
r_{12} & r_{22} & 0 & \cdots & 0 \\
r_{13} & r_{23} & r_{33} & & 0 \\
\vdots & \vdots & \vdots & \ddots & \\
r_{1 n} & r_{2 n} & r_{3 n} & \cdots & r_{n n}
\end{array}\right]\left[\begin{array}{ccccc}
r_{11} & r_{12} & r_{13} & \ldots & r_{1 n} \\
0 & r_{22} & r_{23} & \ldots & r_{2 n} \\
0 & 0 & r_{33} & \ldots & r_{3 n} \\
\vdots & \vdots & & \ddots & \vdots \\
0 & 0 & 0 & \cdots & r_{n n}
\end{array}\right]
$$

$\rightarrow a_{i j}=i$ th row of $R^{T} \times j$ th column of R
\rightarrow In particular, $a_{1 j}=r_{11} r_{1 j}+0 r_{2 j}+0 r_{3 j}+\ldots+0 r_{n j}=r_{11} r_{1 j}$
\rightarrow For $j=1, r_{11}=+\sqrt{a_{11}}$
\rightarrow Thus $r_{1 j}=a_{1 j} / r_{11}, j=2, \ldots, n$
\rightarrow From the 2nd row, $a_{2 j}=r_{12} r_{1 j}+r_{22} r_{2 j}$
\rightarrow In particular, for $j=2, a_{22}=r_{12}^{2}+r_{22}^{2}$, hence $r_{22}=+\sqrt{a_{22}-r_{12}^{2}}$

Cholesky decomposition

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \ldots & a_{n n}
\end{array}\right]=\left[\begin{array}{ccccc}
r_{11} & 0 & 0 & \ldots & 0 \\
r_{12} & r_{22} & 0 & \ldots & 0 \\
r_{13} & r_{23} & r_{33} & & 0 \\
\vdots & \vdots & \vdots & \ddots & \\
r_{1 n} & r_{2 n} & r_{3 n} & \ldots & r_{n n}
\end{array}\right]\left[\begin{array}{ccccc}
r_{11} & r_{12} & r_{13} & \ldots & r_{1 n} \\
0 & r_{22} & r_{23} & \ldots & r_{2 n} \\
0 & 0 & r_{33} & \cdots & r_{3 n} \\
\vdots & \vdots & & \ddots & \vdots \\
0 & 0 & 0 & \cdots & r_{n n}
\end{array}\right]
$$

$\rightarrow a_{i j}=i$ th row of $R^{T} \times j$ th column of R
\rightarrow In particular, $a_{1 j}=r_{11} r_{1 j}+0 r_{2 j}+0 r_{3 j}+\ldots+0 r_{n j}=r_{11} r_{1 j}$
\rightarrow For $j=1, r_{11}=+\sqrt{a_{11}}$
\rightarrow Thus $r_{1 j}=a_{1 j} / r_{11}, j=2, \ldots, n$
\rightarrow From the 2nd row, $a_{2 j}=r_{12} r_{1 j}+r_{22} r_{2 j}$
\rightarrow In particular, for $j=2, a_{22}=r_{12}^{2}+r_{22}^{2}$, hence $r_{22}=+\sqrt{a_{22}-r_{12}^{2}}$
\rightarrow Thus, $r_{2 j}=\left(a_{2 j}-r_{12} r_{1 j}\right) / r_{22}, j=3, \ldots, n$

Cholesky decomposition

The recipe for calculating R - the Cholesky's method

$$
\begin{aligned}
& r_{i i}=+\sqrt{a_{i i}-\sum_{k=1}^{i-1} r_{k i}^{2}} \\
& r_{i j}=\left(a_{i j}-\sum_{k=1}^{i-1} r_{k i} r_{k j}\right) / r_{i i}, j=i+1, \ldots, n
\end{aligned}
$$

Cholesky decomposition

The recipe for calculating R - the Cholesky's method

$$
\begin{aligned}
& r_{i i}=+\sqrt{a_{i i}-\sum_{k=1}^{i-1} r_{k i}^{2}} \\
& r_{i j}=\left(a_{i j}-\sum_{k=1}^{i-1} r_{k i} r_{k j}\right) / r_{i i}, j=i+1, \ldots, n
\end{aligned}
$$

Question Is it a backward stable algorithm?

Cholesky decomposition

The recipe for calculating R - the Cholesky's method

$$
\begin{aligned}
& r_{i i}=+\sqrt{a_{i i}-\sum_{k=1}^{i-1} r_{k i}^{2}} \\
& r_{i j}=\left(a_{i j}-\sum_{k=1}^{i-1} r_{k i} r_{k j}\right) / r_{i i}, j=i+1, \ldots, n
\end{aligned}
$$

Question Is it a backward stable algorithm?
See Higham's book for a proof

Cholesky's algorithm

Flop count - The upper part of R will be stored over the upper part of A

Cholesky's algorithm

Flop count - The upper part of R will be stored over the upper part of A for $i=1, \ldots, n$

$$
\begin{aligned}
& \text { for } k=1, \ldots, i-1 \\
& \quad a_{i i} \leftarrow a_{i i}-a_{k i}^{2} \\
& \text { if } a_{i i} \leq 0, \text { set error flag }
\end{aligned}
$$

$a_{i i} \leftarrow \sqrt{a_{i i}}$ (this is $r_{i i}$)
for $j=i+1, \ldots, n$ for $k=1, \ldots, i-1$ (not executed when $i=1$)
$a_{i j} \leftarrow a_{i j}-a_{k i} a_{k j}$
$a_{i j} \leftarrow a_{i j} / a_{i i}$ (this is $r_{i j}$)

Cholesky's algorithm

Flop count - The upper part of R will be stored over the upper part of A for $i=1, \ldots, n$

$$
\begin{aligned}
& \text { for } k=1, \ldots, i-1 \\
& \quad a_{i i} \leftarrow a_{i i}-a_{k i}^{2} \\
& \text { if } a_{i i} \leq 0 \text {, set error flag }
\end{aligned}
$$

$a_{i i} \leftarrow \sqrt{a_{i i}}$ (this is $r_{i i}$)
for $j=i+1, \ldots, n$
for $k=1, \ldots, i-1$ (not executed when $i=1$)
$a_{i j} \leftarrow a_{i j}-a_{k i} a_{k j}$
$a_{i j} \leftarrow a_{i j} / a_{i i}$ (this is $r_{i j}$)
$\rightarrow 2$ flops are performed in each of the two k loops

Cholesky's algorithm

Flop count - The upper part of R will be stored over the upper part of A for $i=1, \ldots, n$

$$
\begin{aligned}
& \text { for } k=1, \ldots, i-1 \\
& \quad a_{i i} \leftarrow a_{i i}-a_{k i}^{2} \\
& \text { if } a_{i i} \leq 0, \text { set error flag }
\end{aligned}
$$

$a_{i i} \leftarrow \sqrt{a_{i i}}$ (this is $r_{i i}$)
for $j=i+1, \ldots, n$
for $k=1, \ldots, i-1$ (not executed when $i=1$)

$$
a_{i j} \leftarrow a_{i j}-a_{k i} a_{k j}
$$

$a_{i j} \leftarrow a_{i j} / a_{i i}$ (this is $r_{i j}$)
$\rightarrow 2$ flops are performed in each of the two k loops
\rightarrow \# of flops in the first k loop: $\sum_{i=1}^{n} \sum_{k=i}^{i-1} 2=n(n-1) \approx n^{2}$

Cholesky's algorithm

Flop count - The upper part of R will be stored over the upper part of A for $i=1, \ldots, n$

$$
\begin{aligned}
& \text { for } k=1, \ldots, i-1 \\
& \quad a_{i i} \leftarrow a_{i i}-a_{k i}^{2} \\
& \text { if } a_{i i} \leq 0, \text { set error flag }
\end{aligned}
$$

$a_{i i} \leftarrow \sqrt{a_{i i}}$ (this is $r_{i i}$)
for $j=i+1, \ldots, n$
for $k=1, \ldots, i-1$ (not executed when $i=1$)

$$
a_{i j} \leftarrow a_{i j}-a_{k i} a_{k j}
$$

$$
a_{i j} \leftarrow a_{i j} / a_{i i}\left(\text { this is } r_{i j}\right)
$$

$\rightarrow 2$ flops are performed in each of the two k loops
\rightarrow \# of flops in the first k loop: $\sum_{i=1}^{n} \sum_{k=i}^{i-1} 2=n(n-1) \approx n^{2}$
\rightarrow \# of flops in the second k loop: $\sum_{i=1}^{n} \sum_{j=i+1}^{n} \sum_{k=1}^{i-1} 2$

Cholesky's algorithm

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{j=i+1}^{n} \sum_{k=1}^{i-1} 2 & =2 \sum_{i=1}^{n} \sum_{j=i+1}^{n}(i-1) \\
& =2 \sum_{i=1}^{n}(n-i)(i-1) \\
& =2 n \sum_{i=1}^{n}(i-1)-2 \sum_{i=1}^{n} i^{2}+2 \sum_{i=1}^{n} i \\
& =n^{3}-2 \frac{n^{3}}{3}+O\left(n^{2}\right) \\
& \approx \frac{n^{3}}{3}
\end{aligned}
$$

Cholesky's algorithm

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{j=i+1}^{n} \sum_{k=1}^{i-1} 2 & =2 \sum_{i=1}^{n} \sum_{j=i+1}^{n}(i-1) \\
& =2 \sum_{i=1}^{n}(n-i)(i-1) \\
& =2 n \sum_{i=1}^{n}(i-1)-2 \sum_{i=1}^{n} i^{2}+2 \sum_{i=1}^{n} i \\
& =n^{3}-2 \frac{n^{3}}{3}+O\left(n^{2}\right) \\
& \approx \frac{n^{3}}{3}
\end{aligned}
$$

Question How many flops are needed to compute the forward and backward substitution?

