Big Data Analysis (MA60306)

Bibhas Adhikari

Spring 2022-23, IIT Kharagpur

Lecture 7 January 18, 2023

Bibhas Adhikari (Spring 2022-23, IIT Kharag

Big Data Analysis

Lecture 7 January 18, 2023 1 / 10

3

A D N A B N A B N A B N

Question How much does a small change in the right hand side of a system Ax = b affect the solution?

3

(日) (四) (日) (日) (日)

Question How much does a small change in the right hand side of a system Ax = b affect the solution?

Let Ax = b and we let $A(x + \triangle x) = (b + \triangle b)$ where $\triangle x$ is the change in the original solution x due to the change in the rhs of the system

< □ > < 同 > < 回 > < 回 > < 回 >

Question How much does a small change in the right hand side of a system Ax = b affect the solution?

Let Ax = b and we let $A(x + \triangle x) = (b + \triangle b)$ where $\triangle x$ is the change in the original solution x due to the change in the rhs of the system Norm of a matrix Let M be a a matrix. Then define 'induced norm' of M as

$$\|M\|_{
u} = \max_{x \neq 0} \frac{\|Mx\|_{
u}}{\|x\|_{
u}}, 1 \le \nu \le \infty$$

< □ > < 同 > < 回 > < 回 > < 回 >

Question How much does a small change in the right hand side of a system Ax = b affect the solution?

Let Ax = b and we let $A(x + \triangle x) = (b + \triangle b)$ where $\triangle x$ is the change in the original solution x due to the change in the rhs of the system Norm of a matrix Let M be a a matrix. Then define 'induced norm' of M as

$$\|M\|_{
u} = \max_{x \neq 0} \frac{\|Mx\|_{
u}}{\|x\|_{
u}}, 1 \le
u \le \infty$$

Then (Homework)

 $\rightarrow \|Mx\|_{\nu} \le \|M\|_{\nu} \|x\|_{\nu}$

Question How much does a small change in the right hand side of a system Ax = b affect the solution?

Let Ax = b and we let $A(x + \triangle x) = (b + \triangle b)$ where $\triangle x$ is the change in the original solution x due to the change in the rhs of the system Norm of a matrix Let M be a a matrix. Then define 'induced norm' of M as

$$\|M\|_{\nu} = \max_{x \neq 0} \frac{\|Mx\|_{\nu}}{\|x\|_{\nu}}, 1 \le \nu \le \infty$$

$$\to \|Mx\|_{\nu} \le \|M\|_{\nu} \|x\|_{\nu}$$

$$\rightarrow \|\alpha M\|_{\nu} = |\alpha| \|M\|_{\nu}$$

Question How much does a small change in the right hand side of a system Ax = b affect the solution?

Let Ax = b and we let $A(x + \triangle x) = (b + \triangle b)$ where $\triangle x$ is the change in the original solution x due to the change in the rhs of the system Norm of a matrix Let M be a a matrix. Then define 'induced norm' of M as

$$\|M\|_{\nu} = \max_{x \neq 0} \frac{\|Mx\|_{\nu}}{\|x\|_{\nu}}, 1 \le \nu \le \infty$$

$$\to \|Mx\|_{\nu} \le \|M\|_{\nu} \|x\|_{\nu}$$

$$\rightarrow \|\alpha M\|_{\nu} = |\alpha| \|M\|_{\nu}$$

$$\rightarrow \|M + N\|_{\nu} \le \|M\|_{\nu} + \|N\|_{\nu}$$

Question How much does a small change in the right hand side of a system Ax = b affect the solution?

Let Ax = b and we let $A(x + \triangle x) = (b + \triangle b)$ where $\triangle x$ is the change in the original solution x due to the change in the rhs of the system Norm of a matrix Let M be a a matrix. Then define 'induced norm' of M as

$$\|M\|_{\nu} = \max_{x \neq 0} \frac{\|Mx\|_{\nu}}{\|x\|_{\nu}}, 1 \le \nu \le \infty$$

$$\to \|Mx\|_{\nu} \le \|M\|_{\nu} \|x\|_{\nu}$$

$$\rightarrow \|\alpha M\|_{\nu} = |\alpha| \|M\|_{\nu}$$

$$\rightarrow \|M + N\|_{\nu} \le \|M\|_{\nu} + \|N\|_{\nu}$$

$$\to \|MN\|_{\nu} \le \|M\|_{\nu} \|N\|_{\nu}$$

Question How much does a small change in the right hand side of a system Ax = b affect the solution?

Let Ax = b and we let $A(x + \triangle x) = (b + \triangle b)$ where $\triangle x$ is the change in the original solution x due to the change in the rhs of the system Norm of a matrix Let M be a a matrix. Then define 'induced norm' of M as

$$\|M\|_{\nu} = \max_{x \neq 0} \frac{\|Mx\|_{\nu}}{\|x\|_{\nu}}, 1 \le \nu \le \infty$$

$$\begin{array}{l} \rightarrow \|Mx\|_{\nu} \leq \|M\|_{\nu} \|x\|_{\nu} \\ \rightarrow \|\alpha M\|_{\nu} = |\alpha| \|M\|_{\nu} \\ \rightarrow \|M + N\|_{\nu} \leq \|M\|_{\nu} + \|N\|_{\nu} \\ \rightarrow \|MN\|_{\nu} \leq \|M\|_{\nu} \|N\|_{\nu} \\ \end{array} \\ \begin{array}{l} \text{Question Is } \|M\|_{F} = \sqrt{\sum_{i,j} |m_{ij}|^{2}} \text{ a norm, where } M = [m_{ij}]? \end{array}$$

$$A(x + \triangle x) = (b + \triangle b) \Rightarrow A(\triangle x) = (\triangle b) \Rightarrow \|\triangle x\| \le \|A^{-1}\| \|\triangle b\|$$

2

イロト イヨト イヨト イヨト

$$A(x + \triangle x) = (b + \triangle b) \Rightarrow A(\triangle x) = (\triangle b) \Rightarrow \|\triangle x\| \le \|A^{-1}\| \|\triangle b\|$$

Similarly, $b = Ax \Rightarrow \|b\| \le \|A\| \|x\| \Rightarrow \frac{1}{\|x\|} \le \|A\| \frac{1}{\|b\|}$

æ

イロト イヨト イヨト イヨト

$$\begin{array}{l} A(x + \triangle x) = (b + \triangle b) \Rightarrow A(\triangle x) = (\triangle b) \Rightarrow \|\triangle x\| \le \|A^{-1}\| \|\triangle b\| \\ \text{Similarly, } b = Ax \Rightarrow \|b\| \le \|A\| \|x\| \Rightarrow \frac{1}{\|x\|} \le \|A\| \frac{1}{\|b\|} \\ \text{Then} \end{array}$$

$$\frac{\left\|\bigtriangleup x\right\|}{\left\|x\right\|} \leq \left\|A\right\| \left\|A^{-1}\right\| \frac{\left\|\bigtriangleup b\right\|}{\left\|b\right\|}$$

æ

A D N A B N A B N A B N

$$A(x + \triangle x) = (b + \triangle b) \Rightarrow A(\triangle x) = (\triangle b) \Rightarrow ||\triangle x|| \le ||A^{-1}|| ||\triangle b||$$

Similarly, $b = Ax \Rightarrow ||b|| \le ||A|| ||x|| \Rightarrow \frac{1}{||x||} \le ||A|| \frac{1}{||b||}$

Then

$$\frac{\|\triangle x\|}{\|x\|} \le \|A\| \, \|A^{-1}\| \frac{\|\triangle b\|}{\|b\|}$$

Define $\kappa(A) = ||A|| ||A^{-1}||$ is called the condition number of a nonsingular matrix

3

イロト イポト イヨト イヨト

$$\begin{array}{l} A(x + \triangle x) = (b + \triangle b) \Rightarrow A(\triangle x) = (\triangle b) \Rightarrow \|\triangle x\| \le \|A^{-1}\| \|\triangle b\| \\ \text{Similarly, } b = Ax \Rightarrow \|b\| \le \|A\| \|x\| \Rightarrow \frac{1}{\|x\|} \le \|A\| \frac{1}{\|b\|} \end{array}$$

Then

$$\frac{\|\triangle x\|}{\|x\|} \le \|A\| \, \|A^{-1}\| \frac{\|\triangle b\|}{\|b\|}$$

Define $\kappa(A) = ||A|| ||A^{-1}||$ is called the condition number of a nonsingular matrix Obviously, $\kappa(A) \ge 1$ Now note that $\kappa \left(\begin{bmatrix} 4.1 & 2.8 \\ 9.7 & 6.6 \end{bmatrix} \right) = 1.6230e + 03$ (too big!! for which choice of the norm?)

くぼう くほう くほう しゅ

$$\begin{array}{l} A(x + \triangle x) = (b + \triangle b) \Rightarrow A(\triangle x) = (\triangle b) \Rightarrow \|\triangle x\| \le \|A^{-1}\| \|\triangle b\| \\ \text{Similarly, } b = Ax \Rightarrow \|b\| \le \|A\| \|x\| \Rightarrow \frac{1}{\|x\|} \le \|A\| \frac{1}{\|b\|} \end{array}$$

Then

$$\frac{\|\triangle x\|}{\|x\|} \le \|A\| \, \|A^{-1}\| \frac{\|\triangle b\|}{\|b\|}$$

Define $\kappa(A) = ||A|| ||A^{-1}||$ is called the condition number of a nonsingular matrix Obviously, $\kappa(A) \ge 1$ Now note that $\kappa \left(\begin{bmatrix} 4.1 & 2.8 \\ 9.7 & 6.6 \end{bmatrix} \right) = 1.6230e + 03$ (too big!! for which choice of the norm?)

Question What is the condition number of an orthogonal matrix?

くぼう くほう くほう しほ

It can also be shown that

$$\frac{\|(A + \bigtriangleup A)^{-1} - A^{-1}\|}{\|A^{-1}\|} \leq \kappa(A) \frac{\|\bigtriangleup A\|}{\|A\|}$$

3

It can also be shown that

$$\frac{\|(A + \bigtriangleup A)^{-1} - A^{-1}\|}{\|A^{-1}\|} \leq \kappa(A) \frac{\|\bigtriangleup A\|}{\|A\|}$$

Question What is the conclusion?

э

It can also be shown that

$$\frac{\|(\textit{A}+\bigtriangleup\textit{A})^{-1}-\textit{A}^{-1}\|}{\|\textit{A}^{-1}\|} \leq \kappa(\textit{A})\frac{\|\bigtriangleup\textit{A}\|}{\|\textit{A}\|}$$

Question What is the conclusion?

```
import numpy as np
A = np.array([[1, 2.000000001],[2, 4]])
b=np.array([1, 2])
b2=np.array([1, 2.01])
np.linalg.cond(A)
x = np.linalg.solve(A, b) print(x)
x2 = np.linalg.solve(A, b2) print(x2)
```

Recall

 \rightarrow If A is a positive definite matrix then A is nonsingular

э

Recall

- \rightarrow If A is a positive definite matrix then A is nonsingular
- \rightarrow If A is positive definite then the linear system Ax = b has exactly one solution

(B)

Recall

- \rightarrow If A is a positive definite matrix then A is nonsingular
- \rightarrow If A is positive definite then the linear system Ax = b has exactly one solution
- \rightarrow If $A = M^T M$ for some nonsingular matrix M then A is positive definite

4 1 1 1 4 1 1 1

Recall

- \rightarrow If A is a positive definite matrix then A is nonsingular
- \rightarrow If A is positive definite then the linear system Ax = b has exactly one solution
- \rightarrow If $A = M^T M$ for some nonsingular matrix M then A is positive definite

Example Let
$$M = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
. Then
$$A = M^T M = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{bmatrix}$$

is positive definite

Recall

- \rightarrow If A is a positive definite matrix then A is nonsingular
- \rightarrow If A is positive definite then the linear system Ax = b has exactly one solution
- \rightarrow If $A = M^T M$ for some nonsingular matrix M then A is positive definite

Example Let
$$M = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
. Then
$$A = M^{T}M = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{bmatrix}$$

is positive definite Question Is the converse true?

Theorem (Cholesky decomposition theorem) Any positive definite matrix A can be decomposed in exactly one way as $A = R^T R$ for some upper triangular matrix R whose diagonal entries are positive. R is called the Cholesky factor of A.

Theorem (Cholesky decomposition theorem) Any positive definite matrix A can be decomposed in exactly one way as $A = R^T R$ for some upper triangular matrix R whose diagonal entries are positive. R is called the Cholesky factor of A.

Question What are the advantages of this decomposition?

Theorem (Cholesky decomposition theorem) Any positive definite matrix A can be decomposed in exactly one way as $A = R^T R$ for some upper triangular matrix R whose diagonal entries are positive. R is called the Cholesky factor of A.

Question What are the advantages of this decomposition?

1. Suppose we want to solve Ax = b, where A > 0 (pd)

Theorem (Cholesky decomposition theorem) Any positive definite matrix A can be decomposed in exactly one way as $A = R^T R$ for some upper triangular matrix R whose diagonal entries are positive. R is called the Cholesky factor of A.

Question What are the advantages of this decomposition?

- 1. Suppose we want to solve Ax = b, where A > 0 (pd)
- 2. If we know Cholesky factor *R*, then $R^T R x = b$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Theorem (Cholesky decomposition theorem) Any positive definite matrix A can be decomposed in exactly one way as $A = R^T R$ for some upper triangular matrix R whose diagonal entries are positive. R is called the Cholesky factor of A.

Question What are the advantages of this decomposition?

- 1. Suppose we want to solve Ax = b, where A > 0 (pd)
- 2. If we know Cholesky factor R, then $R^T R x = b$
- 3. Let y = Rx then $R^T y = b$. Since R^T is lower triangular, we can easily solve by forward substitution

A B b A B b

Theorem (Cholesky decomposition theorem) Any positive definite matrix A can be decomposed in exactly one way as $A = R^T R$ for some upper triangular matrix R whose diagonal entries are positive. R is called the Cholesky factor of A.

Question What are the advantages of this decomposition?

- 1. Suppose we want to solve Ax = b, where A > 0 (pd)
- 2. If we know Cholesky factor R, then $R^T R x = b$
- 3. Let y = Rx then $R^T y = b$. Since R^T is lower triangular, we can easily solve by forward substitution
- 4. Once y is obtained then we can solve the upper triangular system Rx = y to obtain x by back substitution

< ロ > < 同 > < 回 > < 回 > < 回 > <

Theorem (Cholesky decomposition theorem) Any positive definite matrix A can be decomposed in exactly one way as $A = R^T R$ for some upper triangular matrix R whose diagonal entries are positive. R is called the Cholesky factor of A.

Question What are the advantages of this decomposition?

- 1. Suppose we want to solve Ax = b, where A > 0 (pd)
- 2. If we know Cholesky factor R, then $R^T R x = b$
- 3. Let y = Rx then $R^T y = b$. Since R^T is lower triangular, we can easily solve by forward substitution
- 4. Once y is obtained then we can solve the upper triangular system Rx = y to obtain x by back substitution
- 5. (Homework) The total flop count is $2n^2$ when R is known!

Theorem (Cholesky decomposition theorem) Any positive definite matrix A can be decomposed in exactly one way as $A = R^T R$ for some upper triangular matrix R whose diagonal entries are positive. R is called the Cholesky factor of A.

Question What are the advantages of this decomposition?

- 1. Suppose we want to solve Ax = b, where A > 0 (pd)
- 2. If we know Cholesky factor R, then $R^T R x = b$
- 3. Let y = Rx then $R^T y = b$. Since R^T is lower triangular, we can easily solve by forward substitution
- 4. Once y is obtained then we can solve the upper triangular system Rx = y to obtain x by back substitution
- 5. (Homework) The total flop count is $2n^2$ when *R* is known! Question How do we obtain *R*?

a ₁₁ a ₂₁ a ₃₁	a ₁₂ a ₂₂ a ₃₂	a ₁₃ a ₂₃ a ₃₃	· · · · · · ·	a _{1n} a _{2n} a _{3n}	=	[r ₁₁ r ₁₂ r ₁₃	0 r ₂₂ r ₂₃	0 0 r ₃₃	· · · · · · ·	0 0 0	$\begin{bmatrix} r_{11} \\ 0 \\ 0 \end{bmatrix}$	r ₁₂ r ₂₂ 0	r ₁₃ r ₂₃ r ₃₃	 	r _{1n} r _{2n} r _{3n}
1:	:	:	·.	:		:	:	:	÷.,		:	:		۰.	:
a _{n1}	a _{n2}	a _{n3}		a _{nn} _		r	r _{2n}	r _{3n}		rnn	Ĺ	0	0		r _{nn}

2

イロト イヨト イヨト イヨト

a ₁₁ a ₂₁ a ₃₁	a ₁₂ a ₂₂ a ₃₂	a ₁₃ a ₂₃ a ₃₃	· · · · · · ·	a _{1n} a _{2n} a _{3n}	_	$\begin{bmatrix} r_{11} \\ r_{12} \\ r_{13} \end{bmatrix}$	0 r ₂₂ r ₂₃	0 0 r ₃₃		0 0 0	$\begin{bmatrix} r_{11} \\ 0 \\ 0 \end{bmatrix}$	r ₁₂ r ₂₂ 0	r ₁₃ r ₂₃ r ₃₃	· · · · · · ·	r _{1n} r _{2n} r _{3n}
:	:	:	÷.	:		:	:	:	÷.		:	:		÷.	:
	a _{n2}	a _{n3}		a _{nn}		r _{1n}	r _{2n}	r _{3n}		rnn	Ĺ	0	0		r _{nn}

 $\rightarrow a_{ij} = i$ th row of $R^T \times j$ th column of R

3

A B A A B A

< □ > < 同 >

a ₁₁ a ₂₁ a ₃₁	a ₁₂ a ₂₂ a ₃₂	a ₁₃ a ₂₃ a ₃₃	 	a _{1n} a _{2n} a _{3n}	 11 12 13	0 r ₂₂ r ₂₃	0 0 r ₃₃		0 0 0	$\begin{bmatrix} r_{11} \\ 0 \\ 0 \end{bmatrix}$	r ₁₂ r ₂₂ 0	r ₁₃ r ₂₃ r ₃₃	 	r _{1n} r _{2n} r _{3n}
: : a _{n1}	: : a _{n2}	: a _{n3}	·	: a _{nn} _	: : 1n	: r _{2n}	: r _{3n}	·	r _{nn}	0	: : 0	0	··.	: : r _{nn} _

- $\rightarrow a_{ij} = i$ th row of $R^T \times j$ th column of R
- \rightarrow In particular, $a_{1j} = r_{11}r_{1j} + 0r_{2j} + 0r_{3j} + \ldots + 0r_{nj} = r_{11}r_{1j}$

- 3

a ₁₁ a ₂₁ a ₃₁	a ₁₂ a ₂₂ a ₃₂	a ₁₃ a ₂₃ a ₃₃	 	a _{1n} a _{2n} a _{3n}	 11 12 13	0 r ₂₂ r ₂₃	0 0 r ₃₃		0 0 0	$\begin{bmatrix} r_{11} \\ 0 \\ 0 \end{bmatrix}$	r ₁₂ r ₂₂ 0	r ₁₃ r ₂₃ r ₃₃	 	r _{1n} r _{2n} r _{3n}
: : a _{n1}	: : a _{n2}	: a _{n3}	·	: a _{nn} _	: : 1n	: r _{2n}	: r _{3n}	·	r _{nn}	0	: : 0	0	··.	: : r _{nn} _

 $\rightarrow a_{ij} = i$ th row of $R^T \times j$ th column of R

 \rightarrow In particular, $a_{1j} = r_{11}r_{1j} + 0r_{2j} + 0r_{3j} + \ldots + 0r_{nj} = r_{11}r_{1j}$

 \rightarrow For j = 1, $r_{11} = +\sqrt{a_{11}}$

- 3

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{bmatrix} = \begin{bmatrix} r_{11} & 0 & 0 & \dots & 0 \\ r_{12} & r_{22} & 0 & \dots & 0 \\ r_{13} & r_{23} & r_{33} & 0 \\ \vdots & \vdots & \ddots & \vdots \\ r_{1n} & r_{2n} & r_{3n} & \dots & r_{nn} \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & \dots & r_{1n} \\ 0 & r_{22} & r_{23} & \dots & r_{2n} \\ 0 & 0 & r_{33} & \dots & r_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & r_{nn} \end{bmatrix}$$

 $\rightarrow a_{ij} = i$ th row of $R^T \times j$ th column of R

- \rightarrow In particular, $a_{1j} = r_{11}r_{1j} + 0r_{2j} + 0r_{3j} + \ldots + 0r_{nj} = r_{11}r_{1j}$
- \rightarrow For j = 1, $r_{11} = +\sqrt{a_{11}}$

$$\rightarrow$$
 Thus $r_{1j} = a_{1j}/r_{11}, j = 2, \ldots, n$

- 3

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{bmatrix} = \begin{bmatrix} r_{11} & 0 & 0 & \dots & 0 \\ r_{12} & r_{22} & 0 & \dots & 0 \\ r_{13} & r_{23} & r_{33} & 0 \\ \vdots & \vdots & \ddots & \vdots \\ r_{1n} & r_{2n} & r_{3n} & \dots & r_{nn} \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & \dots & r_{1n} \\ 0 & r_{22} & r_{23} & \dots & r_{2n} \\ 0 & 0 & r_{33} & \dots & r_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & r_{nn} \end{bmatrix}$$

- $\rightarrow a_{ij} = i$ th row of $R^T \times j$ th column of R
- \rightarrow In particular, $a_{1j} = r_{11}r_{1j} + 0r_{2j} + 0r_{3j} + \ldots + 0r_{nj} = r_{11}r_{1j}$
- \rightarrow For j = 1, $r_{11} = +\sqrt{a_{11}}$

$$\rightarrow$$
 Thus $r_{1j} = a_{1j}/r_{11}, j = 2, \ldots, n$

 \rightarrow From the 2nd row, $a_{2j} = r_{12}r_{1j} + r_{22}r_{2j}$

- 3

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{bmatrix} = \begin{bmatrix} r_{11} & 0 & 0 & \dots & 0 \\ r_{12} & r_{22} & 0 & \dots & 0 \\ r_{13} & r_{23} & r_{33} & 0 \\ \vdots & \vdots & \ddots & \vdots \\ r_{1n} & r_{2n} & r_{3n} & \dots & r_{nn} \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & \dots & r_{1n} \\ 0 & r_{22} & r_{23} & \dots & r_{2n} \\ 0 & 0 & r_{33} & \dots & r_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & r_{nn} \end{bmatrix}$$

- $\rightarrow a_{ii} = i$ th row of $R^T \times j$ th column of R
- \rightarrow In particular, $a_{1i} = r_{11}r_{1i} + 0r_{2i} + 0r_{3i} + \ldots + 0r_{ni} = r_{11}r_{1i}$
- \rightarrow For $j = 1, r_{11} = +\sqrt{a_{11}}$

$$\rightarrow$$
 Thus $r_{1j} = a_{1j}/r_{11}, j = 2, \dots, n$

- \rightarrow From the 2nd row, $a_{2i} = r_{12}r_{1j} + r_{22}r_{2j}$
- \rightarrow In particular, for $j = 2, a_{22} = r_{12}^2 + r_{22}^2$, hence $r_{22} = +\sqrt{a_{22} r_{12}^2}$

- 3

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{bmatrix} = \begin{bmatrix} r_{11} & 0 & 0 & \dots & 0 \\ r_{12} & r_{22} & 0 & \dots & 0 \\ r_{13} & r_{23} & r_{33} & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ r_{1n} & r_{2n} & r_{3n} & \dots & r_{nn} \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & \dots & r_{1n} \\ 0 & r_{22} & r_{23} & \dots & r_{2n} \\ 0 & 0 & r_{33} & \dots & r_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & r_{nn} \end{bmatrix}$$

 $\rightarrow a_{ij} = i$ th row of $R^T \times j$ th column of R

 \rightarrow In particular, $a_{1j} = r_{11}r_{1j} + 0r_{2j} + 0r_{3j} + \ldots + 0r_{nj} = r_{11}r_{1j}$

$$\rightarrow$$
 For $j = 1, r_{11} = +\sqrt{a_{11}}$

$$\rightarrow$$
 Thus $r_{1j} = a_{1j}/r_{11}, j = 2, \dots, n$

 \rightarrow From the 2nd row, $a_{2j} = r_{12}r_{1j} + r_{22}r_{2j}$

$$ightarrow$$
 In particular, for $j=2, \ a_{22}=r_{12}^2+r_{22}^2,$ hence $r_{22}=+\sqrt{a_{22}-r_{12}^2}$

$$ightarrow$$
 Thus, $r_{2j} = (a_{2j} - r_{12}r_{1j})/r_{22}, j = 3, \dots, n$

The recipe for calculating R - the Cholesky's method

$$r_{ii} = +\sqrt{a_{ii} - \sum_{k=1}^{i-1} r_{ki}^2}$$

$$r_{ij} = \left(a_{ij} - \sum_{k=1}^{i-1} r_{ki} r_{kj}\right) / r_{ii}, j = i+1, \dots, n$$

э

The recipe for calculating R - the Cholesky's method

$$r_{ii} = +\sqrt{a_{ii} - \sum_{k=1}^{i-1} r_{ki}^2}$$

$$r_{ij} = \left(a_{ij} - \sum_{k=1}^{i-1} r_{ki} r_{kj}\right) / r_{ii}, j = i+1, \dots, n$$

Question Is it a backward stable algorithm?

The recipe for calculating R - the Cholesky's method

$$r_{ii} = +\sqrt{a_{ii} - \sum_{k=1}^{i-1} r_{ki}^2}$$

$$r_{ij} = \left(a_{ij} - \sum_{k=1}^{i-1} r_{ki} r_{kj}\right) / r_{ii}, j = i+1, \dots, n$$

Question Is it a backward stable algorithm? See Higham's book for a proof

Flop count - The upper part of R will be stored over the upper part of A

3

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

< □ > < 同 >

Flop count - The upper part of R will be stored over the upper part of Afor i = 1, ..., nfor k = 1, ..., i - 1 $a_{ii} \leftarrow a_{ii} - a_{ki}^2$ if $a_{ii} \leq 0$, set error flag $a_{ii} \leftarrow \sqrt{a_{ii}}$ (this is r_{ii}) for j = i + 1, ..., nfor k = 1, ..., i - 1 (not executed when i = 1) $a_{ij} \leftarrow a_{ij} - a_{ki}a_{kj}$ $a_{ii} \leftarrow a_{ii}/a_{ii}$ (this is r_{ii})

Flop count - The upper part of R will be stored over the upper part of Afor i = 1, ..., nfor k = 1, ..., i - 1 $a_{ii} \leftarrow a_{ii} - a_{ki}^2$ if $a_{ii} \leq 0$, set error flag $a_{ii} \leftarrow \sqrt{a_{ii}}$ (this is r_{ii}) for j = i + 1, ..., nfor k = 1, ..., i - 1 (not executed when i = 1) $a_{ij} \leftarrow a_{ij} - a_{ki}a_{kj}$ $a_{ii} \leftarrow a_{ii}/a_{ii}$ (this is r_{ij})

ightarrow 2 flops are performed in each of the two k loops

Flop count - The upper part of R will be stored over the upper part of A for i = 1, ..., nfor k = 1, ..., i - 1 $a_{ii} \leftarrow a_{ii} - a_{ki}^2$ if $a_{ii} \leq 0$, set error flag $a_{ii} \leftarrow \sqrt{a_{ii}}$ (this is r_{ii}) for i = i + 1, ..., nfor $k = 1, \ldots, i - 1$ (not executed when i = 1) $a_{ii} \leftarrow a_{ii} - a_{ki}a_{ki}$ $a_{ii} \leftarrow a_{ii}/a_{ii}$ (this is r_{ii})

→ 2 flops are performed in each of the two k loops → # of flops in the first k loop: $\sum_{i=1}^{n} \sum_{k=i}^{i-1} 2 = n(n-1) \approx n^2$

- 3

<日

<</p>

Flop count - The upper part of R will be stored over the upper part of A for i = 1, ..., nfor k = 1, ..., i - 1 $a_{ii} \leftarrow a_{ii} - a_{ki}^2$ if $a_{ii} < 0$, set error flag $a_{ii} \leftarrow \sqrt{a_{ii}}$ (this is r_{ii}) for i = i + 1, ..., nfor $k = 1, \ldots, i - 1$ (not executed when i = 1) $a_{ii} \leftarrow a_{ii} - a_{ki}a_{ki}$ $a_{ii} \leftarrow a_{ii}/a_{ii}$ (this is r_{ii})

→ 2 flops are performed in each of the two k loops → # of flops in the first k loop: $\sum_{i=1}^{n} \sum_{k=i}^{i-1} 2 = n(n-1) \approx n^2$ → # of flops in the second k loop: $\sum_{i=1}^{n} \sum_{i=i+1}^{n} \sum_{k=1}^{i-1} 2$

$$\sum_{i=1}^{n} \sum_{j=i+1}^{n} \sum_{k=1}^{i-1} 2 = 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} (i-1)$$

= $2 \sum_{i=1}^{n} (n-i)(i-1)$
= $2n \sum_{i=1}^{n} (i-1) - 2 \sum_{i=1}^{n} i^2 + 2 \sum_{i=1}^{n} i^2$
= $n^3 - 2\frac{n^3}{3} + O(n^2)$
 $\approx \frac{n^3}{3}$

Bibhas Adhikari (Spring 2022-23, IIT Kharag

Lecture 7 January 18, 2023 10 / 10

æ

A D N A B N A B N A B N

$$\sum_{i=1}^{n} \sum_{j=i+1}^{n} \sum_{k=1}^{i-1} 2 = 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} (i-1)$$

= $2 \sum_{i=1}^{n} (n-i)(i-1)$
= $2n \sum_{i=1}^{n} (i-1) - 2 \sum_{i=1}^{n} i^2 + 2 \sum_{i=1}^{n} i^2$
= $n^3 - 2\frac{n^3}{3} + O(n^2)$
 $\approx \frac{n^3}{3}$

Question How many flops are needed to compute the forward and backward substitution?

Bibhas Adhikari (Spring 2022-23, IIT Kharag

Big Data Analysis

Lecture 7 January 18, 2023 10 / 10

3