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Computing with data

Question How much does a small change in the right hand side of a
system Ax = b affect the solution?

Let Ax = b and we let A(x +△x) = (b +△b) where △x is the change in
the original solution x due to the change in the rhs of the system

Norm of a matrix Let M be a a matrix. Then define ‘induced norm’ of M
as

∥M∥ν = max
x ̸=0

∥Mx∥ν
∥x∥ν

, 1 ≤ ν ≤ ∞

Then (Homework)

→ ∥Mx∥ν ≤ ∥M∥ν ∥x∥ν
→ ∥αM∥ν = |α| ∥M∥ν
→ ∥M + N∥ν ≤ ∥M∥ν + ∥N∥ν
→ ∥MN∥ν ≤ ∥M∥ν ∥N∥ν

Question Is ∥M∥F =
√∑

i ,j |mij |2 a norm, where M = [mij ]?
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Computing with data

A(x +△x) = (b +△b)⇒ A(△x) = (△b)⇒ ∥△x∥ ≤ ∥A−1∥ ∥△b∥

Similarly, b = Ax ⇒ ∥b∥ ≤ ∥A∥ ∥x∥ ⇒ 1
∥x∥ ≤ ∥A∥

1
∥b∥

Then
∥△x∥
∥x∥

≤ ∥A∥ ∥A−1∥∥△b∥
∥b∥

Define κ(A) = ∥A∥ ∥A−1∥ is called the condition number of a nonsingular
matrix Obviously, κ(A) ≥ 1

Now note that κ

([
4.1 2.8
9.7 6.6

])
= 1.6230e + 03 (too big!! for which

choice of the norm?)

Question What is the condition number of an orthogonal matrix?
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Computing with data

It can also be shown that

∥(A+△A)−1 − A−1∥
∥A−1∥

≤ κ(A)
∥△A∥
∥A∥

Question What is the conclusion?

import numpy as np
A = np.array([[1, 2.0000000001],[2, 4]])
b=np.array([1, 2])
b2=np.array([1, 2.01])
np.linalg.cond(A)
x = np.linalg.solve(A, b) print(x)
x2 = np.linalg.solve(A, b2) print(x2)
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Cholesky decomposition

Recall

→ If A is a positive definite matrix then A is nonsingular

→ If A is positive definite then the linear system Ax = b has exactly one
solution

→ If A = MTM for some nonsingular matrix M then A is positive
definite

Example Let M =

1 1 1
0 1 1
0 0 1

 . Then

A = MTM =

1 1 1
1 2 2
1 2 3


is positive definite
Question Is the converse true?
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Cholesky decomposition

Theorem (Cholesky decomposition theorem) Any positive definite matrix A
can be decomposed in exactly one way as A = RTR for some upper
triangular matrix R whose diagonal entries are positive. R is called the
Cholesky factor of A.

Question What are the advantages of this decomposition?

1. Suppose we want to solve Ax = b, where A > 0 (pd)

2. If we know Cholesky factor R, then RTRx = b

3. Let y = Rx then RT y = b. Since RT is lower triangular, we can
easily solve by forward substitution

4. Once y is obtained then we can solve the upper triangular system
Rx = y to obtain x by back substitution

5. (Homework) The total flop count is 2n2 when R is known!

Question How do we obtain R?
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Cholesky decomposition



a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
a31 a32 a33 . . . a3n
.
.
.

.

.

.

.

.

.
. . .

.

.

.
an1 an2 an3 . . . ann

 =



r11 0 0 . . . 0
r12 r22 0 . . . 0
r13 r23 r33 0

.

.

.

.

.

.

.

.

.
. . .

r1n r2n r3n . . . rnn





r11 r12 r13 . . . r1n
0 r22 r23 . . . r2n
0 0 r33 . . . r3n
.
.
.

.

.

.
. . .

.

.

.
0 0 0 . . . rnn



→ aij = ith row of RT × jth column of R

→ In particular, a1j = r11r1j + 0r2j + 0r3j + . . .+ 0rnj = r11r1j

→ For j = 1, r11 = +
√
a11

→ Thus r1j = a1j/r11, j = 2, . . . , n

→ From the 2nd row, a2j = r12r1j + r22r2j

→ In particular, for j = 2, a22 = r212 + r222, hence r22 = +
√

a22 − r212

→ Thus, r2j = (a2j − r12r1j)/r22, j = 3, . . . , n
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Cholesky decomposition

The recipe for calculating R - the Cholesky’s method

rii = +

√√√√aii −
i−1∑
k=1

r2ki

rij =

(
aij −

i−1∑
k=1

rki rkj

)
/ rii , j = i + 1, . . . , n

Question Is it a backward stable algorithm?
See Higham’s book for a proof
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Cholesky’s algorithm

Flop count - The upper part of R will be stored over the upper part of A

for i = 1, . . . , n
for k = 1, . . . , i − 1
aii ← aii − a2ki

if aii ≤ 0, set error flag
aii ←

√
aii (this is rii )

for j = i + 1, . . . , n
for k = 1, . . . , i − 1 (not executed when i = 1)
aij ← aij − akiakj

aij ← aij/aii (this is rij)

→ 2 flops are performed in each of the two k loops

→ # of flops in the first k loop:
∑n

i=1

∑i−1
k=i 2 = n(n − 1) ≈ n2

→ # of flops in the second k loop:
∑n

i=1

∑n
j=i+1

∑i−1
k=1 2
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Cholesky’s algorithm

n∑
i=1

n∑
j=i+1

i−1∑
k=1

2 = 2
n∑

i=1

n∑
j=i+1

(i − 1)

= 2
n∑

i=1

(n − i)(i − 1)

= 2n
n∑

i=1

(i − 1)− 2
n∑

i=1

i2 + 2
n∑

i=1

i

= n3 − 2
n3

3
+ O(n2)

≈ n3

3

Question How many flops are needed to compute the forward and
backward substitution?
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