Big Data Analysis (MA60306)

Bibhas Adhikari

Spring 2022-23, IIT Kharagpur

Lecture 6 January 13, 2023

Bibhas Adhikari (Spring 2022-23, IIT Kharag

Big Data Analysis

Lecture 6 January 13, 2023 1 / 15

3

< □ > < □ > < □ > < □ > < □ > < □ >

Note An alternative way of expressing y is

$$y = \pm \beta^{e} \left(\frac{d_{1}}{\beta} + \frac{d_{2}}{\beta^{2}} + \ldots + \frac{d_{t}}{\beta^{t}} \right) = \pm \underbrace{.d_{1}d_{2}\ldots d_{t}}_{t-\text{digit fraction}} \times \beta^{e}$$

where $0 \le d_i \le \beta - 1$ and $d_1 \ne 0$ (for normalized numbers)

- 3

イロト イポト イヨト イヨト

Note An alternative way of expressing y is

$$y = \pm \beta^{e} \left(\frac{d_{1}}{\beta} + \frac{d_{2}}{\beta^{2}} + \ldots + \frac{d_{t}}{\beta^{t}} \right) = \pm \underbrace{.d_{1}d_{2}\ldots d_{t}}_{t-\text{digit fraction}} \times \beta^{e}$$

where $0 \le d_i \le \beta - 1$ and $d_1 \ne 0$ (for normalized numbers) In this representation, d_1 is called the *most significant digit* and d_t the *the least significant digit*

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > <

Note An alternative way of expressing y is

$$y = \pm \beta^{e} \left(\frac{d_{1}}{\beta} + \frac{d_{2}}{\beta^{2}} + \ldots + \frac{d_{t}}{\beta^{t}} \right) = \pm \underbrace{.d_{1}d_{2}\ldots d_{t}}_{t-\text{digit fraction}} \times \beta^{e}$$

where $0 \le d_i \le \beta - 1$ and $d_1 \ne 0$ (for normalized numbers) In this representation, d_1 is called the *most significant digit* and d_t the *the least significant digit*

Machine and arithmetic	β	t	e_{\min}	e_{\max}	u
Cray-1 single	2	48	-8192	8191	4×10^{-15}
Cray-1 double	2	96	-8192	8191	1×10^{-29}
DEC VAX G format, double	2	53	-1023	1023	1×10^{-16}
DEC VAX D format, double	2	56	-127	127	1×10^{-17}
HP 28 and 48G calculators	10	12	-499	499	5×10^{-12}
IBM 3090 single	16	6	-64	63	5×10^{-7}
IBM 3090 double	16	14	-64	63	1×10^{-16}
IBM 3090 extended	16	28	-64	63	2×10^{-33}
IEEE single	2	24	-125	128	$6 imes 10^{-8}$
IEEE double	2	53	-1021	1024	1×10^{-16}
IEEE extended (typical)	2	64	-16381	16384	5×10^{-20}

イロト 不得 トイヨト イヨト 二日

The spacing between the floating point numbers is characterized in terms of *machine epsilon*, denotes as ϵ_M which is the distance from 1.0 to the next larger floating point number.

The spacing between the floating point numbers is characterized in terms of *machine epsilon*, denotes as ϵ_M which is the distance from 1.0 to the next larger floating point number.

Homework Show that

$$\epsilon_M = \beta^{1-t}$$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

The spacing between the floating point numbers is characterized in terms of *machine epsilon*, denotes as ϵ_M which is the distance from 1.0 to the next larger floating point number.

Homework Show that

 $\epsilon_M = \beta^{1-t}$

Lemma The spacing between a normalized floating point number x and an adjacent normalized floating point number is at least $\beta^{-1}\epsilon_M|x|$ and at most $\epsilon_M|x|$.

<日

<</p>

Given $x \in \mathbb{R}$, fl(x) denotes an element from F that is nearest to x (how to break the ties)

 $x \mapsto fl(x)$ is called *rounding* which is monotone: $x \ge y$ implies $fl(x) \ge fl(y)$

Given $x \in \mathbb{R}$, fl(x) denotes an element from F that is nearest to x (how to break the ties)

 $x \mapsto fl(x)$ is called *rounding* which is monotone: $x \ge y$ implies $fl(x) \ge fl(y)$

overflows if $fl(x) > \max\{|y| : y \in F\}$ and underflows if $0 < |fl(x)| \le \min\{|y| : 0 \ne y \in F\}$

Given $x \in \mathbb{R}$, fl(x) denotes an element from F that is nearest to x (how to break the ties)

 $x \mapsto fl(x)$ is called *rounding* which is monotone: $x \ge y$ implies $fl(x) \ge fl(y)$ overflows if $fl(x) > \max\{|y| : y \in F\}$ and *underflows* if $0 < |fl(x)| \le \min\{|y| : 0 \ne y \in F\}$

Example

→ Let
$$\beta = 10$$
, $t = 3$, $e_{min} = -3$, $e_{max} = 3$. Then setting
 $a = 0.111 \times 10^3$, $b = 0.120 \times 10^3$, $c = a \times b = 0.133 \times 10^5$ is overflow

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Given $x \in \mathbb{R}$, fl(x) denotes an element from F that is nearest to x (how to break the ties)

 $x \mapsto fl(x)$ is called *rounding* which is monotone: $x \ge y$ implies $fl(x) \ge fl(y)$ *overflows* if $fl(x) > \max\{|y| : y \in F\}$ and *underflows* if $0 < |fl(x)| \le \min\{|y| : 0 \ne y \in F\}$

Example

→ Let
$$\beta = 10$$
, $t = 3$, $e_{min} = -3$, $e_{max} = 3$. Then setting
 $a = 0.111 \times 10^3$, $b = 0.120 \times 10^3$, $c = a \times b = 0.133 \times 10^5$ is overflow

→ Let
$$\beta = 10, t = 3, e_{\min} = -2, e_{\max} = 3$$
. Then setting $a = 0.1 \times 10^{-1}, b = 0.2 \times 10^{-1}, c = a \times b = 2 \times 10^{-4}$ is underflow

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

$$fl(x) = x(1+\delta), |\delta| < u,$$

where $u = \frac{1}{2}\beta^{1-t}$ is called the *unit roundoff*.

- 3

イロト イボト イヨト イヨト

$$fl(x) = x(1+\delta), \, |\delta| < u,$$

where $u = \frac{1}{2}\beta^{1-t}$ is called the *unit roundoff*. Thus |f|(x) - x| = 1 of

The relative error
$$=rac{|fl(x)-x|}{|x|} \leq rac{1}{2}eta^{1-t}$$

イロト イヨト イヨト イヨト 三日

$$fl(x) = x(1+\delta), |\delta| < u,$$

where $u = \frac{1}{2}\beta^{1-t}$ is called the *unit roundoff*. Thus |f|(x) - x| = 1

The relative error
$$= \frac{|f|(x) - x|}{|x|} \le \frac{1}{2}\beta^{1-t}$$

IEEE standard arithmetic $\beta = 2$ and support two precisions.

Single precision: t = 24, $e_{min} = -125$, $e_{max} = 128$, $u = 2^{-24} \approx 5.96 \times 10^{-8}$

医静脉 医黄脉 医黄脉 一直

$$fl(x) = x(1+\delta), \, |\delta| < u,$$

where $u = \frac{1}{2}\beta^{1-t}$ is called the *unit roundoff*. Thus $|f|(x) - x| = \frac{1}{2}\beta^{1-t}$

The relative error
$$= \frac{|f|(x) - x|}{|x|} \le \frac{1}{2}\beta^{1-t}$$

IEEE standard arithmetic $\beta = 2$ and support two precisions.

Single precision: t = 24, $e_{min} = -125$, $e_{max} = 128$, $u = 2^{-24} \approx 5.96 \times 10^{-8}$ Double precision: t = 53, $e_{min} = -1021$, $e_{max} = 1024$, $u = 2^{-53} \approx 1.11 \times 10^{-16}$

Bibhas Adhikari (Spring 2022-23, IIT Kharag

くほう イヨト イヨト 二日

Floating point format

51		Significant		U U
Single	32 bits	23+1 bits		
Double	64 bits	$52{+1}$ bits	11 bits	$10^{\pm 308}$

A B A A B A

Image: A matched by the second sec

э

Floating point format

•••		Significant		-
Single	32 bits	23+1 bits	8 bits	$10^{\pm 38}$
Double	64 bits	52+1 bits	11 bits	$10^{\pm 308}$

Standard model for floating point arithmetic

$$fl(x \circ y) = (x \circ y)(1 + \delta), \ |\delta| \leq u, \circ = +, -, *, /$$

イロト 不得 トイラト イラト 一日

Floating point format

Туре	Size	Significant	Exponent	Range
Single	32 bits	23+1 bits		
Double	64 bits	52+1 bits	11 bits	$10^{\pm 308}$

Standard model for floating point arithmetic

$$fl(x \circ y) = (x \circ y)(1 + \delta), \ |\delta| \le u, \circ = +, -, *, /$$

Flops The cost of a numerical algorithm is measured in flops. A flop is an elementary floating point operation \circ . When we say an algorithm requires $2n^3/3$ flops, we mean $2n^3/3 + O(n^2)$ flops

イロト イボト イラト イラト 一日

Sources of errors in the data

 \rightarrow errors from measurement or estimation of real world data

э

Sources of errors in the data

- $\rightarrow\,$ errors from measurement or estimation of real world data
- \rightarrow error in storing data on a computer (tiny)

э

Sources of errors in the data

- $\rightarrow\,$ errors from measurement or estimation of real world data
- $\rightarrow\,$ error in storing data on a computer (tiny)
- $\rightarrow\,$ result of errors (big or small) in an earlier computation if the data is a solution of another problem

Sources of errors in the data

- $\rightarrow\,$ errors from measurement or estimation of real world data
- $\rightarrow\,$ error in storing data on a computer (tiny)
- $\rightarrow\,$ result of errors (big or small) in an earlier computation if the data is a solution of another problem
- $\rightarrow\,$ truncation errors

Sources of errors in the data

- $\rightarrow\,$ errors from measurement or estimation of real world data
- $\rightarrow\,$ error in storing data on a computer (tiny)
- $\rightarrow\,$ result of errors (big or small) in an earlier computation if the data is a solution of another problem
- $\rightarrow\,$ truncation errors

Precision and accuracy

 $\rightarrow\,$ Accuracy refers to the absolute or relative error of an approximate quantity

Sources of errors in the data

- $\rightarrow\,$ errors from measurement or estimation of real world data
- $\rightarrow\,$ error in storing data on a computer (tiny)
- $\rightarrow\,$ result of errors (big or small) in an earlier computation if the data is a solution of another problem
- $\rightarrow\,$ truncation errors

Precision and accuracy

- $\rightarrow\,$ Accuracy refers to the absolute or relative error of an approximate quantity
- $\rightarrow\,$ Precision is the accuracy with which the basic arithmetic operations are performed

Backward error - How to measure the quality of a solution?

3

A B b A B b

Backward error - How to measure the quality of a solution?

Let f be a problem with input x and \hat{y} be a computed solution. Then we ask:

э

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Backward error - How to measure the quality of a solution?

Let f be a problem with input x and \hat{y} be a computed solution. Then we ask:

For what set of data have we solved the problem?

Backward error - How to measure the quality of a solution?

Let f be a problem with input x and \hat{y} be a computed solution. Then we ask:

For what set of data have we solved the problem? i.e. for what riangle x, do we have

$$\widetilde{y} = f(x + \triangle x)?$$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Backward error - How to measure the quality of a solution?

Let f be a problem with input x and \hat{y} be a computed solution. Then we ask:

For what set of data have we solved the problem? i.e. for what riangle x, do we have

$$\widetilde{y} = f(x + \triangle x)?$$

There can be many such $\triangle x$, we look for the smallest one. The

min
$$|\triangle x|$$
 such that $\widehat{y} = f(x + \triangle x)$

is called the backward error of the solution.



Forward error The error of \hat{y} is called the forward error i.e.

$$|\widehat{y} - f(x)|$$

3

< □ > < 同 > < 回 > < 回 > < 回 >

Forward error The error of \hat{y} is called the forward error i.e.

$$|\widehat{y} - f(x)|$$

Backward stability A method for computing y = f(x) is called backward stable if, for any x, it produces a computed \hat{y} with a small backward error i.e. $\hat{y} = f(x + \Delta x)$ for some small Δx

Forward error The error of \hat{y} is called the forward error i.e.

$$|\widehat{y} - f(x)|$$

Backward stability A method for computing y = f(x) is called backward stable if, for any x, it produces a computed \hat{y} with a small backward error i.e. $\hat{y} = f(x + \Delta x)$ for some small Δx (how small is small?)

Forward error The error of \hat{y} is called the forward error i.e.

$$|\widehat{y} - f(x)|$$

Backward stability A method for computing y = f(x) is called backward stable if, for any x, it produces a computed \hat{y} with a small backward error i.e. $\hat{y} = f(x + \Delta x)$ for some small Δx (how small is small?)

 \rightarrow the operation $x \pm y$ is the exact result for a perturbed data $x(1 + \delta)$ and $y(1 + \delta)$ with $|\delta| \le u$, thus by definition addition and subtraction are are backward stable operations

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Forward error The error of \hat{y} is called the forward error i.e.

$$|\widehat{y} - f(x)|$$

Backward stability A method for computing y = f(x) is called backward stable if, for any x, it produces a computed \hat{y} with a small backward error i.e. $\hat{y} = f(x + \Delta x)$ for some small Δx (how small is small?)

 \rightarrow the operation $x \pm y$ is the exact result for a perturbed data $x(1 + \delta)$ and $y(1 + \delta)$ with $|\delta| \le u$, thus by definition addition and subtraction are are backward stable operations

Example An algorithm for solving Ax = b is called backward stable if the computed solution \hat{x} is such that

$$(A + \triangle A)\widehat{x} = b + \triangle b$$

with small $\triangle A$ and $\triangle b$ (in terms of norm of course)

Gaussian elimination without pivoting is unstable! Let

$$A = \begin{bmatrix} 10^{-10} & 1 \\ 1 & 2 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 3 \end{bmatrix}.$$

Apply GE without pivoting:

$$[A|b] \mapsto \begin{bmatrix} 10^{-10} & 1 & 1\\ 0 & 2 - 10^{10} & 3 - 10^{10} \end{bmatrix}$$

3

Gaussian elimination without pivoting is unstable! Let

$$A = \begin{bmatrix} 10^{-10} & 1 \\ 1 & 2 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 3 \end{bmatrix}.$$

Apply GE without pivoting:

$$[A|b] \mapsto egin{bmatrix} 10^{-10} & 1 & 1 \ 0 & 2 - 10^{10} & 3 - 10^{10} \end{bmatrix}$$

Check in computer that it would give the solution $x_2 = 1, x_1 = 0$, whereas the solution is supposed to be $x_1 = 1 = x_2$?

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Gaussian elimination without pivoting is unstable! Let

$$A = \begin{bmatrix} 10^{-10} & 1 \\ 1 & 2 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 3 \end{bmatrix}.$$

Apply GE without pivoting:

$$[A|b] \mapsto \begin{bmatrix} 10^{-10} & 1 & 1 \\ 0 & 2 - 10^{10} & 3 - 10^{10} \end{bmatrix}$$

Check in computer that it would give the solution $x_2 = 1, x_1 = 0$, whereas the solution is supposed to be $x_1 = 1 = x_2$? What are the $\triangle A$ and $\triangle b$ here?

4 3 5 4 3 5 5

Gaussian elimination without pivoting is unstable! Let

$$A = \begin{bmatrix} 10^{-10} & 1 \\ 1 & 2 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 3 \end{bmatrix}.$$

Apply GE without pivoting:

$$[A|b] \mapsto \begin{bmatrix} 10^{-10} & 1 & 1 \\ 0 & 2 - 10^{10} & 3 - 10^{10} \end{bmatrix}$$

Check in computer that it would give the solution $x_2 = 1, x_1 = 0$, whereas the solution is supposed to be $x_1 = 1 = x_2$? What are the $\triangle A$ and $\triangle b$ here? What happens if you use pivoting?

Question Are these forward error and backward error related?

3

Question Are these forward error and backward error related? Suppose y = f(x) is problem and the approximate solution is $\hat{y} = f(x + \Delta x)$.

3

< □ > < □ > < □ > < □ > < □ > < □ >

Question Are these forward error and backward error related? Suppose y = f(x) is problem and the approximate solution is $\hat{y} = f(x + \Delta x)$. Suppose f is twice differentiable function. Then

$$\widehat{y} - y = f(x + \triangle x) - f(x)$$

★ ∃ ► < ∃ ►</p>

Question Are these forward error and backward error related? Suppose y = f(x) is problem and the approximate solution is $\hat{y} = f(x + \Delta x)$. Suppose f is twice differentiable function. Then

$$\widehat{y} - y = f(x + \Delta x) - f(x)$$

$$= f'(x) \Delta x + \frac{f''(x + \theta \Delta x)}{2!} (\Delta x)^2, \ \theta \in (0, 1)$$

$$(1)$$

Question Are these forward error and backward error related? Suppose y = f(x) is problem and the approximate solution is $\hat{y} = f(x + \Delta x)$. Suppose f is twice differentiable function. Then

$$\widehat{y} - y = f(x + \bigtriangleup x) - f(x)$$

= $f'(x)\bigtriangleup x + rac{f''(x + \theta \bigtriangleup x)}{2!}(\bigtriangleup x)^2, \ \theta \in (0, 1)$ (1)

Then

$$\frac{\widehat{y}-y}{y} = \left(\frac{xf'(x)}{f(x)}\right)\frac{\bigtriangleup x}{x} + O((\bigtriangleup x)^2).$$

★ ∃ ► < ∃ ►</p>

Question Are these forward error and backward error related? Suppose y = f(x) is problem and the approximate solution is $\hat{y} = f(x + \Delta x)$. Suppose f is twice differentiable function. Then

$$\widehat{y} - y = f(x + \Delta x) - f(x)$$

$$= f'(x) \Delta x + \frac{f''(x + \theta \Delta x)}{2!} (\Delta x)^2, \ \theta \in (0, 1)$$
(1)

Then

$$\frac{\widehat{y}-y}{y} = \left(\frac{xf'(x)}{f(x)}\right)\frac{\bigtriangleup x}{x} + O((\bigtriangleup x)^2).$$

The quantity

$$c(x) = \left| \frac{xf'(x)}{f(x)} \right|$$

measures, for small $\triangle x$, the relative change in the output for a relative change in the input. It is called (relative) condition number of the problem f.

Therefore

forward error \leq condition number \times backward error

- 2

イロト イポト イヨト イヨト

Therefore

forward error \leq condition number \times backward error

We conclude

 $\rightarrow\,$ For a well-condition problem, if the backward error is high then forward error is high

3

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Therefore

forward error \leq condition number \times backward error

We conclude

- $\rightarrow\,$ For a well-condition problem, if the backward error is high then forward error is high
- $\rightarrow\,$ For an ill conditioned problem, if the backward error is small then the forward error is high

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Therefore

forward error \leq condition number \times backward error

We conclude

- $\rightarrow\,$ For a well-condition problem, if the backward error is high then forward error is high
- $\rightarrow\,$ For an ill conditioned problem, if the backward error is small then the forward error is high
- $\rightarrow\,$ The forward error is small only when the backward error is small and the problem is well conditioned

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Well/ill conditioned problems A problem is called ill-conditioned if a small deviation of the input data cause large relative error in the computed solution, regardless of the method for the solution. Otherwise, it is called well-conditioned

3

・ 何 ト ・ ヨ ト ・ ヨ ト

Well/ill conditioned problems A problem is called ill-conditioned if a small deviation of the input data cause large relative error in the computed solution, regardless of the method for the solution. Otherwise, it is called well-conditioned

Condition number of a problem of f is a problem with respect to the data x then the condition number of f is

relative error in the solution

relative perturbation in the data

$$=\frac{\frac{|f(x)-f(y)|}{|f(x)|}}{\frac{|x-y|}{|x|}}$$

Well/ill conditioned problems A problem is called ill-conditioned if a small deviation of the input data cause large relative error in the computed solution, regardless of the method for the solution. Otherwise, it is called well-conditioned

Condition number of a problem of f is a problem with respect to the data x then the condition number of f is

 $\frac{\text{relative error in the solution}}{\text{relative perturbation in the data}} = \frac{11}{-12}$

 $= \frac{\frac{|f(x) - f(y)|}{|f(x)|}}{\frac{|x - y|}{|x|}}$

A mathematical definition Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a problem. Then the condition number of f is

$$\lim_{\epsilon \to 0} \sup_{\| \bigtriangleup x \| \le \epsilon \| x \|} \frac{\| f(x + \bigtriangleup x) - f(x) \|}{\epsilon \| f(x) \|}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example of an ill-conditioned linear system Let Ax = b with

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4.0001 & 2.002 \\ 1 & 2.002 & 2.004 \end{bmatrix}, b = \begin{bmatrix} 4 \\ 8.0021 \\ 5.006 \end{bmatrix}.$$

3

Example of an ill-conditioned linear system Let Ax = b with

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4.0001 & 2.002 \\ 1 & 2.002 & 2.004 \end{bmatrix}, b = \begin{bmatrix} 4 \\ 8.0021 \\ 5.006 \end{bmatrix}.$$

The exact solution is $x = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

3

Example of an ill-conditioned linear system Let Ax = b with

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4.0001 & 2.002 \\ 1 & 2.002 & 2.004 \end{bmatrix}, b = \begin{bmatrix} 4 \\ 8.0021 \\ 5.006 \end{bmatrix}.$$

The exact solution is $x = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
Change b to $b' = \begin{bmatrix} 4 \\ 8.0020 \\ 5.0061 \end{bmatrix}$. Then the relative change is:

$$\frac{\|b'-b\|}{\|b\|} = \frac{\|\Delta b\|}{\|b\|} = 1.3795 \times 10^{-5}.$$

Bibhas Adhikari (Spring 2022-23, IIT Kharag

3

Example of an ill-conditioned linear system Let Ax = b with

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4.0001 & 2.002 \\ 1 & 2.002 & 2.004 \end{bmatrix}, b = \begin{bmatrix} 4 \\ 8.0021 \\ 5.006 \end{bmatrix}.$$

The exact solution is $x = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
Change b to $b' = \begin{bmatrix} 4 \\ 8.0020 \\ 5.0061 \end{bmatrix}$. Then the relative change is:
$$\|b' - b\| = \| \triangle b \|$$

$$\frac{\|b'-b\|}{\|b\|} = \frac{\|\Delta b\|}{\|b\|} = 1.3795 \times 10^{-5}.$$

Solving the system Ax' = b' we have $x' = \begin{bmatrix} 3.0850 \\ -0.0436 \\ 1.0022 \end{bmatrix}$.

Condition number of a matrix - the most important notion dealing with matrix computations

Let
$$A = \begin{bmatrix} 4.1 & 2.8 \\ 9.7 & 6.6 \end{bmatrix}$$
 and $b = \begin{bmatrix} 4.1 \\ 9.7 \end{bmatrix}$. Then $x = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is the solution of $Ax = b$.

3

Condition number of a matrix - the most important notion dealing with matrix computations

Let
$$A = \begin{bmatrix} 4.1 & 2.8 \\ 9.7 & 6.6 \end{bmatrix}$$
 and $b = \begin{bmatrix} 4.1 \\ 9.7 \end{bmatrix}$. Then $x = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is the solution of $Ax = b$.
Now consider $b' = \begin{bmatrix} 4.11 \\ 9.7 \end{bmatrix}$. Then solving $Ax = b'$ in MATLAB gives $x = \begin{bmatrix} 0.3400 \\ 0.9700 \end{bmatrix}$!!

3

イロト イポト イヨト イヨト

Condition number of a matrix - the most important notion dealing with matrix computations

Let
$$A = \begin{bmatrix} 4.1 & 2.8 \\ 9.7 & 6.6 \end{bmatrix}$$
 and $b = \begin{bmatrix} 4.1 \\ 9.7 \end{bmatrix}$. Then $x = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is the solution of $Ax = b$.
Now consider $b' = \begin{bmatrix} 4.11 \\ 9.7 \end{bmatrix}$. Then solving $Ax = b'$ in MATLAB gives $x = \begin{bmatrix} 0.3400 \\ 0.9700 \end{bmatrix}$!!

Question Why??

3