
Big Data Analysis
(MA60306)

Bibhas Adhikari

Spring 2022-23, IIT Kharagpur

Lecture 6
January 13, 2023

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 6 January 13, 2023 1 / 15



Computing with data

Note An alternative way of expressing y is

y = ±βe

(
d1
β

+
d2
β2

+ . . .+
dt
βt

)
= ± .d1d2 . . . dt︸ ︷︷ ︸

t-digit fraction

×βe

where 0 ≤ di ≤ β − 1 and d1 ̸= 0 (for normalized numbers)

In this
representation, d1 is called the most significant digit and dt the the least
significant digit
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Computing with data

The spacing between the floating point numbers is characterized in terms
of machine epsilon, denotes as ϵM which is the distance from 1.0 to the
next larger floating point number.

Homework Show that
ϵM = β1−t

Lemma The spacing between a normalized floating point number x and an
adjacent normalized floating point number is at least β−1ϵM |x | and at
most ϵM |x |.
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Computing with data

Given x ∈ R, fl(x) denotes an element from F that is nearest to x
(how to break the ties)

x 7→ fl(x) is called rounding which is monotone: x ≥ y implies
fl(x) ≥ fl(y)

overflows if fl(x) > max{|y | : y ∈ F} and underflows if
0 < |fl(x)| ≤ min{|y | : 0 ̸= y ∈ F}

Example

→ Let β = 10, t = 3, emin = −3, emax = 3. Then setting
a = 0.111× 103, b = 0.120× 103, c = a× b = 0.133× 105 is overflow

→ Let β = 10, t = 3, emin = −2, emax = 3. Then setting a = 0.1× 10−1,
b = 0.2× 10−1, c = a× b = 2× 10−4 is underflow
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Theorem If x ∈ R lies in the range of F then

fl(x) = x(1 + δ), |δ| < u,

where u = 1
2β

1−t is called the unit roundoff.

Thus

The relative error =
|fl(x)− x |

|x |
≤ 1

2
β1−t

IEEE standard arithmetic β = 2 and support two precisions.

Single precision: t = 24, emin = −125, emax = 128,
u = 2−24 ≈ 5.96× 10−8

Double precision: t = 53, emin = −1021, emax = 1024,
u = 2−53 ≈ 1.11× 10−16
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Computing with data

Floating point format

Type Size Significant Exponent Range

Single 32 bits 23+1 bits 8 bits 10±38

Double 64 bits 52+1 bits 11 bits 10±308

Standard model for floating point arithmetic

fl(x ◦ y) = (x ◦ y)(1 + δ), |δ| ≤ u, ◦ = +,−, ∗, /

Flops The cost of a numerical algorithm is measured in flops. A flop is an
elementary floating point operation ◦. When we say an algorithm requires
2n3/3 flops, we mean 2n3/3 + O(n2) flops
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Computing with data

Sources of errors in the data

→ errors from measurement or estimation of real world data

→ error in storing data on a computer (tiny)

→ result of errors (big or small) in an earlier computation if the data is a
solution of another problem

→ truncation errors

Precision and accuracy

→ Accuracy refers to the absolute or relative error of an approximate
quantity

→ Precision is the accuracy with which the basic arithmetic operations
are performed
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Computing with data
Backward error - How to measure the quality of a solution?

Let f be a problem with input x and ŷ be a computed solution. Then we
ask:
For what set of data have we solved the problem? i.e. for what △x , do we
have

ỹ = f (x +△x)?

There can be many such △x , we look for the smallest one. The

min |△x | such that ŷ = f (x +△x)

is called the backward error of the solution.
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Computing with data
Forward error The error of ŷ is called the forward error i.e.

|ŷ − f (x)|

Backward stability A method for computing y = f (x) is called backward
stable if, for any x , it produces a computed ŷ with a small backward error
i.e. ŷ = f (x +△x) for some small △x (how small is small?)

→ the operation x ± y is the exact result for a perturbed data x(1 + δ)
and y(1 + δ) with |δ| ≤ u, thus by definition addition and subtraction
are are backward stable operations

Example An algorithm for solving Ax = b is called backward stable if the
computed solution x̂ is such that

(A+△A)x̂ = b +△b

with small △A and △b (in terms of norm of course)
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Computing with data

Gaussian elimination without pivoting is unstable! Let

A =

[
10−10 1
1 2

]
, b =

[
1
3

]
.

Apply GE without pivoting:

[A|b] 7→
[
10−10 1 1
0 2− 1010 3− 1010

]

Check in computer that it would give the solution x2 = 1, x1 = 0, whereas
the solution is supposed to be x1 = 1 = x2? What are the △A and △b
here? What happens if you use pivoting?
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Computing with data
Question Are these forward error and backward error related?

Suppose y = f (x) is problem and the approximate solution is
ŷ = f (x +△x). Suppose f is twice differentiable function. Then

ŷ − y = f (x +△x)− f (x)

= f ′(x)△x +
f ′′(x + θ△x)

2!
(△x)2, θ ∈ (0, 1) (1)

Then
ŷ − y

y
=

(
xf ′(x)

f (x)

)
△x

x
+ O((△x)2).

The quantity

c(x) =

∣∣∣∣xf ′(x)f (x)

∣∣∣∣
measures, for small △x , the relative change in the output for a relative
change in the input. It is called (relative) condition number of the problem
f .
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Suppose y = f (x) is problem and the approximate solution is
ŷ = f (x +△x). Suppose f is twice differentiable function. Then

ŷ − y = f (x +△x)− f (x)

= f ′(x)△x +
f ′′(x + θ△x)

2!
(△x)2, θ ∈ (0, 1) (1)

Then
ŷ − y

y
=

(
xf ′(x)

f (x)

)
△x

x
+ O((△x)2).

The quantity
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Computing with data

Therefore

forward error ≤ condition number × backward error

We conclude

→ For a well-condition problem, if the backward error is high then
forward error is high

→ For an ill conditioned problem, if the backward error is small then the
forward error is high

→ The forward error is small only when the backward error is small and
the problem is well conditioned
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Computing with data

Well/ill conditioned problems A problem is called ill-conditioned if a small
deviation of the input data cause large relative error in the computed
solution, regardless of the method for the solution. Otherwise, it is called
well-conditioned

Condition number of a problem If f is a problem with respect to the data
x then the condition number of f is

relative error in the solution

relative perturbation in the data
=

|f (x)−f (y)|
|f (x)|
|x−y |
|x |

A mathematical definition Let f : Rn → Rm be a problem. Then the
condition number of f is

lim
ϵ→0

sup
∥△x∥≤ϵ∥x∥

∥f (x +△x)− f (x)∥
ϵ∥f (x)∥
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Computing with data
Example of an ill-conditioned linear system Let Ax = b with

A =

1 2 1
2 4.0001 2.002
1 2.002 2.004

 , b =

 4
8.0021
5.006

 .

The exact solution is x =

11
1


Change b to b′ =

 4
8.0020
5.0061

 . Then the relative change is:

∥b′ − b∥
∥b∥

=
∥△b∥
∥b∥

= 1.3795× 10−5.

Solving the system Ax ′ = b′ we have x ′ =

 3.0850
−0.0436
1.0022

 .
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Computing with data

Condition number of a matrix - the most important notion dealing with
matrix computations

Let A =

[
4.1 2.8
9.7 6.6

]
and b =

[
4.1
9.7

]
. Then x =

[
1
0

]
is the solution of

Ax = b.

Now consider b′ =

[
4.11
9.7

]
. Then solving Ax = b′ in MATLAB gives

x =

[
0.3400
0.9700

]
!!

Question Why??
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