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Regression models

Theorem If Loss(y , ŷ) = (y − ŷ)2 then the optimal prediction function g∗

is equal to the conditional expectation of Y given X = x :

g∗(x) = E[Y |X = x]

Consequence

▷ The conditional X = x, the random response Y can be written as

Y = g∗(x) + ϵ(x)

where ϵ(x) can be thought of as a random deviation of the response
from its conditional mean at x.

▷ E[ϵ(x)] = 0

▷ Var[ϵ(x)] = ν2(x) for some function ν(x)
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Regression models
Geometry Relate it to a data set: Where x measures height and y
measures age of a person. Suppose we want to write y as a function of x
through the predictor function:

y = g∗(x) + ϵ(x),

:= β0 + β1x + ϵ(x)︸ ︷︷ ︸
regression line

It may so happen that (x , y) ∼ N (µ,Σ) where µ = (µx , µy ) and

Σ =

[
σ2
x ρσxσy

ρσxσy σ2
y

]
Recall Bivariate normal distribution

f (x , y) =

1

2π
√
(1− ρ2)σxσy

×

exp

{
− 1

2(1− ρ2)

[
(x − µx)

2

σ2
x

− 2ρ
(x − µx)(y − µy )

σxσy
+

(y − µy )
2

σ2
y

]}
where σx > 0, σy > 0, and |ρ| < 1.
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Regression model
Note that if x denotes the total marks that one student has obtained and
y denotes the grade then it becomes a classification problem.

Multivariate normal distribution Let Σ be a positive definite n × n matrix
and µ an n dimensional vector. Then the pdf of a multivariate normal rv
X = (X1, . . . ,Xn) i.e. X ∼ Nn(µ,Σ) is

f (x1, . . . , xn) =
1√

(2π)n det(Σ)
exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]

→ E[X] = µ, Var[X] = Σ = [Σij ] where Σij = E[(Xi − µi )(Xj − µj)]

→ Let X1, . . . ,Xn be independent N (0, 1) random variables. Then
X = (X1, . . . ,Xn) has the density function Nn(0, In)

→ Let X ∼ Nn(µ,Σ), C be an m × n matrix of rank m, and d be an m
dimensional vector. Then CX+ d ∼ Nm(Cµ+ d ,CΣCT )

→ If X = AZ+ µ where A is an n × n nonsingular matrix and
Z ∼ Nn(0, In) then X ∼ Nn(µ,AA

T )

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 5 January 12, 2023 4 / 9



Regression model
Note that if x denotes the total marks that one student has obtained and
y denotes the grade then it becomes a classification problem.

Multivariate normal distribution Let Σ be a positive definite n × n matrix
and µ an n dimensional vector. Then the pdf of a multivariate normal rv
X = (X1, . . . ,Xn) i.e. X ∼ Nn(µ,Σ) is

f (x1, . . . , xn) =
1√

(2π)n det(Σ)
exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]

→ E[X] = µ, Var[X] = Σ = [Σij ] where Σij = E[(Xi − µi )(Xj − µj)]

→ Let X1, . . . ,Xn be independent N (0, 1) random variables. Then
X = (X1, . . . ,Xn) has the density function Nn(0, In)

→ Let X ∼ Nn(µ,Σ), C be an m × n matrix of rank m, and d be an m
dimensional vector. Then CX+ d ∼ Nm(Cµ+ d ,CΣCT )

→ If X = AZ+ µ where A is an n × n nonsingular matrix and
Z ∼ Nn(0, In) then X ∼ Nn(µ,AA

T )

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 5 January 12, 2023 4 / 9



Regression model
Note that if x denotes the total marks that one student has obtained and
y denotes the grade then it becomes a classification problem.

Multivariate normal distribution Let Σ be a positive definite n × n matrix
and µ an n dimensional vector. Then the pdf of a multivariate normal rv
X = (X1, . . . ,Xn) i.e. X ∼ Nn(µ,Σ) is

f (x1, . . . , xn) =
1√

(2π)n det(Σ)
exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]

→ E[X] = µ, Var[X] = Σ = [Σij ]

where Σij = E[(Xi − µi )(Xj − µj)]

→ Let X1, . . . ,Xn be independent N (0, 1) random variables. Then
X = (X1, . . . ,Xn) has the density function Nn(0, In)

→ Let X ∼ Nn(µ,Σ), C be an m × n matrix of rank m, and d be an m
dimensional vector. Then CX+ d ∼ Nm(Cµ+ d ,CΣCT )

→ If X = AZ+ µ where A is an n × n nonsingular matrix and
Z ∼ Nn(0, In) then X ∼ Nn(µ,AA

T )

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 5 January 12, 2023 4 / 9



Regression model
Note that if x denotes the total marks that one student has obtained and
y denotes the grade then it becomes a classification problem.

Multivariate normal distribution Let Σ be a positive definite n × n matrix
and µ an n dimensional vector. Then the pdf of a multivariate normal rv
X = (X1, . . . ,Xn) i.e. X ∼ Nn(µ,Σ) is

f (x1, . . . , xn) =
1√

(2π)n det(Σ)
exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]

→ E[X] = µ, Var[X] = Σ = [Σij ] where Σij = E[(Xi − µi )(Xj − µj)]

→ Let X1, . . . ,Xn be independent N (0, 1) random variables. Then
X = (X1, . . . ,Xn) has the density function Nn(0, In)

→ Let X ∼ Nn(µ,Σ), C be an m × n matrix of rank m, and d be an m
dimensional vector. Then CX+ d ∼ Nm(Cµ+ d ,CΣCT )

→ If X = AZ+ µ where A is an n × n nonsingular matrix and
Z ∼ Nn(0, In) then X ∼ Nn(µ,AA

T )

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 5 January 12, 2023 4 / 9



Regression model
Note that if x denotes the total marks that one student has obtained and
y denotes the grade then it becomes a classification problem.

Multivariate normal distribution Let Σ be a positive definite n × n matrix
and µ an n dimensional vector. Then the pdf of a multivariate normal rv
X = (X1, . . . ,Xn) i.e. X ∼ Nn(µ,Σ) is

f (x1, . . . , xn) =
1√

(2π)n det(Σ)
exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]

→ E[X] = µ, Var[X] = Σ = [Σij ] where Σij = E[(Xi − µi )(Xj − µj)]

→ Let X1, . . . ,Xn be independent N (0, 1) random variables. Then
X = (X1, . . . ,Xn) has the density function Nn(0, In)

→ Let X ∼ Nn(µ,Σ), C be an m × n matrix of rank m, and d be an m
dimensional vector. Then CX+ d ∼ Nm(Cµ+ d ,CΣCT )

→ If X = AZ+ µ where A is an n × n nonsingular matrix and
Z ∼ Nn(0, In) then X ∼ Nn(µ,AA

T )

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 5 January 12, 2023 4 / 9



Regression model
Note that if x denotes the total marks that one student has obtained and
y denotes the grade then it becomes a classification problem.

Multivariate normal distribution Let Σ be a positive definite n × n matrix
and µ an n dimensional vector. Then the pdf of a multivariate normal rv
X = (X1, . . . ,Xn) i.e. X ∼ Nn(µ,Σ) is

f (x1, . . . , xn) =
1√

(2π)n det(Σ)
exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]

→ E[X] = µ, Var[X] = Σ = [Σij ] where Σij = E[(Xi − µi )(Xj − µj)]

→ Let X1, . . . ,Xn be independent N (0, 1) random variables. Then
X = (X1, . . . ,Xn) has the density function Nn(0, In)

→ Let X ∼ Nn(µ,Σ), C be an m × n matrix of rank m, and d be an m
dimensional vector. Then CX+ d ∼ Nm(Cµ+ d ,CΣCT )

→ If X = AZ+ µ where A is an n × n nonsingular matrix and
Z ∼ Nn(0, In) then X ∼ Nn(µ,AA

T )

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 5 January 12, 2023 4 / 9



Regression model
Note that if x denotes the total marks that one student has obtained and
y denotes the grade then it becomes a classification problem.

Multivariate normal distribution Let Σ be a positive definite n × n matrix
and µ an n dimensional vector. Then the pdf of a multivariate normal rv
X = (X1, . . . ,Xn) i.e. X ∼ Nn(µ,Σ) is

f (x1, . . . , xn) =
1√

(2π)n det(Σ)
exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]

→ E[X] = µ, Var[X] = Σ = [Σij ] where Σij = E[(Xi − µi )(Xj − µj)]

→ Let X1, . . . ,Xn be independent N (0, 1) random variables. Then
X = (X1, . . . ,Xn) has the density function Nn(0, In)

→ Let X ∼ Nn(µ,Σ), C be an m × n matrix of rank m, and d be an m
dimensional vector. Then CX+ d ∼ Nm(Cµ+ d ,CΣCT )

→ If X = AZ+ µ where A is an n × n nonsingular matrix and
Z ∼ Nn(0, In) then X ∼ Nn(µ,AA

T )

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 5 January 12, 2023 4 / 9



Regression models

Method of least square Recall Y = Xβ + ϵ(x)

min
β

∑
i

ϵ2i

i .e. min
θ∈C(X)=Ω

ϵTϵ = ∥Y − θ∥2

where θ = Xβ and Ω is the column space of X i.e.
Ω = {y : y = Xx for any x}

From the geometry, what is your guess for θ which can minimize the
function?

Obviously, θ̂ = θ will minimize ∥Y − θ∥2 if (Y − θ̂) ⊥ Ω
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Regression models
Obviously. θ̂ can be obtained via a projection matrix P, namely θ̂ = PY,
where P is the orthogonal projection onto Ω i.e. Pθ = θ. PT = P and
P2 = P

Then
Y − θ = (Y − θ̂) + (θ̂ − θ)

and

(Y − θ̂)T (θ̂ − θ) = (Y − PY)TP(Y − θ)

= YT (In − P)P(Y − θ)

= 0.

Thus
∥Y − θ∥2 = ∥Y − θ̂∥2 + ∥θ̂ − θ∥2 ≥ ∥Y − θ̂∥2,

with equality iff θ = θ̂.
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Regression models
Now since Y − θ̂ is perpendicular to Ω,

XT (Y − θ̂) = 0 i.e. XT θ̂ = XTY

Note that θ̂ is uniquely determined!!

If columns of X are linearly independent then there exists a unique β̂ such
that θ̂ = Xβ̂.

Hence
XTXβ̂ = XTy,

which is known as the normal equation. Thus (why)

β̂ = (XTX)−1XTY

β̂ is called the least squares estimate of β. However, finding inverse is
computationally not stable!!
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Computing with data

Question What is a stable algorithm?

Floating point number system A floating point number system F ⊂ R is a
set whose elements have the form

y = ±m × βe−t

the base β (sometimes called the radix)

the precision t

the exponent range emin ≤ e ≤ emax

the significand (sometimes called mantissa) is an integer satisfying
0 ≤ m ≤ βt − 1

to ensure a unique representation for each nonzero y ∈ F , it is
assumed that m ≥ βt−1 (normalized) if y ̸= 0 (0 is a special case)
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to ensure a unique representation for each nonzero y ∈ F , it is
assumed that m ≥ βt−1 (normalized) if y ̸= 0 (0 is a special case)
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Computing with data

The range of floating point numbers in F is :

βemin−1 ≤ |y | ≤ βemax(1− β−t)

Note An alternative way of expressing y is

y = ±βe

(
d1
β

+
d2
β2

+ . . .+
dt
βt

)
= ± .d1d2 . . . dt︸ ︷︷ ︸

t-digit fraction

×βe

where 0 ≤ di ≤ β − 1 and d1 ̸= 0 (for normalized numbers) In this
representation, d1 is called the most significant digit and dt the the least
significant digit

Observation Floating points are not equally spaced. Set β = 2, t = 3,
emin = −1, emax = 3
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