Big Data Analysis (MA60306)

Bibhas Adhikari

Spring 2022-23, IIT Kharagpur

Lecture 5 January 12, 2023

Bibhas Adhikari (Spring 2022-23, IIT Kharag

Big Data Analysis

Lecture 5 January 12, 2023 1 / 9

э

A D N A B N A B N A B N

Theorem If $Loss(y, \hat{y}) = (y - \hat{y})^2$ then the optimal prediction function g^* is equal to the conditional expectation of Y given $\mathbf{X} = \mathbf{x}$:

$$g^*(\mathbf{x}) = \mathbb{E}[Y|\mathbf{X} = \mathbf{x}]$$

3

イロト イポト イヨト イヨト

Theorem If $Loss(y, \hat{y}) = (y - \hat{y})^2$ then the optimal prediction function g^* is equal to the conditional expectation of Y given $\mathbf{X} = \mathbf{x}$:

$$g^*(\mathbf{x}) = \mathbb{E}[Y|\mathbf{X} = \mathbf{x}]$$

Consequence

 \triangleright The conditional **X** = **x**, the random response Y can be written as

$$Y = g^*(\mathbf{x}) + \epsilon(\mathbf{x})$$

where $\epsilon(\mathbf{x})$ can be thought of as a random deviation of the response from its conditional mean at \mathbf{x} .

Theorem If $Loss(y, \hat{y}) = (y - \hat{y})^2$ then the optimal prediction function g^* is equal to the conditional expectation of Y given $\mathbf{X} = \mathbf{x}$:

$$g^*(\mathbf{x}) = \mathbb{E}[Y|\mathbf{X} = \mathbf{x}]$$

Consequence

 \triangleright The conditional **X** = **x**, the random response Y can be written as

$$Y = g^*(\mathbf{x}) + \epsilon(\mathbf{x})$$

where $\epsilon(\mathbf{x})$ can be thought of as a random deviation of the response from its conditional mean at \mathbf{x} .

$$\triangleright \ \mathbb{E}[\epsilon(\mathbf{x})] = \mathbf{0}$$

Theorem If $Loss(y, \hat{y}) = (y - \hat{y})^2$ then the optimal prediction function g^* is equal to the conditional expectation of Y given $\mathbf{X} = \mathbf{x}$:

$$g^*(\mathbf{x}) = \mathbb{E}[Y|\mathbf{X} = \mathbf{x}]$$

Consequence

 \triangleright The conditional **X** = **x**, the random response Y can be written as

$$Y = g^*(\mathbf{x}) + \epsilon(\mathbf{x})$$

where $\epsilon(\mathbf{x})$ can be thought of as a random deviation of the response from its conditional mean at \mathbf{x} .

$$\label{eq:expansion} \begin{split} & \triangleright \ \mathbb{E}[\epsilon(\mathbf{x})] = \mathbf{0} \\ & \triangleright \ \mathbb{V}\mathrm{ar}[\epsilon(\mathbf{x})] = \nu^2(\mathbf{x}) \text{ for some function } \nu(\mathbf{x}) \end{split}$$

Geometry Relate it to a data set: Where x measures height and y measures age of a person. Suppose we want to write y as a function of x through the predictor function:

$$y = g^*(x) + \epsilon(x),$$

э

< □ > < □ > < □ > < □ > < □ > < □ >

Geometry Relate it to a data set: Where x measures height and y measures age of a person. Suppose we want to write y as a function of x through the predictor function:

$$y = g^*(x) + \epsilon(x), := \underbrace{\beta_0 + \beta_1 x + \epsilon(x)}_{\text{regression line}}$$

э

< □ > < □ > < □ > < □ > < □ > < □ >

Geometry Relate it to a data set: Where x measures height and y measures age of a person. Suppose we want to write y as a function of x through the predictor function:

$$y = g^*(x) + \epsilon(x), := \underbrace{\beta_0 + \beta_1 x + \epsilon(x)}_{\text{regression line}}$$

It may so happen that $(x, y) \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ where $\boldsymbol{\mu} = (\mu_x, \mu_y)$ and $\boldsymbol{\Sigma} = \begin{bmatrix} \sigma_x^2 & \rho \sigma_x \sigma_y \\ \rho \sigma_x \sigma_y & \sigma_y^2 \end{bmatrix}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Geometry Relate it to a data set: Where x measures height and y measures age of a person. Suppose we want to write y as a function of x through the predictor function:

$$y = g^*(x) + \epsilon(x), := \underbrace{\beta_0 + \beta_1 x + \epsilon(x)}_{\text{regression line}}$$

It may so happen that $(x, y) \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ where $\boldsymbol{\mu} = (\mu_x, \mu_y)$ and $\boldsymbol{\Sigma} = \begin{bmatrix} \sigma_x^2 & \rho \sigma_x \sigma_y \\ \rho \sigma_x \sigma_y & \sigma_y^2 \end{bmatrix}$ Recall Bivariate normal distribution

$$\begin{aligned} f(x,y) &= \\ \frac{1}{2\pi\sqrt{(1-\rho^2)}\sigma_x\sigma_y} \times \\ &\exp\left\{-\frac{1}{2(1-\rho^2)}\left[\frac{(x-\mu_x)^2}{\sigma_x^2} - 2\rho\frac{(x-\mu_x)(y-\mu_y)}{\sigma_x\sigma_y} + \frac{(y-\mu_y)^2}{\sigma_y^2}\right]\right\} \\ &\text{where } \sigma_x > 0, \, \sigma_y > 0, \, \text{and } |\rho| < 1. \end{aligned}$$

Note that if x denotes the total marks that one student has obtained and y denotes the grade then it becomes a classification problem.

э

Note that if x denotes the total marks that one student has obtained and y denotes the grade then it becomes a classification problem.

Multivariate normal distribution Let Σ be a positive definite $n \times n$ matrix and μ an n dimensional vector. Then the pdf of a multivariate normal rv $\mathbf{X} = (X_1, \ldots, X_n)$ i.e. $\mathbf{X} \sim \mathcal{N}_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ is

$$f(x_1,\ldots,x_n) = \frac{1}{\sqrt{(2\pi)^n \det(\boldsymbol{\Sigma})}} \exp\left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right]$$

3

Note that if x denotes the total marks that one student has obtained and y denotes the grade then it becomes a classification problem.

Multivariate normal distribution Let Σ be a positive definite $n \times n$ matrix and μ an n dimensional vector. Then the pdf of a multivariate normal rv $\mathbf{X} = (X_1, \ldots, X_n)$ i.e. $\mathbf{X} \sim \mathcal{N}_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ is

$$f(x_1,\ldots,x_n) = \frac{1}{\sqrt{(2\pi)^n \det(\boldsymbol{\Sigma})}} \exp\left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right]$$

 $\rightarrow \mathbb{E}[\mathbf{X}] = \boldsymbol{\mu}, \mathbb{V}ar[\mathbf{X}] = \boldsymbol{\Sigma} = [\Sigma_{ij}]$

A B < A B </p>

Note that if x denotes the total marks that one student has obtained and y denotes the grade then it becomes a classification problem.

Multivariate normal distribution Let Σ be a positive definite $n \times n$ matrix and μ an n dimensional vector. Then the pdf of a multivariate normal rv $\mathbf{X} = (X_1, \ldots, X_n)$ i.e. $\mathbf{X} \sim \mathcal{N}_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ is

$$f(x_1,\ldots,x_n) = \frac{1}{\sqrt{(2\pi)^n \det(\boldsymbol{\Sigma})}} \exp\left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right]$$

 $\rightarrow \mathbb{E}[\mathbf{X}] = \boldsymbol{\mu}, \mathbb{V}ar[\mathbf{X}] = \mathbf{\Sigma} = [\Sigma_{ij}] \text{ where } \Sigma_{ij} = \mathbb{E}[(X_i - \mu_i)(X_j - \mu_j)]$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Note that if x denotes the total marks that one student has obtained and y denotes the grade then it becomes a classification problem.

Multivariate normal distribution Let Σ be a positive definite $n \times n$ matrix and μ an n dimensional vector. Then the pdf of a multivariate normal rv $\mathbf{X} = (X_1, \ldots, X_n)$ i.e. $\mathbf{X} \sim \mathcal{N}_n(\mu, \Sigma)$ is

$$f(x_1,\ldots,x_n) = \frac{1}{\sqrt{(2\pi)^n \det(\boldsymbol{\Sigma})}} \exp\left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right]$$

 $\rightarrow \mathbb{E}[\mathbf{X}] = \boldsymbol{\mu}, \mathbb{V}ar[\mathbf{X}] = \mathbf{\Sigma} = [\Sigma_{ij}] \text{ where } \Sigma_{ij} = \mathbb{E}[(X_i - \mu_i)(X_j - \mu_j)]$ $\rightarrow \text{ Let } X_1, \dots, X_n \text{ be independent } \mathcal{N}(0, 1) \text{ random variables. Then } \mathbf{X} = (X_1, \dots, X_n) \text{ has the density function } \mathcal{N}_n(\mathbf{0}, \mathbf{I}_n)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Note that if x denotes the total marks that one student has obtained and y denotes the grade then it becomes a classification problem.

Multivariate normal distribution Let Σ be a positive definite $n \times n$ matrix and μ an n dimensional vector. Then the pdf of a multivariate normal rv $\mathbf{X} = (X_1, \ldots, X_n)$ i.e. $\mathbf{X} \sim \mathcal{N}_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ is

$$f(x_1,\ldots,x_n) = \frac{1}{\sqrt{(2\pi)^n \det(\boldsymbol{\Sigma})}} \exp\left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right]$$

- $\rightarrow \mathbb{E}[\mathbf{X}] = \boldsymbol{\mu}, \mathbb{V}ar[\mathbf{X}] = \mathbf{\Sigma} = [\Sigma_{ij}] \text{ where } \Sigma_{ij} = \mathbb{E}[(X_i \mu_i)(X_j \mu_j)]$
- → Let X_1, \ldots, X_n be independent $\mathcal{N}(0, 1)$ random variables. Then $\mathbf{X} = (X_1, \ldots, X_n)$ has the density function $\mathcal{N}_n(\mathbf{0}, \mathbf{I}_n)$
- \rightarrow Let $\mathbf{X} \sim \mathcal{N}_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, *C* be an $m \times n$ matrix of rank *m*, and *d* be an *m* dimensional vector. Then $C\mathbf{X} + d \sim \mathcal{N}_m(C\boldsymbol{\mu} + d, C\boldsymbol{\Sigma}C^T)$

A B A B A B A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A

Note that if x denotes the total marks that one student has obtained and y denotes the grade then it becomes a classification problem.

Multivariate normal distribution Let Σ be a positive definite $n \times n$ matrix and μ an n dimensional vector. Then the pdf of a multivariate normal rv $\mathbf{X} = (X_1, \ldots, X_n)$ i.e. $\mathbf{X} \sim \mathcal{N}_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ is

$$f(x_1,\ldots,x_n) = \frac{1}{\sqrt{(2\pi)^n \det(\boldsymbol{\Sigma})}} \exp\left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right]$$

- $\rightarrow \mathbb{E}[\mathbf{X}] = \boldsymbol{\mu}, \mathbb{V}ar[\mathbf{X}] = \mathbf{\Sigma} = [\Sigma_{ij}] \text{ where } \Sigma_{ij} = \mathbb{E}[(X_i \mu_i)(X_j \mu_j)]$
- → Let X_1, \ldots, X_n be independent $\mathcal{N}(0, 1)$ random variables. Then $\mathbf{X} = (X_1, \ldots, X_n)$ has the density function $\mathcal{N}_n(\mathbf{0}, \mathbf{I}_n)$
- \rightarrow Let $\mathbf{X} \sim \mathcal{N}_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, C be an $m \times n$ matrix of rank m, and d be an m dimensional vector. Then $C\mathbf{X} + d \sim \mathcal{N}_m(C\boldsymbol{\mu} + d, C\boldsymbol{\Sigma}C^T)$
- $\rightarrow \text{ If } \mathbf{X} = A\mathbf{Z} + \mu \text{ where } A \text{ is an } n \times n \text{ nonsingular matrix and } \\ \mathbf{Z} \sim \mathcal{N}_n(\mathbf{0}, \mathbf{I}_n) \text{ then } \mathbf{X} \sim \mathcal{N}_n(\mu, AA^T)$

4/9

Method of least square Recall $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}(\mathbf{x})$

$$\min_{\beta} \sum_{i} \epsilon_i^2$$

3

イロト イポト イヨト イヨト

Method of least square Recall $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}(\mathbf{x})$

$$\min_{\beta} \sum_{i} \epsilon_i^2$$

i.e.
$$\min_{\boldsymbol{\theta} \in \mathcal{C}(\mathbf{X}) = \Omega} \boldsymbol{\epsilon}^{\mathsf{T}} \boldsymbol{\epsilon} = \|\mathbf{Y} - \boldsymbol{\theta}\|^2$$

where $\theta = \mathbf{X}\boldsymbol{\beta}$ and Ω is the column space of \mathbf{X} i.e. $\Omega = \{\mathbf{y} : \mathbf{y} = \mathbf{X}\mathbf{x} \text{ for any } \mathbf{x}\}$

э

イロト イポト イヨト イヨト

Method of least square Recall $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}(\mathbf{x})$

$$\min_{\beta} \sum_{i} \epsilon_i^2$$

i.e.
$$\min_{\boldsymbol{\theta} \in \mathcal{C}(\mathbf{X}) = \Omega} \boldsymbol{\epsilon}^{\mathsf{T}} \boldsymbol{\epsilon} = \|\mathbf{Y} - \boldsymbol{\theta}\|^2$$

where $\theta = \mathbf{X}\boldsymbol{\beta}$ and Ω is the column space of \mathbf{X} i.e. $\Omega = \{\mathbf{y} : \mathbf{y} = \mathbf{X}\mathbf{x} \text{ for any } \mathbf{x}\}$

From the geometry, what is your guess for θ which can minimize the function?

A B A A B A

Method of least square Recall $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}(\mathbf{x})$

$$\min_{\beta} \sum_{i} \epsilon_i^2$$

i.e.
$$\min_{\boldsymbol{\theta} \in \mathcal{C}(\mathbf{X}) = \Omega} \boldsymbol{\epsilon}^{\mathsf{T}} \boldsymbol{\epsilon} = \|\mathbf{Y} - \boldsymbol{\theta}\|^2$$

where $\theta = \mathbf{X}\boldsymbol{\beta}$ and Ω is the column space of \mathbf{X} i.e. $\Omega = \{\mathbf{y} : \mathbf{y} = \mathbf{X}\mathbf{x} \text{ for any } \mathbf{x}\}$

From the geometry, what is your guess for θ which can minimize the function?

Obviously,
$$\hat{\theta} = \theta$$
 will minimize $\|\mathbf{Y} - \theta\|^2$ if $(\mathbf{Y} - \hat{\theta}) \perp \Omega$

A B A A B A

Obviously. $\hat{\theta}$ can be obtained via a projection matrix P, namely $\hat{\theta} = P\mathbf{Y}$, where P is the orthogonal projection onto Ω i.e. $P\theta = \theta$. $P^T = P$ and $P^2 = P$

Obviously. $\hat{\theta}$ can be obtained via a projection matrix P, namely $\hat{\theta} = P\mathbf{Y}$, where P is the orthogonal projection onto Ω i.e. $P\theta = \theta$. $P^T = P$ and $P^2 = P$

Then

$$\mathbf{Y} - oldsymbol{ heta} = (\mathbf{Y} - \widehat{oldsymbol{ heta}}) + (\widehat{oldsymbol{ heta}} - oldsymbol{ heta})$$

and

$$(\mathbf{Y} - \widehat{\theta})^T (\widehat{\theta} - \theta) = (\mathbf{Y} - P\mathbf{Y})^T P(\mathbf{Y} - \theta)$$

= $\mathbf{Y}^T (I_n - P) P(\mathbf{Y} - \theta)$
= 0.

Obviously. $\hat{\theta}$ can be obtained via a projection matrix P, namely $\hat{\theta} = P\mathbf{Y}$, where P is the orthogonal projection onto Ω i.e. $P\theta = \theta$. $P^T = P$ and $P^2 = P$

Then

$$\mathbf{Y} - oldsymbol{ heta} = (\mathbf{Y} - \widehat{oldsymbol{ heta}}) + (\widehat{oldsymbol{ heta}} - oldsymbol{ heta})$$

and

$$(\mathbf{Y} - \widehat{\theta})^T (\widehat{\theta} - \theta) = (\mathbf{Y} - P\mathbf{Y})^T P(\mathbf{Y} - \theta)$$

= $\mathbf{Y}^T (I_n - P) P(\mathbf{Y} - \theta)$
= 0.

Thus

$$\|\mathbf{Y} - \mathbf{ heta}\|^2 = \|Y - \widehat{\mathbf{ heta}}\|^2 + \|\widehat{\mathbf{ heta}} - \mathbf{ heta}\|^2 \ge \|\mathbf{Y} - \widehat{\mathbf{ heta}}\|^2,$$

with equality iff $\theta = \widehat{\theta}$.

Now since $\mathbf{Y} - \hat{\boldsymbol{\theta}}$ is perpendicular to Ω ,

$$\mathbf{X}^{T}(\mathbf{Y} - \widehat{\mathbf{\theta}}) = 0$$
 i.e. $\mathbf{X}^{T}\widehat{\mathbf{\theta}} = \mathbf{X}^{T}\mathbf{Y}$

э

A B A A B A

< 47 ▶

Now since $\mathbf{Y} - \widehat{\boldsymbol{\theta}}$ is perpendicular to Ω ,

$$\mathbf{X}^{T}(\mathbf{Y} - \widehat{\mathbf{\theta}}) = 0$$
 i.e. $\mathbf{X}^{T}\widehat{\mathbf{\theta}} = \mathbf{X}^{T}\mathbf{Y}$

Note that $\widehat{\theta}$ is uniquely determined!!

Now since $\mathbf{Y} - \widehat{\boldsymbol{\theta}}$ is perpendicular to Ω ,

$$\mathbf{X}^{T}(\mathbf{Y} - \widehat{\mathbf{\theta}}) = 0$$
 i.e. $\mathbf{X}^{T}\widehat{\mathbf{\theta}} = \mathbf{X}^{T}\mathbf{Y}$

Note that $\widehat{\theta}$ is uniquely determined!!

If columns of **X** are linearly independent then there exists a unique $\hat{\beta}$ such that $\hat{\theta} = \mathbf{X}\hat{\beta}$.

Now since $\mathbf{Y} - \widehat{\boldsymbol{\theta}}$ is perpendicular to Ω ,

$$\mathbf{X}^{T}(\mathbf{Y} - \widehat{\mathbf{\theta}}) = 0$$
 i.e. $\mathbf{X}^{T}\widehat{\mathbf{\theta}} = \mathbf{X}^{T}\mathbf{Y}$

Note that $\widehat{\theta}$ is uniquely determined!!

If columns of **X** are linearly independent then there exists a unique $\hat{\beta}$ such that $\hat{\theta} = \mathbf{X}\hat{\beta}$.

Hence

$$\mathbf{X}^{\mathsf{T}}\mathbf{X}\widehat{\boldsymbol{\beta}} = \mathbf{X}^{\mathsf{T}}\mathbf{y},$$

which is known as the normal equation.

Now since $\mathbf{Y} - \hat{\boldsymbol{\theta}}$ is perpendicular to Ω ,

$$\mathbf{X}^{T}(\mathbf{Y} - \widehat{\mathbf{\theta}}) = 0$$
 i.e. $\mathbf{X}^{T}\widehat{\mathbf{\theta}} = \mathbf{X}^{T}\mathbf{Y}$

Note that $\widehat{\theta}$ is uniquely determined!!

If columns of **X** are linearly independent then there exists a unique $\hat{\beta}$ such that $\hat{\theta} = \mathbf{X}\hat{\beta}$.

Hence

$$\mathbf{X}^{T}\mathbf{X}\widehat{\boldsymbol{\beta}} = \mathbf{X}^{T}\mathbf{y},$$

which is known as the normal equation. Thus (why)

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{Y}$$

Now since $\mathbf{Y} - \hat{\boldsymbol{\theta}}$ is perpendicular to Ω ,

$$\mathbf{X}^{T}(\mathbf{Y} - \widehat{\mathbf{\theta}}) = 0$$
 i.e. $\mathbf{X}^{T}\widehat{\mathbf{\theta}} = \mathbf{X}^{T}\mathbf{Y}$

Note that $\widehat{\theta}$ is uniquely determined!!

If columns of **X** are linearly independent then there exists a unique $\hat{\beta}$ such that $\hat{\theta} = \mathbf{X}\hat{\beta}$.

Hence

$$\mathbf{X}^{T}\mathbf{X}\widehat{\boldsymbol{\beta}} = \mathbf{X}^{T}\mathbf{y},$$

which is known as the normal equation. Thus (why)

$$\widehat{\boldsymbol{\mathbf{eta}}} = (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{Y}$$

 $\hat{\beta}$ is called the least squares estimate of β . However, finding inverse is computationally not stable!!

Bibhas Adhikari (Spring 2022-23, IIT Kharag

Question What is a stable algorithm?

э

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Question What is a stable algorithm?

Floating point number system A floating point number system $F \subset \mathbb{R}$ is a set whose elements have the form

$$y = \pm m \times \beta^{e-t}$$

the base β (sometimes called the radix)

Question What is a stable algorithm?

Floating point number system A floating point number system $F \subset \mathbb{R}$ is a set whose elements have the form

$$y = \pm m \times \beta^{e-t}$$

the base β (sometimes called the radix) the precision t

Question What is a stable algorithm?

Floating point number system A floating point number system $F \subset \mathbb{R}$ is a set whose elements have the form

$$y = \pm m \times \beta^{e-t}$$

the base β (sometimes called the radix) the precision t the exponent range $e_{\min} \le e \le e_{\max}$

Question What is a stable algorithm?

Floating point number system A floating point number system $F \subset \mathbb{R}$ is a set whose elements have the form

$$y = \pm m \times \beta^{e-t}$$

the base β (sometimes called the radix)

the precision t

the exponent range $e_{\min} \leq e \leq e_{\max}$

the significand (sometimes called mantissa) is an integer satisfying $0 \le m \le \beta^t - 1$

Question What is a stable algorithm?

Floating point number system A floating point number system $F \subset \mathbb{R}$ is a set whose elements have the form

$$y = \pm m \times \beta^{e-t}$$

the base β (sometimes called the radix)

the precision t

the exponent range $e_{\min} \leq e \leq e_{\max}$

the significand (sometimes called mantissa) is an integer satisfying $0 \le m \le \beta^t - 1$

to ensure a unique representation for each nonzero $y \in F$, it is assumed that $m \ge \beta^{t-1}$ (normalized) if $y \ne 0$ (0 is a special case)

A B A B A B A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A

Question What is a stable algorithm?

Floating point number system A floating point number system $F \subset \mathbb{R}$ is a set whose elements have the form

$$y = \pm m \times \beta^{e-t}$$

the base β (sometimes called the radix)

the precision t

the exponent range $e_{\min} \leq e \leq e_{\max}$

the significand (sometimes called mantissa) is an integer satisfying $0 \le m \le \beta^t - 1$

to ensure a unique representation for each nonzero $y \in F$, it is assumed that $m \ge \beta^{t-1}$ (normalized) if $y \ne 0$ (0 is a special case)

A B A B A B A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A

The range of floating point numbers in F is :

$$|\beta^{e_{\min}-1} \leq |y| \leq \beta^{e_{\max}}(1-\beta^{-t})$$

э

A B A A B A

Image: A matrix

The range of floating point numbers in F is :

$$\beta^{e_{\min}-1} \leq |y| \leq \beta^{e_{\max}} (1-\beta^{-t})$$

Note An alternative way of expressing y is

$$y = \pm \beta^{e} \left(\frac{d_{1}}{\beta} + \frac{d_{2}}{\beta^{2}} + \ldots + \frac{d_{t}}{\beta^{t}} \right) = \pm \underbrace{.d_{1}d_{2}\ldots d_{t}}_{t-\text{digit fraction}} \times \beta^{e}$$

where $0 \le d_i \le \beta - 1$ and $d_1 \ne 0$ (for normalized numbers)

3

< □ > < 同 > < 回 > < 回 > < 回 >

The range of floating point numbers in F is :

$$\beta^{e_{\min}-1} \leq |y| \leq \beta^{e_{\max}} (1-\beta^{-t})$$

Note An alternative way of expressing y is

$$y = \pm \beta^{e} \left(\frac{d_{1}}{\beta} + \frac{d_{2}}{\beta^{2}} + \ldots + \frac{d_{t}}{\beta^{t}} \right) = \pm \underbrace{.d_{1}d_{2}\ldots d_{t}}_{t-\text{digit fraction}} \times \beta^{e}$$

where $0 \le d_i \le \beta - 1$ and $d_1 \ne 0$ (for normalized numbers) In this representation, d_1 is called the *most significant digit* and d_t the *the least significant digit*

< □ > < □ > < □ > < □ > < □ > < □ >

The range of floating point numbers in F is :

$$\beta^{e_{\min}-1} \leq |y| \leq \beta^{e_{\max}} (1-\beta^{-t})$$

Note An alternative way of expressing y is

$$y = \pm \beta^{e} \left(\frac{d_{1}}{\beta} + \frac{d_{2}}{\beta^{2}} + \ldots + \frac{d_{t}}{\beta^{t}} \right) = \pm \underbrace{d_{1}d_{2} \ldots d_{t}}_{t-\text{digit fraction}} \times \beta^{e}$$

where $0 \le d_i \le \beta - 1$ and $d_1 \ne 0$ (for normalized numbers) In this representation, d_1 is called the *most significant digit* and d_t the *the least significant digit*

Observation Floating points are not equally spaced. Set $\beta = 2, t = 3, e_{\min} = -1, e_{\max} = 3$

イロト 不得下 イヨト イヨト 二日