Big Data Analysis (MA60306)

Bibhas Adhikari

Spring 2022-23, IIT Kharagpur

Lecture 5
January 12, 2023

Regression models

Theorem If $\operatorname{Loss}(y, \widehat{y})=(y-\widehat{y})^{2}$ then the optimal prediction function g^{*} is equal to the conditional expectation of Y given $\mathbf{X}=\mathbf{x}$:

$$
g^{*}(\mathbf{x})=\mathbb{E}[Y \mid \mathbf{X}=\mathbf{x}]
$$

Regression models

Theorem If $\operatorname{Loss}(y, \widehat{y})=(y-\widehat{y})^{2}$ then the optimal prediction function g^{*} is equal to the conditional expectation of Y given $\mathbf{X}=\mathbf{x}$:

$$
g^{*}(\mathbf{x})=\mathbb{E}[Y \mid \mathbf{X}=\mathbf{x}]
$$

Consequence
\triangleright The conditional $\mathbf{X}=\mathbf{x}$, the random response Y can be written as

$$
Y=g^{*}(\mathbf{x})+\epsilon(\mathbf{x})
$$

where $\epsilon(\mathbf{x})$ can be thought of as a random deviation of the response from its conditional mean at \mathbf{x}.

Regression models

Theorem If $\operatorname{Loss}(y, \widehat{y})=(y-\widehat{y})^{2}$ then the optimal prediction function g^{*} is equal to the conditional expectation of Y given $\mathbf{X}=\mathbf{x}$:

$$
g^{*}(\mathbf{x})=\mathbb{E}[Y \mid \mathbf{X}=\mathbf{x}]
$$

Consequence
\triangleright The conditional $\mathbf{X}=\mathbf{x}$, the random response Y can be written as

$$
Y=g^{*}(\mathbf{x})+\epsilon(\mathbf{x})
$$

where $\epsilon(\mathbf{x})$ can be thought of as a random deviation of the response from its conditional mean at \mathbf{x}.
$\triangleright \mathbb{E}[\epsilon(\mathbf{x})]=0$

Regression models

Theorem If $\operatorname{Loss}(y, \widehat{y})=(y-\widehat{y})^{2}$ then the optimal prediction function g^{*} is equal to the conditional expectation of Y given $\mathbf{X}=\mathbf{x}$:

$$
g^{*}(\mathbf{x})=\mathbb{E}[Y \mid \mathbf{X}=\mathbf{x}]
$$

Consequence
\triangleright The conditional $\mathbf{X}=\mathbf{x}$, the random response Y can be written as

$$
Y=g^{*}(\mathbf{x})+\epsilon(\mathbf{x})
$$

where $\epsilon(\mathbf{x})$ can be thought of as a random deviation of the response from its conditional mean at \mathbf{x}.
$\triangleright \mathbb{E}[\epsilon(\mathbf{x})]=0$
$\triangleright \operatorname{Var}[\epsilon(\mathbf{x})]=\nu^{2}(\mathbf{x})$ for some function $\nu(\mathbf{x})$

Regression models

Geometry Relate it to a data set: Where x measures height and y measures age of a person. Suppose we want to write y as a function of x through the predictor function:

$$
y=g^{*}(x)+\epsilon(x)
$$

Regression models

Geometry Relate it to a data set: Where x measures height and y measures age of a person. Suppose we want to write y as a function of x through the predictor function:

$$
y=g^{*}(x)+\epsilon(x),:=\underbrace{\beta_{0}+\beta_{1} x+\epsilon(x)}_{\text {regression line }}
$$

Regression models

Geometry Relate it to a data set: Where x measures height and y measures age of a person. Suppose we want to write y as a function of x through the predictor function:

$$
y=g^{*}(x)+\epsilon(x),:=\underbrace{\beta_{0}+\beta_{1} x+\epsilon(x)}_{\text {regression line }}
$$

It may so happen that $(x, y) \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ where $\boldsymbol{\mu}=\left(\mu_{x}, \mu_{y}\right)$ and
$\boldsymbol{\Sigma}=\left[\begin{array}{cc}\sigma_{x}^{2} & \rho \sigma_{x} \sigma_{y} \\ \rho \sigma_{x} \sigma_{y} & \sigma_{y}^{2}\end{array}\right]$

Regression models

Geometry Relate it to a data set: Where x measures height and y measures age of a person. Suppose we want to write y as a function of x through the predictor function:

$$
y=g^{*}(x)+\epsilon(x),:=\underbrace{\beta_{0}+\beta_{1} x+\epsilon(x)}_{\text {regression line }}
$$

It may so happen that $(x, y) \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ where $\boldsymbol{\mu}=\left(\mu_{x}, \mu_{y}\right)$ and
$\boldsymbol{\Sigma}=\left[\begin{array}{cc}\sigma_{x}^{2} & \rho \sigma_{x} \sigma_{y} \\ \rho \sigma_{x} \sigma_{y} & \sigma_{y}^{2}\end{array}\right]$
Recall Bivariate normal distribution

$$
\begin{aligned}
& f(x, y)= \\
& \frac{1}{2 \pi \sqrt{\left(1-\rho^{2}\right)} \sigma_{x} \sigma_{y}} \times \\
& \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left[\frac{\left(x-\mu_{x}\right)^{2}}{\sigma_{x}^{2}}-2 \rho \frac{\left(x-\mu_{x}\right)\left(y-\mu_{y}\right)}{\sigma_{x} \sigma_{y}}+\frac{\left(y-\mu_{y}\right)^{2}}{\sigma_{y}^{2}}\right]\right\}
\end{aligned}
$$

where $\sigma_{x}>0, \sigma_{y}>0$, and $|\rho|<1$.

Regression model

Note that if x denotes the total marks that one student has obtained and y denotes the grade then it becomes a classification problem.

Regression model

Note that if x denotes the total marks that one student has obtained and y denotes the grade then it becomes a classification problem.
Multivariate normal distribution Let $\boldsymbol{\Sigma}$ be a positive definite $n \times n$ matrix and $\boldsymbol{\mu}$ an n dimensional vector. Then the pdf of a multivariate normal rv $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ i.e. $\mathbf{X} \sim \mathcal{N}_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ is

$$
f\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}(\boldsymbol{\Sigma})}} \exp \left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right]
$$

Regression model

Note that if x denotes the total marks that one student has obtained and y denotes the grade then it becomes a classification problem.
Multivariate normal distribution Let $\boldsymbol{\Sigma}$ be a positive definite $n \times n$ matrix and $\boldsymbol{\mu}$ an n dimensional vector. Then the pdf of a multivariate normal rv $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ i.e. $\mathbf{X} \sim \mathcal{N}_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ is

$$
f\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}(\boldsymbol{\Sigma})}} \exp \left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right]
$$

$$
\rightarrow \mathbb{E}[\mathbf{X}]=\boldsymbol{\mu}, \operatorname{Var}[\mathbf{X}]=\boldsymbol{\Sigma}=\left[\Sigma_{i j}\right]
$$

Regression model

Note that if x denotes the total marks that one student has obtained and y denotes the grade then it becomes a classification problem.
Multivariate normal distribution Let $\boldsymbol{\Sigma}$ be a positive definite $n \times n$ matrix and $\boldsymbol{\mu}$ an n dimensional vector. Then the pdf of a multivariate normal rv $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ i.e. $\mathbf{X} \sim \mathcal{N}_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ is

$$
f\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}(\boldsymbol{\Sigma})}} \exp \left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right]
$$

$$
\rightarrow \mathbb{E}[\mathbf{X}]=\boldsymbol{\mu}, \operatorname{Var}[\mathbf{X}]=\boldsymbol{\Sigma}=\left[\Sigma_{i j}\right] \text { where } \Sigma_{i j}=\mathbb{E}\left[\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)\right]
$$

Regression model

Note that if x denotes the total marks that one student has obtained and y denotes the grade then it becomes a classification problem.
Multivariate normal distribution Let $\boldsymbol{\Sigma}$ be a positive definite $n \times n$ matrix and $\boldsymbol{\mu}$ an n dimensional vector. Then the pdf of a multivariate normal rv $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ i.e. $\mathbf{X} \sim \mathcal{N}_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ is

$$
f\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}(\boldsymbol{\Sigma})}} \exp \left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right]
$$

$\rightarrow \mathbb{E}[\mathbf{X}]=\boldsymbol{\mu}, \operatorname{Var}[\mathbf{X}]=\boldsymbol{\Sigma}=\left[\Sigma_{i j}\right]$ where $\Sigma_{i j}=\mathbb{E}\left[\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)\right]$
\rightarrow Let X_{1}, \ldots, X_{n} be independent $\mathcal{N}(0,1)$ random variables. Then $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ has the density function $\mathcal{N}_{n}\left(\mathbf{0}, \mathbf{I}_{n}\right)$

Regression model

Note that if x denotes the total marks that one student has obtained and y denotes the grade then it becomes a classification problem.
Multivariate normal distribution Let $\boldsymbol{\Sigma}$ be a positive definite $n \times n$ matrix and $\boldsymbol{\mu}$ an n dimensional vector. Then the pdf of a multivariate normal rv $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ i.e. $\mathbf{X} \sim \mathcal{N}_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ is

$$
f\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}(\boldsymbol{\Sigma})}} \exp \left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right]
$$

$\rightarrow \mathbb{E}[\mathbf{X}]=\boldsymbol{\mu}, \operatorname{Var}[\mathbf{X}]=\boldsymbol{\Sigma}=\left[\Sigma_{i j}\right]$ where $\Sigma_{i j}=\mathbb{E}\left[\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)\right]$
\rightarrow Let X_{1}, \ldots, X_{n} be independent $\mathcal{N}(0,1)$ random variables. Then $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ has the density function $\mathcal{N}_{n}\left(\mathbf{0}, \mathbf{I}_{n}\right)$
\rightarrow Let $\mathbf{X} \sim \mathcal{N}_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma}), C$ be an $m \times n$ matrix of rank m, and d be an m dimensional vector. Then $C \mathbf{X}+d \sim \mathcal{N}_{m}\left(C \boldsymbol{\mu}+d, C \boldsymbol{\Sigma} C^{T}\right)$

Regression model

Note that if x denotes the total marks that one student has obtained and y denotes the grade then it becomes a classification problem.
Multivariate normal distribution Let $\boldsymbol{\Sigma}$ be a positive definite $n \times n$ matrix and $\boldsymbol{\mu}$ an n dimensional vector. Then the pdf of a multivariate normal rv $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ i.e. $\mathbf{X} \sim \mathcal{N}_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ is

$$
f\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}(\boldsymbol{\Sigma})}} \exp \left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right]
$$

$\rightarrow \mathbb{E}[\mathbf{X}]=\boldsymbol{\mu}, \operatorname{Var}[\mathbf{X}]=\boldsymbol{\Sigma}=\left[\Sigma_{i j}\right]$ where $\Sigma_{i j}=\mathbb{E}\left[\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)\right]$
\rightarrow Let X_{1}, \ldots, X_{n} be independent $\mathcal{N}(0,1)$ random variables. Then $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ has the density function $\mathcal{N}_{n}\left(\mathbf{0}, \mathbf{I}_{n}\right)$
\rightarrow Let $\mathbf{X} \sim \mathcal{N}_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma}), C$ be an $m \times n$ matrix of rank m, and d be an m dimensional vector. Then $C \mathbf{X}+d \sim \mathcal{N}_{m}\left(C \boldsymbol{\mu}+d, C \boldsymbol{\Sigma} C^{T}\right)$
\rightarrow If $\mathbf{X}=A \mathbf{Z}+\boldsymbol{\mu}$ where A is an $n \times n$ nonsingular matrix and $\mathbf{Z} \sim \mathcal{N}_{n}\left(\mathbf{0}, \mathbf{I}_{n}\right)$ then $\mathbf{X} \sim \mathcal{N}_{n}\left(\boldsymbol{\mu}, A A^{T}\right)$

Regression models

Method of least square Recall $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}(\mathbf{x})$

$$
\min _{\beta} \sum_{i} \epsilon_{i}^{2}
$$

Regression models

Method of least square Recall $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}(\mathbf{x})$

$$
\begin{gathered}
\min _{\boldsymbol{\beta}} \sum_{i} \epsilon_{i}^{2} \\
\text { i.e. } \min _{\boldsymbol{\theta} \in \mathcal{C}(\mathbf{X})=\Omega} \boldsymbol{\epsilon}^{T} \boldsymbol{\epsilon}=\|\mathbf{Y}-\boldsymbol{\theta}\|^{2}
\end{gathered}
$$

where $\boldsymbol{\theta}=\mathbf{X} \boldsymbol{\beta}$ and Ω is the column space of \mathbf{X} i.e.
$\Omega=\{\mathbf{y}: \mathbf{y}=\mathbf{X x}$ for any $\mathbf{x}\}$

Regression models

Method of least square Recall $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}(\mathbf{x})$

$$
\begin{gathered}
\min _{\boldsymbol{\beta}} \sum_{i} \epsilon_{i}^{2} \\
\text { i.e. } \min _{\boldsymbol{\theta} \in \mathcal{C}(\mathbf{X})=\Omega} \boldsymbol{\epsilon}^{T} \boldsymbol{\epsilon}=\|\mathbf{Y}-\boldsymbol{\theta}\|^{2}
\end{gathered}
$$

where $\boldsymbol{\theta}=\mathbf{X} \boldsymbol{\beta}$ and Ω is the column space of \mathbf{X} i.e.
$\Omega=\{\mathbf{y}: \mathbf{y}=\mathbf{X x}$ for any $\mathbf{x}\}$
From the geometry, what is your guess for $\boldsymbol{\theta}$ which can minimize the function?

Regression models

Method of least square Recall $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}(\mathbf{x})$

$$
\begin{gathered}
\min _{\boldsymbol{\beta}} \sum_{i} \epsilon_{i}^{2} \\
\text { i.e. } \min _{\boldsymbol{\theta} \in \mathcal{C}(\mathbf{X})=\Omega} \boldsymbol{\epsilon}^{T} \boldsymbol{\epsilon}=\|\mathbf{Y}-\boldsymbol{\theta}\|^{2}
\end{gathered}
$$

where $\boldsymbol{\theta}=\mathbf{X} \boldsymbol{\beta}$ and Ω is the column space of \mathbf{X} i.e.
$\Omega=\{\mathbf{y}: \mathbf{y}=\mathbf{X x}$ for any $\mathbf{x}\}$
From the geometry, what is your guess for $\boldsymbol{\theta}$ which can minimize the function?

Obviously, $\widehat{\boldsymbol{\theta}}=\boldsymbol{\theta}$ will minimize $\|\mathbf{Y}-\boldsymbol{\theta}\|^{2}$ if $(\mathbf{Y}-\widehat{\boldsymbol{\theta}}) \perp \Omega$

Regression models

Obviously. $\widehat{\boldsymbol{\theta}}$ can be obtained via a projection matrix P, namely $\widehat{\boldsymbol{\theta}}=P \mathbf{Y}$, where P is the orthogonal projection onto Ω i.e. $P \boldsymbol{\theta}=\boldsymbol{\theta} . P^{T}=P$ and $P^{2}=P$

Regression models

Obviously. $\widehat{\boldsymbol{\theta}}$ can be obtained via a projection matrix P, namely $\widehat{\boldsymbol{\theta}}=P \mathbf{Y}$, where P is the orthogonal projection onto Ω i.e. $P \boldsymbol{\theta}=\boldsymbol{\theta} . P^{T}=P$ and $P^{2}=P$

Then

$$
\mathbf{Y}-\boldsymbol{\theta}=(\mathbf{Y}-\widehat{\boldsymbol{\theta}})+(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta})
$$

and

$$
\begin{aligned}
(\mathbf{Y}-\widehat{\boldsymbol{\theta}})^{T}(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}) & =(\mathbf{Y}-P \mathbf{Y})^{T} P(\mathbf{Y}-\boldsymbol{\theta}) \\
& =\mathbf{Y}^{T}\left(I_{n}-P\right) P(\mathbf{Y}-\boldsymbol{\theta}) \\
& =0 .
\end{aligned}
$$

Regression models

Obviously. $\widehat{\boldsymbol{\theta}}$ can be obtained via a projection matrix P, namely $\widehat{\boldsymbol{\theta}}=P \mathbf{Y}$, where P is the orthogonal projection onto Ω i.e. $P \boldsymbol{\theta}=\boldsymbol{\theta} . P^{T}=P$ and $P^{2}=P$

Then

$$
\mathbf{Y}-\boldsymbol{\theta}=(\mathbf{Y}-\widehat{\boldsymbol{\theta}})+(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta})
$$

and

$$
\begin{aligned}
(\mathbf{Y}-\widehat{\boldsymbol{\theta}})^{T}(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}) & =(\mathbf{Y}-P \mathbf{Y})^{T} P(\mathbf{Y}-\boldsymbol{\theta}) \\
& =\mathbf{Y}^{T}\left(I_{n}-P\right) P(\mathbf{Y}-\boldsymbol{\theta}) \\
& =0 .
\end{aligned}
$$

Thus

$$
\|\mathbf{Y}-\boldsymbol{\theta}\|^{2}=\|Y-\widehat{\boldsymbol{\theta}}\|^{2}+\|\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}\|^{2} \geq\|\mathbf{Y}-\widehat{\boldsymbol{\theta}}\|^{2},
$$

with equality iff $\boldsymbol{\theta}=\widehat{\boldsymbol{\theta}}$.

Regression models

Now since $\mathbf{Y}-\widehat{\boldsymbol{\theta}}$ is perpendicular to Ω,

$$
\mathbf{X}^{\top}(\mathbf{Y}-\widehat{\boldsymbol{\theta}})=0 \text { i.e. } \mathbf{X}^{\top} \widehat{\boldsymbol{\theta}}=\mathbf{X}^{\top} \mathbf{Y}
$$

Regression models

Now since $\mathbf{Y}-\widehat{\boldsymbol{\theta}}$ is perpendicular to Ω,

$$
\mathbf{X}^{\top}(\mathbf{Y}-\widehat{\boldsymbol{\theta}})=0 \text { i.e. } \mathbf{X}^{\top} \widehat{\boldsymbol{\theta}}=\mathbf{X}^{\top} \mathbf{Y}
$$

Note that $\widehat{\boldsymbol{\theta}}$ is uniquely determined!!

Regression models

Now since $\mathbf{Y}-\widehat{\boldsymbol{\theta}}$ is perpendicular to Ω,

$$
\mathbf{X}^{\top}(\mathbf{Y}-\widehat{\boldsymbol{\theta}})=0 \text { i.e. } \mathbf{X}^{\top} \widehat{\boldsymbol{\theta}}=\mathbf{X}^{\top} \mathbf{Y}
$$

Note that $\widehat{\boldsymbol{\theta}}$ is uniquely determined!!
If columns of \mathbf{X} are linearly independent then there exists a unique $\widehat{\boldsymbol{\beta}}$ such that $\widehat{\boldsymbol{\theta}}=\mathbf{X} \widehat{\boldsymbol{\beta}}$.

Regression models

Now since $\mathbf{Y}-\widehat{\boldsymbol{\theta}}$ is perpendicular to Ω,

$$
\mathbf{X}^{T}(\mathbf{Y}-\widehat{\boldsymbol{\theta}})=0 \text { i.e. } \mathbf{X}^{T} \widehat{\boldsymbol{\theta}}=\mathbf{X}^{T} \mathbf{Y}
$$

Note that $\widehat{\boldsymbol{\theta}}$ is uniquely determined!!
If columns of \mathbf{X} are linearly independent then there exists a unique $\widehat{\boldsymbol{\beta}}$ such that $\widehat{\boldsymbol{\theta}}=\mathbf{X} \widehat{\boldsymbol{\beta}}$.
Hence

$$
\mathbf{X}^{T} \mathbf{X} \widehat{\boldsymbol{\beta}}=\mathbf{X}^{T} \mathbf{y}
$$

which is known as the normal equation.

Regression models

Now since $\mathbf{Y}-\widehat{\boldsymbol{\theta}}$ is perpendicular to Ω,

$$
\mathbf{X}^{\top}(\mathbf{Y}-\widehat{\boldsymbol{\theta}})=0 \text { i.e. } \mathbf{X}^{\top} \widehat{\boldsymbol{\theta}}=\mathbf{X}^{\top} \mathbf{Y}
$$

Note that $\widehat{\boldsymbol{\theta}}$ is uniquely determined!!
If columns of \mathbf{X} are linearly independent then there exists a unique $\widehat{\boldsymbol{\beta}}$ such that $\widehat{\boldsymbol{\theta}}=\mathbf{X} \widehat{\boldsymbol{\beta}}$.

Hence

$$
\mathbf{X}^{T} \mathbf{X} \widehat{\boldsymbol{\beta}}=\mathbf{X}^{T} \mathbf{y}
$$

which is known as the normal equation. Thus (why)

$$
\widehat{\boldsymbol{\beta}}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{Y}
$$

Regression models

Now since $\mathbf{Y}-\widehat{\boldsymbol{\theta}}$ is perpendicular to Ω,

$$
\mathbf{X}^{T}(\mathbf{Y}-\widehat{\boldsymbol{\theta}})=0 \text { i.e. } \mathbf{X}^{T} \widehat{\boldsymbol{\theta}}=\mathbf{X}^{T} \mathbf{Y}
$$

Note that $\widehat{\boldsymbol{\theta}}$ is uniquely determined!!
If columns of \mathbf{X} are linearly independent then there exists a unique $\widehat{\boldsymbol{\beta}}$ such that $\widehat{\boldsymbol{\theta}}=\mathbf{X} \widehat{\boldsymbol{\beta}}$.
Hence

$$
\mathbf{X}^{T} \mathbf{X} \widehat{\boldsymbol{\beta}}=\mathbf{X}^{\top} \mathbf{y}
$$

which is known as the normal equation. Thus (why)

$$
\widehat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{Y}
$$

$\widehat{\boldsymbol{\beta}}$ is called the least squares estimate of $\boldsymbol{\beta}$. However, finding inverse is computationally not stable!!

Computing with data

Question What is a stable algorithm?

Computing with data

Question What is a stable algorithm?
Floating point number system A floating point number system $F \subset \mathbb{R}$ is a set whose elements have the form

$$
y= \pm m \times \beta^{e-t}
$$

the base β (sometimes called the radix)

Computing with data

Question What is a stable algorithm?
Floating point number system A floating point number system $F \subset \mathbb{R}$ is a set whose elements have the form

$$
y= \pm m \times \beta^{e-t}
$$

the base β (sometimes called the radix)
the precision t

Computing with data

Question What is a stable algorithm?
Floating point number system A floating point number system $F \subset \mathbb{R}$ is a set whose elements have the form

$$
y= \pm m \times \beta^{e-t}
$$

the base β (sometimes called the radix)
the precision t
the exponent range $e_{\min } \leq e \leq e_{\max }$

Computing with data

Question What is a stable algorithm?
Floating point number system A floating point number system $F \subset \mathbb{R}$ is a set whose elements have the form

$$
y= \pm m \times \beta^{e-t}
$$

the base β (sometimes called the radix)
the precision t
the exponent range $e_{\min } \leq e \leq e_{\text {max }}$
the significand (sometimes called mantissa) is an integer satisfying $0 \leq m \leq \beta^{t}-1$

Computing with data

Question What is a stable algorithm?
Floating point number system A floating point number system $F \subset \mathbb{R}$ is a set whose elements have the form

$$
y= \pm m \times \beta^{e-t}
$$

the base β (sometimes called the radix)
the precision t
the exponent range $e_{\min } \leq e \leq e_{\text {max }}$
the significand (sometimes called mantissa) is an integer satisfying $0 \leq m \leq \beta^{t}-1$
to ensure a unique representation for each nonzero $y \in F$, it is assumed that $m \geq \beta^{t-1}$ (normalized) if $y \neq 0$ (0 is a special case)

Computing with data

Question What is a stable algorithm?
Floating point number system A floating point number system $F \subset \mathbb{R}$ is a set whose elements have the form

$$
y= \pm m \times \beta^{e-t}
$$

the base β (sometimes called the radix)
the precision t
the exponent range $e_{\min } \leq e \leq e_{\text {max }}$
the significand (sometimes called mantissa) is an integer satisfying $0 \leq m \leq \beta^{t}-1$
to ensure a unique representation for each nonzero $y \in F$, it is assumed that $m \geq \beta^{t-1}$ (normalized) if $y \neq 0$ (0 is a special case)

Computing with data

The range of floating point numbers in F is :

$$
\beta^{e_{\min }-1} \leq|y| \leq \beta^{e_{\max }}\left(1-\beta^{-t}\right)
$$

Computing with data

The range of floating point numbers in F is :

$$
\beta^{e_{\min }-1} \leq|y| \leq \beta^{e_{\max }}\left(1-\beta^{-t}\right)
$$

Note An alternative way of expressing y is

$$
y= \pm \beta^{e}\left(\frac{d_{1}}{\beta}+\frac{d_{2}}{\beta^{2}}+\ldots+\frac{d_{t}}{\beta^{t}}\right)= \pm \underbrace{d_{1} d_{2} \ldots d_{t}}_{t \text {-digit fraction }} \times \beta^{e}
$$

where $0 \leq d_{i} \leq \beta-1$ and $d_{1} \neq 0$ (for normalized numbers)

Computing with data

The range of floating point numbers in F is:

$$
\beta^{e_{\min }-1} \leq|y| \leq \beta^{e_{\max }}\left(1-\beta^{-t}\right)
$$

Note An alternative way of expressing y is

$$
y= \pm \beta^{e}\left(\frac{d_{1}}{\beta}+\frac{d_{2}}{\beta^{2}}+\ldots+\frac{d_{t}}{\beta^{t}}\right)= \pm \underbrace{._{1} d_{2} \ldots d_{t}}_{t \text {-digit fraction }} \times \beta^{e}
$$

where $0 \leq d_{i} \leq \beta-1$ and $d_{1} \neq 0$ (for normalized numbers) In this representation, d_{1} is called the most significant digit and d_{t} the the least significant digit

Computing with data

The range of floating point numbers in F is :

$$
\beta^{e_{\min }-1} \leq|y| \leq \beta^{e_{\max }}\left(1-\beta^{-t}\right)
$$

Note An alternative way of expressing y is

$$
y= \pm \beta^{e}\left(\frac{d_{1}}{\beta}+\frac{d_{2}}{\beta^{2}}+\ldots+\frac{d_{t}}{\beta^{t}}\right)= \pm \underbrace{. d_{1} d_{2} \ldots d_{t}}_{t \text {-digit fraction }} \times \beta^{e}
$$

where $0 \leq d_{i} \leq \beta-1$ and $d_{1} \neq 0$ (for normalized numbers) In this representation, d_{1} is called the most significant digit and d_{t} the the least significant digit

Observation Floating points are not equally spaced. Set $\beta=2, t=3$, $e_{\text {min }}=-1, e_{\text {max }}=3$

