Big Data Analysis (MA60306)

Bibhas Adhikari

Spring 2022-23, IIT Kharagpur

Lecture 4 January 11, 2023

Bibhas Adhikari (Spring 2022-23, IIT Kharag

Big Data Analysis

Lecture 4 January 11, 2023 1 / 11

3

Plots for two quantitative variables

Example of scatterplot of height and weight data of the nutri data

Plots for two quantitative variables

Example of scatterplot of height and weight data of the *nutri* data Example of scatterplot of the *Advertising* data

Statistical Learning Mathematical analysis of the data - interpret the model and quantify the uncertainty in the data

3

Statistical Learning Mathematical analysis of the data - interpret the model and quantify the uncertainty in the data

Machine Learning - the emphasis is on making predictions using large-scale data

3

Statistical Learning Mathematical analysis of the data - interpret the model and quantify the uncertainty in the data

Machine Learning - the emphasis is on making predictions using large-scale data

Modeling data

▷ accurately predict some future quantity of interest, given some observed data - prediction - exp. direct-marketing campaign

Statistical Learning Mathematical analysis of the data - interpret the model and quantify the uncertainty in the data

Machine Learning - the emphasis is on making predictions using large-scale data

Modeling data

- accurately predict some future quantity of interest, given some observed data - prediction - exp. direct-marketing campaign
- $\triangleright\,$ discover patterns in the data inference exp. advertising

Statistical Learning Mathematical analysis of the data - interpret the model and quantify the uncertainty in the data

Machine Learning - the emphasis is on making predictions using large-scale data

Modeling data

- accurately predict some future quantity of interest, given some observed data - prediction - exp. direct-marketing campaign
- $\triangleright\,$ discover patterns in the data inference exp. advertising
- ▷ both prediction and inference exp. real estate data

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Statistical Learning Mathematical analysis of the data - interpret the model and quantify the uncertainty in the data

Machine Learning - the emphasis is on making predictions using large-scale data

Modeling data

- accurately predict some future quantity of interest, given some observed data - prediction - exp. direct-marketing campaign
- ▷ discover patterns in the data inference exp. advertising
- $\triangleright\,$ both prediction and inference exp. real estate data

Tools:

 Functional approximation - how one data variable depends on another data variable

イロト 不得 トイラト イラト 一日

Statistical Learning Mathematical analysis of the data - interpret the model and quantify the uncertainty in the data

Machine Learning - the emphasis is on making predictions using large-scale data

Modeling data

- accurately predict some future quantity of interest, given some observed data - prediction - exp. direct-marketing campaign
- ▷ discover patterns in the data inference exp. advertising
- $\triangleright\,$ both prediction and inference exp. real estate data

Tools:

- Functional approximation how one data variable depends on another data variable
- > Optimization best possible model in a class of models

Prediction function g: Let x be a feature/input vector. Then one of the fundamental problems in machine learning is to predict an output response variable y. The prediction for y is based on a function g(x) such that g encompasses all the information about the relationship between the variables x and y. - exp. digitized signature

Prediction function g: Let x be a feature/input vector. Then one of the fundamental problems in machine learning is to predict an output response variable y. The prediction for y is based on a function g(x) such that g encompasses all the information about the relationship between the variables x and y. - exp. digitized signature

Regression In regression problems, the response variable y can take any real value

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Prediction function g: Let x be a feature/input vector. Then one of the fundamental problems in machine learning is to predict an output response variable y. The prediction for y is based on a function g(x) such that g encompasses all the information about the relationship between the variables x and y. - exp. digitized signature

Regression In regression problems, the response variable y can take any real value

Classification If y lies in a finite set then predicting $y \in \{0, ..., k-1\}$ is same as classifying the input into one of the k categories

イロト 不得 トイラト イラト 一日

Prediction function g: Let x be a feature/input vector. Then one of the fundamental problems in machine learning is to predict an output response variable y. The prediction for y is based on a function g(x) such that g encompasses all the information about the relationship between the variables x and y. - exp. digitized signature

Regression In regression problems, the response variable y can take any real value

Classification If y lies in a finite set then predicting $y \in \{0, ..., k-1\}$ is same as classifying the input into one of the k categories

Loss function Let \hat{y} denote a prediction corresponding to a given response. Then we do we measure the accuracy of the prediction? We write $Loss(y, \hat{y})$ to denote the measure

▷ regression:
$$Loss(y, \hat{y}) = (y - \hat{y})^2$$

 $\triangleright \text{ classification: } Loss(y, \widehat{y}) = \mathbb{1}\{y \neq \widehat{y}\}$

$$\triangleright$$
 in general, $Loss(y, \widehat{y}) = ||y - \widehat{y}||^2$

Supervised learning technique

The word 'regression' - In 1889, Francis Galton observed that the heights of the adult offsprings have more average heights/intelligence than their parents - used the term 'regression' to indicate "return to mediocrity"

Supervised learning technique

The word 'regression' - In 1889, Francis Galton observed that the heights of the adult offsprings have more average heights/intelligence than their parents - used the term 'regression' to indicate "return to mediocrity"

Let $\mathbf{x} = [x_1, \dots, x_p]^T$ be an input with p features and we need to predict a quantitative response/output y via a function $g(\mathbf{x})$, x_i could be discrete or continuous

Supervised learning technique

The word 'regression' - In 1889, Francis Galton observed that the heights of the adult offsprings have more average heights/intelligence than their parents - used the term 'regression' to indicate "return to mediocrity"

Let $\mathbf{x} = [x_1, \dots, x_p]^T$ be an input with p features and we need to predict a quantitative response/output y via a function $g(\mathbf{x})$, x_i could be discrete or continuous

Example

- predict birth weight of a baby from the weight of the mother, her socio-economic status, her smoking habits (sometimes known as explanatory variables)
- Consider the advertising data for advertising budgets for the product in each of 200 markets for three different media: TV, radio, and newspaper. Can we develop a model to predict sales based on the three media budgets?

イロト 不得 トイヨト イヨト 二日

Defining it as a statistical problem

 $\triangleright\,$ It is unlikely that the prediction function g will make accurate prediction

э

Defining it as a statistical problem

- $\triangleright\,$ It is unlikely that the prediction function g will make accurate prediction
- \triangleright in reality, even for the same input **x**, the output y may be different

э

Defining it as a statistical problem

- $\triangleright\,$ It is unlikely that the prediction function g will make accurate prediction
- \triangleright in reality, even for the same input **x**, the output y may be different
- ▷ we adopt a probabilistic approach: we assume that each pair (\mathbf{x}, y) is an instance of a random variable (\mathbf{X}, Y) that has the joint pdf $f(\mathbf{x}, y)$

Defining it as a statistical problem

- $\triangleright\,$ It is unlikely that the prediction function g will make accurate prediction
- \triangleright in reality, even for the same input **x**, the output y may be different
- ▷ we adopt a probabilistic approach: we assume that each pair (\mathbf{x}, y) is an instance of a random variable (\mathbf{X}, Y) that has the joint pdf $f(\mathbf{x}, y)$
- ▷ Then the performance of the prediction can be measured via the expected loss, known as *risk*:

$$I(g) = \mathbb{E}[\text{Loss}(Y, g(\mathbf{X}))]$$

Defining it as a statistical problem

- $\triangleright\,$ It is unlikely that the prediction function g will make accurate prediction
- $\triangleright\,$ in reality, even for the same input ${\bf x},$ the output y may be different
- ▷ we adopt a probabilistic approach: we assume that each pair (\mathbf{x}, y) is an instance of a random variable (\mathbf{X}, Y) that has the joint pdf $f(\mathbf{x}, y)$
- ▷ Then the performance of the prediction can be measured via the expected loss, known as *risk*:

$$I(g) = \mathbb{E}[\text{Loss}(Y, g(\mathbf{X}))]$$

▷ In the classification case, the risk equals the probability of incorrect classification:

$$I(g) = \mathbb{P}[Y \neq g(\mathbf{X})]$$

Defining it as a statistical problem

- $\triangleright\,$ It is unlikely that the prediction function g will make accurate prediction
- \triangleright in reality, even for the same input **x**, the output y may be different
- \triangleright we adopt a probabilistic approach: we assume that each pair (\mathbf{x}, y) is an instance of a random variable (\mathbf{X}, Y) that has the joint pdf $f(\mathbf{x}, y)$
- ▷ Then the performance of the prediction can be measured via the expected loss, known as *risk*:

$$I(g) = \mathbb{E}[\text{Loss}(Y, g(\mathbf{X}))]$$

▷ In the classification case, the risk equals the probability of incorrect classification:

$$l(g) = \mathbb{P}[Y \neq g(\mathbf{X})]$$

In this case, g is called the classifier

Image: A matrix

Given a rv (\mathbf{X}, Y) and a loss function, in principle, we determine

$$g^* = \arg\min_g \mathbb{E}[\operatorname{Loss}(Y, g(\mathbf{X}))]$$

which yields the smallest risk $I^* = I(g^*)$

3

Given a rv (\mathbf{X}, Y) and a loss function, in principle, we determine

$$g^* = rg\min_g \mathbb{E}[\mathsf{Loss}(Y, g(\mathsf{X}))]$$

which yields the smallest risk $I^* = I(g^*)$

Theorem If $Loss(y, \hat{y}) = (y - \hat{y})^2$ then the optimal prediction function g^* is equal to the conditional expectation of Y given $\mathbf{X} = \mathbf{x}$:

$$g^*(\mathsf{x}) = \mathbb{E}[Y|\mathsf{X} = \mathsf{x}]$$

Given a rv (\mathbf{X}, Y) and a loss function, in principle, we determine

$$g^* = rg \min_g \mathbb{E}[\mathsf{Loss}(Y, g(\mathsf{X}))]$$

which yields the smallest risk $I^* = I(g^*)$

Theorem If $Loss(y, \hat{y}) = (y - \hat{y})^2$ then the optimal prediction function g^* is equal to the conditional expectation of Y given $\mathbf{X} = \mathbf{x}$:

$$g^*(\mathsf{x}) = \mathbb{E}[Y|\mathsf{X} = \mathsf{x}]$$

Proof

$$\mathbb{E}[(Y-g(\mathbf{X}))^2] = \mathbb{E}[(Y-g^*(\mathbf{X})+g^*(\mathbf{X})-g(\mathbf{X}))^2]$$

・ 何 ト ・ ヨ ト ・ ヨ ト

Given a rv (\mathbf{X}, Y) and a loss function, in principle, we determine

$$g^* = rg\min_g \mathbb{E}[\mathsf{Loss}(Y, g(\mathsf{X}))]$$

which yields the smallest risk $I^* = I(g^*)$

Theorem If $Loss(y, \hat{y}) = (y - \hat{y})^2$ then the optimal prediction function g^* is equal to the conditional expectation of Y given $\mathbf{X} = \mathbf{x}$:

$$g^*(\mathsf{x}) = \mathbb{E}[Y|\mathsf{X} = \mathsf{x}]$$

Proof

$$\begin{split} \mathbb{E}[(Y - g(\mathbf{X}))^2] &= \mathbb{E}[(Y - g^*(\mathbf{X}) + g^*(\mathbf{X}) - g(\mathbf{X}))^2] \\ &= \mathbb{E}[(Y - g^*(\mathbf{X}))^2] + 2\mathbb{E}[(Y - g^*(\mathbf{X}))(g^*(\mathbf{X}) - g(\mathbf{X}))] \\ &+ \mathbb{E}[(g^*(\mathbf{X}) - g(\mathbf{X}))^2] \end{split}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Given a rv (\mathbf{X}, Y) and a loss function, in principle, we determine

$$g^* = rg\min_g \mathbb{E}[\mathsf{Loss}(Y, g(\mathsf{X}))]$$

which yields the smallest risk $I^* = I(g^*)$

Theorem If $Loss(y, \hat{y}) = (y - \hat{y})^2$ then the optimal prediction function g^* is equal to the conditional expectation of Y given $\mathbf{X} = \mathbf{x}$:

$$g^*(\mathsf{x}) = \mathbb{E}[Y|\mathsf{X} = \mathsf{x}]$$

Proof

$$\begin{split} \mathbb{E}[(Y - g(\mathbf{X}))^2] &= \mathbb{E}[(Y - g^*(\mathbf{X}) + g^*(\mathbf{X}) - g(\mathbf{X}))^2] \\ &= \mathbb{E}[(Y - g^*(\mathbf{X}))^2] + 2\mathbb{E}[(Y - g^*(\mathbf{X}))(g^*(\mathbf{X}) - g(\mathbf{X}))] \\ &+ \mathbb{E}[(g^*(\mathbf{X}) - g(\mathbf{X}))^2] \\ &\geq \mathbb{E}[(Y - g^*(\mathbf{X}))^2] + 2\mathbb{E}[(Y - g^*(\mathbf{X}))(g^*(\mathbf{X}) - g(\mathbf{X}))] \end{split}$$

・ 何 ト ・ ヨ ト ・ ヨ ト

Given a rv (\mathbf{X}, Y) and a loss function, in principle, we determine

$$g^* = rg\min_g \mathbb{E}[\mathsf{Loss}(Y, g(\mathsf{X}))]$$

which yields the smallest risk $I^* = I(g^*)$

Theorem If $Loss(y, \hat{y}) = (y - \hat{y})^2$ then the optimal prediction function g^* is equal to the conditional expectation of Y given $\mathbf{X} = \mathbf{x}$:

$$g^*(\mathsf{x}) = \mathbb{E}[Y|\mathsf{X} = \mathsf{x}]$$

Proof

$$\begin{split} & \mathbb{E}[(Y - g(\mathbf{X}))^2] = \mathbb{E}[(Y - g^*(\mathbf{X}) + g^*(\mathbf{X}) - g(\mathbf{X}))^2] \\ &= \mathbb{E}[(Y - g^*(\mathbf{X}))^2] + 2\mathbb{E}[(Y - g^*(\mathbf{X}))(g^*(\mathbf{X}) - g(\mathbf{X}))] \\ &+ \mathbb{E}[(g^*(\mathbf{X}) - g(\mathbf{X}))^2] \\ &\geq \mathbb{E}[(Y - g^*(\mathbf{X}))^2] + 2\mathbb{E}[(Y - g^*(\mathbf{X}))(g^*(\mathbf{X}) - g(\mathbf{X}))] \\ &= \mathbb{E}[(Y - g^*(\mathbf{X}))^2] + 2\mathbb{E}\{(g^*(\mathbf{X}) - g(\mathbf{X}))\mathbb{E}[Y - g^*(\mathbf{X})|\mathbf{X}]\} \end{split}$$

7/11

Now

$$\mathbb{E}[Y - g^*(\mathbf{X})|\mathbf{X}] = 0$$

and hence

$$\mathbb{E}[(Y - g(\mathbf{X}))^2] \geq \mathbb{E}[(Y - g^*(\mathbf{X}))^2]$$

which implies g^* yields the smallest squared-error.

3

Now

$$\mathbb{E}[Y - g^*(\mathbf{X}) | \mathbf{X}] = 0$$

and hence

$$\mathbb{E}[(Y - g(\mathbf{X}))^2] \geq \mathbb{E}[(Y - g^*(\mathbf{X}))^2]$$

which implies g^* yields the smallest squared-error.

Consequence

 \triangleright The conditional **X** = **x**, the random response *Y* can be written as

$$Y = g^*(\mathbf{x}) + \epsilon(\mathbf{x})$$

where $\epsilon(\mathbf{x})$ can be thought of as a random deviation of the response from its conditional mean at \mathbf{x} .

Now

$$\mathbb{E}[Y - g^*(\mathbf{X}) | \mathbf{X}] = 0$$

and hence

$$\mathbb{E}[(Y - g(\mathbf{X}))^2] \geq \mathbb{E}[(Y - g^*(\mathbf{X}))^2]$$

which implies g^* yields the smallest squared-error.

Consequence

 \triangleright The conditional **X** = **x**, the random response Y can be written as

$$Y = g^*(\mathbf{x}) + \epsilon(\mathbf{x})$$

where $\epsilon(\mathbf{x})$ can be thought of as a random deviation of the response from its conditional mean at \mathbf{x} .

 $\triangleright \ \mathbb{E}[\epsilon(\mathbf{x})] = \mathbf{0}$

Now

$$\mathbb{E}[Y-g^*(\mathbf{X})|\mathbf{X}]=0$$

and hence

$$\mathbb{E}[(Y - g(\mathbf{X}))^2] \geq \mathbb{E}[(Y - g^*(\mathbf{X}))^2]$$

which implies g^* yields the smallest squared-error.

Consequence

 \triangleright The conditional **X** = **x**, the random response Y can be written as

$$Y = g^*(\mathbf{x}) + \epsilon(\mathbf{x})$$

where $\epsilon(\mathbf{x})$ can be thought of as a random deviation of the response from its conditional mean at \mathbf{x} .

$$\label{eq:expansion} \begin{array}{l} \triangleright \ \mathbb{E}[\epsilon(\mathbf{x})] = \mathbf{0} \\ \ \triangleright \ \mathbb{V}\mathrm{ar}[\epsilon(\mathbf{x})] = \nu^2(\mathbf{x}) \mbox{ for some function } \nu(\mathbf{x}) \end{array}$$

Learning

 \triangleright The optimal prediction function g^* depends on the joint distribution of (\mathbf{X}, Y) , which is not available in practice

э

Learning

- \triangleright The optimal prediction function g^* depends on the joint distribution of (\mathbf{X}, Y) , which is not available in practice
- \triangleright available : finite number of (usually) independent realizations from the joint density $f(\mathbf{x}, y)$

Learning

- \triangleright The optimal prediction function g^* depends on the joint distribution of (\mathbf{X}, Y) , which is not available in practice
- \triangleright available : finite number of (usually) independent realizations from the joint density $f(\mathbf{x}, y)$
- ▷ Let $\mathcal{T} = \{(\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n)\}$ be a sample, and call it the *training* set with *n* examples

A B A A B A

Learning

- \triangleright The optimal prediction function g^* depends on the joint distribution of (\mathbf{X}, Y) , which is not available in practice
- \triangleright available : finite number of (usually) independent realizations from the joint density $f(\mathbf{x}, y)$
- ▷ Let $\mathcal{T} = \{(\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n)\}$ be a sample, and call it the *training* set with *n* examples
- \triangleright a given sample point: $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$

Learning

- \triangleright The optimal prediction function g^* depends on the joint distribution of (\mathbf{X}, Y) , which is not available in practice
- \triangleright available : finite number of (usually) independent realizations from the joint density $f(\mathbf{x}, y)$
- ▷ Let $\mathcal{T} = \{(\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n)\}$ be a sample, and call it the *training* set with *n* examples
- \triangleright a given sample point: $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$
- \triangleright Goal: 'learn' the unknown function g^* using the n examples from the training set ${\cal T}$

- 3

Learning

- \triangleright The optimal prediction function g^* depends on the joint distribution of (\mathbf{X}, Y) , which is not available in practice
- \triangleright available : finite number of (usually) independent realizations from the joint density $f(\mathbf{x}, y)$
- ▷ Let $\mathcal{T} = \{(\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n)\}$ be a sample, and call it the *training* set with *n* examples
- \triangleright a given sample point: $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$
- \triangleright Goal: 'learn' the unknown function g^* using the n examples from the training set ${\cal T}$
- $\triangleright\,$ Denote $g_{\mathcal{T}}$ as an approximation for g^* that can be constructed from \mathcal{T}

イロト 不得 トイラト イラト 一日

Learning

- \triangleright The optimal prediction function g^* depends on the joint distribution of (\mathbf{X}, Y) , which is not available in practice
- \triangleright available : finite number of (usually) independent realizations from the joint density $f(\mathbf{x}, y)$
- ▷ Let $\mathcal{T} = \{(\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n)\}$ be a sample, and call it the *training* set with *n* examples
- \triangleright a given sample point: $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$
- \triangleright Goal: 'learn' the unknown function g^* using the n examples from the training set ${\mathcal T}$
- \triangleright Denote g_T as an approximation for g^* that can be constructed from TObviously, g_T is a random function and a particular outcome is g_τ

Linear regression model The response Y depends on a *d*-dimensional explanatory vector $\mathbf{x} = [x_1, \dots, x_d]^T$ via the linear relationship

$$Y = \beta_0 + \beta_1 x_1 + \ldots + \beta_d x_d + \epsilon = \boldsymbol{\beta}^T \mathbf{x} + \epsilon = \mathbf{x}^T \boldsymbol{\beta} + \epsilon$$

3

Linear regression model The response Y depends on a *d*-dimensional explanatory vector $\mathbf{x} = [x_1, \dots, x_d]^T$ via the linear relationship

$$Y = \beta_0 + \beta_1 x_1 + \ldots + \beta_d x_d + \epsilon = \boldsymbol{\beta}^T \mathbf{x} + \epsilon = \mathbf{x}^T \boldsymbol{\beta} + \epsilon := g(\mathbf{x}) + \epsilon,$$

where $\mathbb{E}[\epsilon] = 0$ and $\mathbb{V}ar[\epsilon] = \sigma^2$.

- 3

Linear regression model The response Y depends on a *d*-dimensional explanatory vector $\mathbf{x} = [x_1, \dots, x_d]^T$ via the linear relationship

$$Y = \beta_0 + \beta_1 x_1 + \ldots + \beta_d x_d + \epsilon = \boldsymbol{\beta}^T \mathbf{x} + \epsilon = \mathbf{x}^T \boldsymbol{\beta} + \epsilon := g(\mathbf{x}) + \epsilon,$$

where $\mathbb{E}[\epsilon] = 0$ and $\mathbb{V}ar[\epsilon] = \sigma^2$.

The model for a training set $\mathcal{T} = \{(\mathbf{x}_1, Y_1), \dots, (\mathbf{x}_n, Y_n)\}$ is given by

$$\mathbf{Y} = \mathbf{X}oldsymbol{eta} + oldsymbol{\epsilon}$$

where $\boldsymbol{\epsilon} = [\epsilon_1, \dots, \epsilon_n]^T$ is a vector of iid copies of ϵ , and **X** is the *model* matrix or regression matrix given by

$$\mathbf{X} = \begin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1d} \\ 1 & x_{21} & x_{22} & \dots & x_{2d} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{nd} \end{bmatrix} = \begin{bmatrix} 1 & \mathbf{x}_1^T \\ 1 & \mathbf{x}_2^T \\ \vdots & \vdots \\ 1 & \mathbf{x}_n^T \end{bmatrix}$$

▷ In most cases x_{ij} s are generally chosen so that the columns of **X** are linearly independent i.e rank of **X** is d + 1

3

(日) (四) (日) (日) (日)

- \triangleright In most cases x_{ij} s are generally chosen so that the columns of **X** are linearly independent i.e rank of **X** is d + 1
- ▷ However, in some experimental design situations $x_{ij} \in \{0, 1\}$ and columns of **X** are linearly dependent, and **X** is called the *design matrix*

A B A A B A

- ▷ In most cases x_{ij} s are generally chosen so that the columns of **X** are linearly independent i.e rank of **X** is d + 1
- ▷ However, in some experimental design situations $x_{ij} \in \{0, 1\}$ and columns of **X** are linearly dependent, and **X** is called the *design matrix*
- \triangleright Note that \mathbf{x}_j are known and called the explanatory variable and Y as the response variable

・ 同 ト ・ ヨ ト ・ ヨ ト

- ▷ In most cases x_{ij} s are generally chosen so that the columns of **X** are linearly independent i.e rank of **X** is d + 1
- ▷ However, in some experimental design situations $x_{ij} \in \{0, 1\}$ and columns of **X** are linearly dependent, and **X** is called the *design matrix*
- \triangleright Note that \mathbf{x}_j are known and called the explanatory variable and Y as the response variable

Question How do we estimate β ?

<日

<</p>

- ▷ In most cases x_{ij} s are generally chosen so that the columns of **X** are linearly independent i.e rank of **X** is d + 1
- ▷ However, in some experimental design situations $x_{ij} \in \{0, 1\}$ and columns of **X** are linearly dependent, and **X** is called the *design matrix*
- \triangleright Note that \mathbf{x}_j are known and called the explanatory variable and Y as the response variable

Question How do we estimate β ?

Note that the first column of X need not be 1.

<日

<</p>

- ▷ In most cases x_{ij} s are generally chosen so that the columns of **X** are linearly independent i.e rank of **X** is d + 1
- ▷ However, in some experimental design situations $x_{ij} \in \{0, 1\}$ and columns of **X** are linearly dependent, and **X** is called the *design matrix*
- \triangleright Note that \mathbf{x}_j are known and called the explanatory variable and Y as the response variable

Question How do we estimate β ?

Note that the first column of X need not be 1.

 $\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} x_{10} & x_{11} & x_{12} & \dots & x_{1,d-1} \\ x_{20} & x_{21} & x_{22} & \dots & x_{2,d-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{n0} & x_{n1} & x_{n2} & \dots & x_{n,d-1} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{d-1} \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix}$