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Statistical learning of data

Plots for two quantitative variables
Example of scatterplot of height and weight data of the nutri data

Example of scatterplot of the Advertising data
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Statistical learning of data

Statistical Learning Mathematical analysis of the data - interpret the
model and quantify the uncertainty in the data

Machine Learning - the emphasis is on making predictions using large-scale
data

Modeling data

▷ accurately predict some future quantity of interest, given some
observed data - prediction - exp. direct-marketing campaign

▷ discover patterns in the data - inference - exp. advertising

▷ both prediction and inference - exp. real estate data

Tools:

▷ Functional approximation - how one data variable depends on another
data variable

▷ Optimization - best possible model in a class of models
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Statistical learning
Prediction function g : Let x be a feature/input vector. Then one of the
fundamental problems in machine learning is to predict an output response
variable y . The prediction for y is based on a function g(x) such that g
encompasses all the information about the relationship between the
variables x and y . - exp. digitized signature

Regression In regression problems, the response variable y can take any
real value

Classification If y lies in a finite set then predicting y ∈ {0, . . . , k − 1} is
same as classifying the input into one of the k categories

Loss function Let ŷ denote a prediction corresponding to a given response.
Then we do we measure the accuracy of the prediction?
We write Loss(y , ŷ) to denote the measure

▷ regression: Loss(y , ŷ) = (y − ŷ)2

▷ classification: Loss(y , ŷ) = 1{y ̸= ŷ}
▷ in general, Loss(y , ŷ) = ∥y − ŷ∥2
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Supervised learning technique

The word ‘regression’ - In 1889, Francis Galton observed that the heights
of the adult offsprings have more average heights/intelligence than their
parents - used the term ‘regression’ to indicate “return to mediocrity”

Let x = [x1, . . . , xp]
T be an input with p features and we need to predict a

quantitative response/output y via a function g(x), xi could be discrete or
continuous

Example

▷ predict birth weight of a baby from the weight of the mother, her
socio-economic status, her smoking habits (sometimes known as
explanatory variables)

▷ Consider the advertising data for advertising budgets for the product
in each of 200 markets for three different media: TV, radio, and
newspaper. Can we develop a model to predict sales based on the
three media budgets?
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Regression
Defining it as a statistical problem

▷ It is unlikely that the prediction function g will make accurate
prediction

▷ in reality, even for the same input x, the output y may be different

▷ we adopt a probabilistic approach: we assume that each pair (x, y) is
an instance of a random variable (X,Y ) that has the joint pdf f (x, y)

▷ Then the performance of the prediction can be measured via the
expected loss, known as risk:

l(g) = E[Loss(Y , g(X))]

▷ In the classification case, the risk equals the probability of incorrect
classification:

l(g) = P[Y ̸= g(X)]

In this case, g is called the classifier

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 4 January 11, 2023 6 / 11



Regression
Defining it as a statistical problem

▷ It is unlikely that the prediction function g will make accurate
prediction

▷ in reality, even for the same input x, the output y may be different

▷ we adopt a probabilistic approach: we assume that each pair (x, y) is
an instance of a random variable (X,Y ) that has the joint pdf f (x, y)

▷ Then the performance of the prediction can be measured via the
expected loss, known as risk:

l(g) = E[Loss(Y , g(X))]

▷ In the classification case, the risk equals the probability of incorrect
classification:

l(g) = P[Y ̸= g(X)]

In this case, g is called the classifier

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 4 January 11, 2023 6 / 11



Regression
Defining it as a statistical problem

▷ It is unlikely that the prediction function g will make accurate
prediction

▷ in reality, even for the same input x, the output y may be different

▷ we adopt a probabilistic approach: we assume that each pair (x, y) is
an instance of a random variable (X,Y ) that has the joint pdf f (x, y)

▷ Then the performance of the prediction can be measured via the
expected loss, known as risk:

l(g) = E[Loss(Y , g(X))]

▷ In the classification case, the risk equals the probability of incorrect
classification:

l(g) = P[Y ̸= g(X)]

In this case, g is called the classifier

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 4 January 11, 2023 6 / 11



Regression
Defining it as a statistical problem

▷ It is unlikely that the prediction function g will make accurate
prediction

▷ in reality, even for the same input x, the output y may be different

▷ we adopt a probabilistic approach: we assume that each pair (x, y) is
an instance of a random variable (X,Y ) that has the joint pdf f (x, y)

▷ Then the performance of the prediction can be measured via the
expected loss, known as risk :

l(g) = E[Loss(Y , g(X))]

▷ In the classification case, the risk equals the probability of incorrect
classification:

l(g) = P[Y ̸= g(X)]

In this case, g is called the classifier

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 4 January 11, 2023 6 / 11



Regression
Defining it as a statistical problem

▷ It is unlikely that the prediction function g will make accurate
prediction

▷ in reality, even for the same input x, the output y may be different

▷ we adopt a probabilistic approach: we assume that each pair (x, y) is
an instance of a random variable (X,Y ) that has the joint pdf f (x, y)

▷ Then the performance of the prediction can be measured via the
expected loss, known as risk :

l(g) = E[Loss(Y , g(X))]

▷ In the classification case, the risk equals the probability of incorrect
classification:

l(g) = P[Y ̸= g(X)]

In this case, g is called the classifier

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 4 January 11, 2023 6 / 11



Regression
Defining it as a statistical problem

▷ It is unlikely that the prediction function g will make accurate
prediction

▷ in reality, even for the same input x, the output y may be different

▷ we adopt a probabilistic approach: we assume that each pair (x, y) is
an instance of a random variable (X,Y ) that has the joint pdf f (x, y)

▷ Then the performance of the prediction can be measured via the
expected loss, known as risk :

l(g) = E[Loss(Y , g(X))]

▷ In the classification case, the risk equals the probability of incorrect
classification:

l(g) = P[Y ̸= g(X)]

In this case, g is called the classifier

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 4 January 11, 2023 6 / 11



Statistical learning
Given a rv (X,Y ) and a loss function, in principle, we determine

g∗ = argmin
g

E[Loss(Y , g(X))]

which yields the smallest risk l∗ = l(g∗)

Theorem If Loss(y , ŷ) = (y − ŷ)2 then the optimal prediction function g∗

is equal to the conditional expectation of Y given X = x :

g∗(x) = E[Y |X = x]

Proof

E[(Y − g(X))2] = E[(Y − g∗(X) + g∗(X)− g(X))2]

= E[(Y − g∗(X))2] + 2E[(Y − g∗(X))(g∗(X)− g(X))]

+E[(g∗(X)− g(X))2]

≥ E[(Y − g∗(X))2] + 2E[(Y − g∗(X))(g∗(X)− g(X))]

= E[(Y − g∗(X))2] + 2E{(g∗(X)− g(X))E[Y − g∗(X)|X]}
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Statistical learning

Now
E[Y − g∗(X)|X] = 0

and hence
E[(Y − g(X))2] ≥ E[(Y − g∗(X))2]

which implies g∗ yields the smallest squared-error.

Consequence

▷ The conditional X = x, the random response Y can be written as

Y = g∗(x) + ϵ(x)

where ϵ(x) can be thought of as a random deviation of the response
from its conditional mean at x.

▷ E[ϵ(x)] = 0

▷ Var[ϵ(x)] = ν2(x) for some function ν(x)
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Statistical learning

Learning

▷ The optimal prediction function g∗ depends on the joint distribution
of (X,Y ), which is not available in practice

▷ available : finite number of (usually) independent realizations from
the joint density f (x, y)

▷ Let T = {(X1,Y1), . . . , (Xn,Yn)} be a sample, and call it the training
set with n examples

▷ a given sample point: {(x1, y1), . . . , (xn, yn)}
▷ Goal: ‘learn’ the unknown function g∗ using the n examples from the

training set T
▷ Denote gT as an approximation for g∗ that can be constructed from

T Obviously, gT is a random function and a particular outcome is gτ
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set with n examples

▷ a given sample point: {(x1, y1), . . . , (xn, yn)}

▷ Goal: ‘learn’ the unknown function g∗ using the n examples from the
training set T

▷ Denote gT as an approximation for g∗ that can be constructed from
T Obviously, gT is a random function and a particular outcome is gτ
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Regression models
Linear regression model The response Y depends on a d-dimensional
explanatory vector x = [x1, . . . , xd ]

T via the linear relationship

Y = β0 + β1x1 + . . .+ βdxd + ϵ = βTx+ ϵ = xTβ + ϵ

:= g(x) + ϵ,

where E[ϵ] = 0 and Var[ϵ] = σ2.

The model for a training set T = {(x1,Y1), . . . , (xn,Yn)} is given by

Y = Xβ + ϵ

where ϵ = [ϵ1, . . . , ϵn]
T is a vector of iid copies of ϵ, and X is the model

matrix or regression matrix given by

X =


1 x11 x12 . . . x1d
1 x21 x22 . . . x2d
...

...
...

...
...

1 xn1 xn2 . . . xnd

 =


1 xT1
1 xT2
...

...
1 xTn


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Regression models

▷ In most cases xijs are generally chosen so that the columns of X are
linearly independent i.e rank of X is d + 1

▷ However, in some experimental design situations xij ∈ {0, 1} and
columns of X are linearly dependent, and X is called the design matrix

▷ Note that xj are known and called the explanatory variable and Y as
the response variable

Question How do we estimate β?
Note that the first column of X need not be 1.

Y1

Y2
...
Yn

 =


x10 x11 x12 . . . x1,d−1

x20 x21 x22 . . . x2,d−1
...

...
...

...
...

xn0 xn1 xn2 . . . xn,d−1




β0
β1
...

βd−1

+


ϵ1
ϵ2
...
ϵn


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