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Sampling methods

Metropolis Hastings algorithm1

Suppose the current state is xt and the next step is xt+1 with
probability g(xt+1| xt), g(x) is the proposal distribution

A commonly used g(xt+1| xt) = N (xt+1| xt ,Σ) i.e. a Gaussian
distribution ‘centered’ on the current state, also called random walk
Metropolis algorithm

If we choose the proposal independent of the old state i.e. if we set
g(xt+1| xt) = g(xt+1) then it is called independence sampler

Question How to choose Σ and what is the acceptance probability?

1Murphy, K.P., 2012. Machine learning: a probabilistic perspective. MIT press.
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Sampling methods

Recall Our original problem was sampling from a probability distribution

p(x) =
f (x)

NC
,

where the normalizing constant NC is hard to compute, and the goal was
to sample from a known suitable distribution which is easy to simulate.

If
we manage to determine NC then p(x) = π, the target distribution.

Suppose NC is hard to compute (the method is obviously valid when
we are able to compute NC )
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Sampling methods

Since the target distribution is the stationary and the MC is reversible, the
balance equation is satisfied i.e. for any two states πipij = πjpji .

Thus we
have

p(xi )pij = p(xj)pji

that is
f (xi )

NC
g(xj | xi )a(xi → xj) =

f (xj)

NC
g(xi | xj)a(xj → xi )

where a(si → sj) denotes the accept probability from si state to sj .
Thus

a(xi → xj)

a(xj → xi )
=

f (xj)

f (xi )
·
g(xi | xj)
g(xj | xi )

Next task is to decide the values of the accept probabilities from this
equation
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Sampling methods

Two cases arise:

Case I.
f (xj )
f (xi )

· g(xi | xj )
g(xj | xi ) < 1

Case II.
f (xj )
f (xi )

· g(xi | xj )
g(xj | xi ) > 1

For Case I. set a(xi → xj) =
f (xj )
f (xi )

· g(xi | xj )
g(xj | xi ) and a(xj → xi ) = 1

For case II. set a(xi → xj) = 1 and a(xj → xi ) =
f (xi )
f (xj )

· g(xj | xi )
g(xi | xj )

Now assuming the proposal distribution to be symmetric i.e.
g(x| y) = g(y|x), we set

a(xi → xj) = min

{
1,

f (xj)

f (xi )

}

This is due to Metropolis Algo
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Sampling methods

If the proposal distribution is NOT symmetric (asymmetric) i.e.
g(x| y) ̸= g(y|x) then define

a(xi → xj) = min

{
1,

f (xj)

f (xi )
·
g(xi | xj)
g(xj | xi )

}

This is due to Hastings Algo

Question What about the convergence? What about the accuracy?

Question Does it solve our original problem? What is next?

Gibbs Sampling
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Sampling methods

Convergence and error bounds Since π is a stationary distribution, for any
initial distribution µ and for any state si ∈ S , Pµ(Xt = si ) → πi as t → ∞.

In practice, the true distribution of Xt should closely approximate the
target density π according to some measure

Then another question is: what parameter of the transition matrix
controls the speed of the convergence
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Sampling methods
Total variation metric: If f , g are absolutely continuous probability
distributions on Rd , d ≥ 1 then

ρ(f , g) =
1

2

∫
|f (x)− g(x)|dx

and for pmfs,

ρ(f , g) =
1

2

∑
i

|f (i)− g(i)|

Separation distance: Let f , g be two pmfs. Then

D(f , g) = sup
i

(
1− f (i)

g(i)

)
(the order matters)

Chi-square distance: suppose f , g have common support S , then

χ2(f , g) =

√∫
S

(f − g)2

g
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Sampling methods

Some more: Kolmogorov Metric, Hellinger Metric, Levy–Prokhorov Metric,
Kullback–Leibler (KL) Distance, Wasserstein Distance, Bhattacharya
Affinity, Rao’s Geodesic Distances

Question Are they metrics?

Recall: Suppose π is the statonary distribution corresponding to a
transition matrix P with the initial distribution µ. Then for the distribution
of Xt for some fixed t, the ith entry of µ(t)(= µPt) is

Pµ(Xt = i) =
∑
j∈S

P(X0 = j)[Pt ]ji =
∑
j∈S

µkp
(t)
ji

where p
(t)
ji = [Pt ]ji .
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Sampling methods

The total variation distance between µ(t) and the stationary distribution π
with initial distribution µ is given by

ρ(µ(t), π) = sup
A⊆S

∣∣∣Pµ(t)(A)− Pπ(A)
∣∣∣

= sup
A

∣∣∣∣∣∣
∑
i∈A

∑
j∈S

µjp
(t)
ji −

∑
i∈A

πi

∣∣∣∣∣∣

For real data simulation: we need to check if this measure is monotone
decreasing wrt t

Separation distance:

D(µ(t), π) = sup
i∈S

(
1− Pµ(Xt = i)

πi

)
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Sampling methods

Chi-square distance:

χ2(µ(t), π) =
∑
i∈S

(Pµ(Xt = i)− πi )
2

πi

Review of nonnegative matrix theory2

Perron-Frobenius Theorem Let A be a positive r × r matrix. Then there
exists an eigenvalue λ1 > 0 with algebraic and geometric multiplicity one
such that λ1 > |λj | for any other eigenvalue λj . The eigenvector
corresponding to the eigenvalue λ1 is positive.

In particular, if A is stochastic then λ1 = 1.
Question What is your conclusion about the transition matrix?

2Bremaud, P. (1999). Markov Chains: Gibbs Fields, Monte Carlo Simulation, and
Queues, Springer

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 25 March 31, 2023 11 / 14



Sampling methods

Chi-square distance:

χ2(µ(t), π) =
∑
i∈S

(Pµ(Xt = i)− πi )
2

πi

Review of nonnegative matrix theory2

Perron-Frobenius Theorem Let A be a positive r × r matrix. Then there
exists an eigenvalue λ1 > 0 with algebraic and geometric multiplicity one
such that λ1 > |λj | for any other eigenvalue λj . The eigenvector
corresponding to the eigenvalue λ1 is positive.

In particular, if A is stochastic then λ1 = 1.
Question What is your conclusion about the transition matrix?

2Bremaud, P. (1999). Markov Chains: Gibbs Fields, Monte Carlo Simulation, and
Queues, Springer

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 25 March 31, 2023 11 / 14



Sampling methods

Chi-square distance:

χ2(µ(t), π) =
∑
i∈S

(Pµ(Xt = i)− πi )
2

πi

Review of nonnegative matrix theory2

Perron-Frobenius Theorem Let A be a positive r × r matrix. Then there
exists an eigenvalue λ1 > 0 with algebraic and geometric multiplicity one
such that λ1 > |λj | for any other eigenvalue λj . The eigenvector
corresponding to the eigenvalue λ1 is positive.

In particular, if A is stochastic then λ1 = 1.

Question What is your conclusion about the transition matrix?

2Bremaud, P. (1999). Markov Chains: Gibbs Fields, Monte Carlo Simulation, and
Queues, Springer
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Sampling methods

Chi-square distance:

χ2(µ(t), π) =
∑
i∈S

(Pµ(Xt = i)− πi )
2

πi
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Sampling methods

Notation Let the initial distribution µ be a one-point distribution for some
x ∈ S i.e. p(X0 = x) = 1 i.e. p(X0 ∈ S \ {x}) = 0. Then we denote

Pt(x ,A) = P(Xt ∈ A|X0 = x)

for any A ⊂ S

Theorem Let Xt , t ≥ 0 be a stationary, reversible Markov chain on the
finite-state space S , with π as the stationary distribution. Let λ be the
second largest (in modulus) eigenvalue of the transition matrix P. Then

(a) For all t ≥ 1 and for any i ∈ S :

sup
A

∣∣Pt(i ,A)− π(A)
∣∣ ≤ √

1− πi
πi

|λ|t

2
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Sampling methods

(b) For all t ≥ 1 and any i ∈ S :

sup
A

∣∣Pt(i ,A)− π(A)
∣∣ ≤

√
p
(2)
ii

πi
|λ|t−1

where p
(2)
ii is the ith diagonal entry of P2

(c) For all t ≥ 1 and any initial distribution µ :

χ2(µ(t), π) ≤ |λ|2tχ2(µ, π)

(d) For all t ≥ 1 and any initial distribution µ :

sup
A

|Pµ(Xt ∈ A)− π(A)| ≤ |λ|t

2

√
χ2(µ, π)
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Sampling methods
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Sampling methods

Question What is the second largest eigenvalue for the
Metropolis–Hastings algorithm?

Recall

pij = c min

{
1,

πj
πi

}
, j ̸= i and pii = 1−

∑
j ̸=i

pij

Eigenvalues of transition matrix corresponding to MH algo Suppose there
are k states. Then setting c = 1/k , it can be shown that: if we label the
states such that π1 ≥ π2 ≥ . . . ≥ πk then λ1 = 1 and

λl =
1

k

 k∑
j=l−1

πl−1 − πj
πl−1

 , l ≥ 2

Homework Verify the formula for small values of k .
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