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Random walks

Transition matrix A random process {X0,X1, . . .} with finite state space
S = {s1, s2, . . . , sk} is a (homogeneous) Markov chain with transition
matrix P = [pij ] ∈ Rk×k if

p(Xt+1 = sj |Xt = si ) = pij

for all t, i , j ∈ {1, 2, . . . , k}

Example:

P =


0 1

2 0 1
2

1
2 0 1

2 0
0 1

2 0 1
2

1
2 0 1

2 0


in the random walk example

Question Does the transition matrix have any special property?
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Sampling methods

m-step transition matrix [Pm]ij = p(Xt+m = j |Xt = i).

Theorem µ(t) = µ(0)Pt

Proof(Hint) µ
(1)
j = p(X1 = sj) =

∑k
i=1 p(X0 = si ,X1 = sj) =∑k

i=1 p(X0 = si )p(X1 = sj |X0 = si ) =
∑k

i=1 µ
(0)
i pij = (µ(0)P)j

Question What is the long-term behavior (asymptotic) of Markov chains?

Observation

→ Apparently, the value of Xt will keep fluctuating as t → ∞
→ Can we hope that the distribution of Xt converge to a limit?

Example Consider the third transition graph above and set µ(0) = (16 ,
5
6).

What is your observation?

Question Can there exist any such other µ(0)? (Give it a try!)
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Sampling methods

Stationary distribution A row vector π = (π1, . . . , πk) is said to be a
stationary distribution fro the Markov chain if

(i) πi ≥ 0 and
∑k

i=1 πi = 1, and

(ii) πP = π, i.e.
∑k

i=1 pij = πj , for j = 1, . . . , k

Question What is the meaning of this condition? Can we say that a
Markov chain is stationary if and only if p(Xt+1 = y |Xt = x) is
independent of t for any x , y?

Question Is every Markov chain stationary? Can there exist more than one
stationary distributions of a Markov chain?
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Sampling methods

reversible distribution A probability distribution π for a Markov chain on
the state space S = {s1, . . . , sk} is called reversible for a Markov chain if
for all i , j ∈ {1, . . . , k}

πipij = πjpji

The Markov chain with a reversible distribution is called reversible Markov
chain.

Observation If πipij is interpreted as the amount of probability mass
flowing at any time instant from the state si to sj , then for reversible
Markov chain, it is equal to the amount of probability mass flowing from sj
to si . (a sense of equilibrium/balance! )
The equation πipij = πjpji is also called detailed balance equation.
Theorem If π is a reversible distribution then it is also a stationary
distribution
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Sampling methods

Question Why do they call it ‘reversible’?

Homework For a reversible MC, if the initial distribution is stationary then
P(Xt = j |Xt+1 = i) = p(Xt+1 = j |Xt = i)

Regular Markov chain A stationary Markov chain with transition
probability matrix P is called regular (also called communicable) if there
exists a k > 0 such that [Pk ]ij > 0 for all i , j ∈ S

Irreducibility A stationary Markov chain with transition probability matrix
P is called irreducible if for any i , j ∈ S , i ̸= j , there exists a k > 0
(possibly depending on i , j) such that [Pk ]ij > 0

Therefore irreducible MC means, it is possible to reach to any state to any
other state, however it may take many steps depending on the states
Observation A finite Markov chain is irreducible if and only if its graph
representation is a strongly connected graph.
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Sampling methods

Observation For a reversible MC,∑
j∈S

pjiπ(j) =
∑
j∈S

pijπ(i) = π(i)
∑
j∈S

pij = π(i)

Aperiodicity The period of a state si ∈ S is defined as

gcd{t ≥ 1 : [Pt ]ii > 0}.

Thus the period of si is the greatest common divisor of the set of times
that the chain can return (i.e., has positive probability of returning) to si ,
given that we start with X0 = si . If the period si = 1, then we say that the
state si is aperiodic.

A Markov chain is said to be aperiodic if all its states are aperiodic.
Otherwise the chain is said to be periodic
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Sampling methods

Homework Consider the following Markov chain:

Determine the periodicity, regularity and irreduciblity property of the
Markov Chain.
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Sampling methods
Existence and uniqueness Any irreducible and aperiodic Markov chain has
exactly one stationary distribution.

Example of a MC model Assume that a mosquito hops between the
forehead, the left check and the right check of a person

There are three states

Suppose the rule is: At some time t, if the mosquito is sitting on the
foreheaad then it will hop to left check at time t + 1

if it sits on the left check, it will stay there or move to the right check
with probability 0.5 for each, and if it is on the right check then it will
stay there or move to the forehead with probability 0.5 each.

Then the transition matrix is

P =

 0 1 0
0 0.5 0.5
0.5 0 0.5
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Sampling methods

Homework Determine the MC properties of the walk of the mosquito in
the last example.

GOAL How should we use the MC concept for simulating a pdf? MCMC
was placed in the top 10 most important algorithms of the 20th century
(SIAM news).

→ Suppose p(x) is the given pdf

→ Define a MC on a state space whose stationary distribution is the
target density
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Sampling methods

A bit of history MCMC algorithm was discovered by physicists working on
the atomic bomb at Los Alamos during World War II, and was first
published in a chemistry journal. Metropolis et al. 1953.

An extension was
published in the statistics literature by Hastings in 1970, but was largely
unnoticed. A special case (Gibbs sampling) was independently invented in
1984 in the context of Ising models and was published by Geman and
Geman in 1984. The algorithm became well-known to the wider statistical
community until 1990 (Gelfand and Smith)

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 24 March 30, 2023 11 / 14



Sampling methods

A bit of history MCMC algorithm was discovered by physicists working on
the atomic bomb at Los Alamos during World War II, and was first
published in a chemistry journal. Metropolis et al. 1953. An extension was
published in the statistics literature by Hastings in 1970, but was largely
unnoticed.

A special case (Gibbs sampling) was independently invented in
1984 in the context of Ising models and was published by Geman and
Geman in 1984. The algorithm became well-known to the wider statistical
community until 1990 (Gelfand and Smith)

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 24 March 30, 2023 11 / 14



Sampling methods

A bit of history MCMC algorithm was discovered by physicists working on
the atomic bomb at Los Alamos during World War II, and was first
published in a chemistry journal. Metropolis et al. 1953. An extension was
published in the statistics literature by Hastings in 1970, but was largely
unnoticed. A special case (Gibbs sampling) was independently invented in
1984 in the context of Ising models and was published by Geman and
Geman in 1984.

The algorithm became well-known to the wider statistical
community until 1990 (Gelfand and Smith)

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 24 March 30, 2023 11 / 14



Sampling methods

A bit of history MCMC algorithm was discovered by physicists working on
the atomic bomb at Los Alamos during World War II, and was first
published in a chemistry journal. Metropolis et al. 1953. An extension was
published in the statistics literature by Hastings in 1970, but was largely
unnoticed. A special case (Gibbs sampling) was independently invented in
1984 in the context of Ising models and was published by Geman and
Geman in 1984. The algorithm became well-known to the wider statistical
community until 1990 (Gelfand and Smith)

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 24 March 30, 2023 11 / 14



Sampling methods

Math framework of MCMC algo To draw simulations from a target
distribution π on a countable set S , define a stationary Markov chain or a
transition matrix P which is irreducible and aperiodic such that the
reversibility condition pijπi = pjiπj holds.

There can be many ways (infinitely many!) such transition matrix P -
these algorithms collectively known as Metropolis algorithms

Theorem (Justification of approximating the true average by sample
average) Let Xn, n ≥ 0 be an irreducible stationary Markov chain on a
discrete state space S . Suppose Xn possess a stationary distribution π. If
ϕ : S → R is such that Eπ[ϕ(X )] exists then for any initial distribution µ,

1

n

n∑
k=1

ϕ(Xk) →a.s. Eπ[ϕ(X )]
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Sampling methods
Metropolis Algorithms

→ Suppose the chain is at some state i ∈ S at the current time

→ First step: pick a state j ∈ S with some probability distribution for
possibly moving to state j

→ The state j is called the candidate state and the distribution which is
used to pick the state j is called proposal distribution

→ Second step: if j is different from i then either move to the candidate
state j with the designated probability or stay at the current state i

Then the entries of the transition matrix are given by

pij = θijγij , i , j ∈ S , j ̸= i

pii = 1−
∑
j ̸=i

pij

where θij is the probability that j is picked as a candidate state, and γij is
the probability of moving to the state j
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Sampling methods

Transition matrix Choose the matrix or values θij such that the transition
matrix P = [pij ] is irreducible

Homework Is there a connection to accept-reject scheme here for choosing
the candidate state?

Specific choices of θij , γij :

Independent Sampling: θij = π(j) for all i , and γij ≡ 1

Metropolis–Hastings Algorithm: θij = c = constant, and

γij = min
{
1, π(j)π(i)

}
Barker’s Algorithm: θij =constant, and γij =

π(j)
π(i)+π(j)

Independent Metropolis Algorithm: For all i , θij = pj , and

γij = min
{
1, π(j)p(i)π(i)pj

}
Homework Verifying the assumptions!
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