Big Data Analysis (MA60306)

Bibhas Adhikari

Spring 2022-23, IIT Kharagpur
Lecture 23
March 24, 2023

Sampling methods

Proposition The probability that $X \sim g$ is accepted is $\frac{1}{c}$, and is maximized when $c=\sup _{x} \frac{f(x)}{g(x)}$

Sampling methods

Proposition The probability that $X \sim g$ is accepted is $\frac{1}{c}$, and is maximized when $c=\sup _{x} \frac{f(x)}{g(x)}$
Proof

$$
\begin{aligned}
P\left(U \leq \frac{f(X)}{c g(X)}\right) & =\int_{-\infty}^{\infty} \int_{0}^{\frac{f(t)}{c g(t)}} g(t) d u d t \\
& =\int_{-\infty}^{\infty} \frac{f(t)}{c g(t)} g(t) d t \\
& =\int_{-\infty}^{\infty} \frac{f(t)}{c} d t=\frac{1}{c}
\end{aligned}
$$

Sampling methods

Proposition The probability that $X \sim g$ is accepted is $\frac{1}{c}$, and is maximized when $c=\sup _{x} \frac{f(x)}{g(x)}$
Proof

$$
\begin{aligned}
P\left(U \leq \frac{f(X)}{c g(X)}\right) & =\int_{-\infty}^{\infty} \int_{0}^{\frac{f(t)}{c g(t)}} g(t) d u d t \\
& =\int_{-\infty}^{\infty} \frac{f(t)}{c g(t)} g(t) d t \\
& =\int_{-\infty}^{\infty} \frac{f(t)}{c} d t=\frac{1}{c}
\end{aligned}
$$

Efficiency Since $\sup _{x} \frac{f(x)}{g(x)}=\sqrt{\frac{2 e}{\pi}}$ is the acceptance rate, by the above result, it would be $\sqrt{\frac{\pi}{2 e}}=0.7602$. Thus if we generate $100 x$-values from g, we can expect 75 of them would be retained, and the others discarded.

Sampling methods

Question What is the acceptance rate when the standard normal is sampled using Accept-Reject method through the standard Cauchy density

$$
g(x)=\frac{1}{\pi\left(1+x^{2}\right)}
$$

Sampling methods

Question What is the acceptance rate when the standard normal is sampled using Accept-Reject method through the standard Cauchy density

$$
g(x)=\frac{1}{\pi\left(1+x^{2}\right)}
$$

Question What is the geometry of the Accept-Reject method?

Sampling methods

Question What is the acceptance rate when the standard normal is sampled using Accept-Reject method through the standard Cauchy density

$$
g(x)=\frac{1}{\pi\left(1+x^{2}\right)}
$$

Question What is the geometry of the Accept-Reject method? Question How to choose $g(x)$?

Sampling methods

Question What is the acceptance rate when the standard normal is sampled using Accept-Reject method through the standard Cauchy density

$$
g(x)=\frac{1}{\pi\left(1+x^{2}\right)}
$$

Question What is the geometry of the Accept-Reject method? Question How to choose $g(x)$?
Some more algorithms for standard distributions
Standard Exponential Generate $X \sim \exp (1)$: generate $U(0,1)$ and use $X=-\log U$

Sampling methods

Question What is the acceptance rate when the standard normal is sampled using Accept-Reject method through the standard Cauchy density

$$
g(x)=\frac{1}{\pi\left(1+x^{2}\right)}
$$

Question What is the geometry of the Accept-Reject method?
Question How to choose $g(x)$?
Some more algorithms for standard distributions
Standard Exponential Generate $X \sim \exp (1)$: generate $U(0,1)$ and use $X=-\log U$
Gamma with parameters n and λ generate $X \sim G(n, \lambda)$, first generate n independent values X_{1}, \ldots, X_{n} from a standard exponential, and use $X=\lambda\left(X_{1}+\ldots+X_{n}\right)$

Sampling methods

Question What is the acceptance rate when the standard normal is sampled using Accept-Reject method through the standard Cauchy density

$$
g(x)=\frac{1}{\pi\left(1+x^{2}\right)}
$$

Question What is the geometry of the Accept-Reject method?
Question How to choose $g(x)$?
Some more algorithms for standard distributions
Standard Exponential Generate $X \sim \exp (1)$: generate $U(0,1)$ and use $X=-\log U$
Gamma with parameters n and λ generate $X \sim G(n, \lambda)$, first generate n independent values X_{1}, \ldots, X_{n} from a standard exponential, and use $X=\lambda\left(X_{1}+\ldots+X_{n}\right)$
Beta with parameters m, n To generate $X \sim \operatorname{Be}(m, n)$, generate $U \sim G(m, 1), V \sim G(n, 1)$ independently, and use $X=\frac{U}{U+V}$

Sampling methods

t distribution with n degrees of freedom To generate $X \sim t(n)$, first generate $Z_{1}, Z_{2}, \ldots, Z_{n+1} \sim \mathcal{N}(0,1)$ independently, and use

$$
X=\frac{Z_{1}}{\sqrt{\frac{Z_{2}^{2}+\ldots+Z_{n+1}^{2}}{n}}}
$$

Sampling methods

t distribution with n degrees of freedom To generate $X \sim t(n)$, first generate $Z_{1}, Z_{2}, \ldots, Z_{n+1} \sim \mathcal{N}(0,1)$ independently, and use

$$
X=\frac{Z_{1}}{\sqrt{\frac{Z_{2}^{2}+\ldots+Z_{n+1}^{2}}{n}}}
$$

Wishart with general parameters To generate $S \sim W_{p}(n, \Sigma)$, generate $X_{1}, X_{2}, \ldots, X_{n} \sim \mathcal{N}_{p}(0, \Sigma)$ independently, and use

$$
S=\sum_{i=1}^{n} X_{i} X_{i}^{T}
$$

Uniform on the surface of the unit ball Generate $Z_{1}, \ldots, Z_{d} \sim \mathcal{N}(0,1)$ independently, and use

$$
X_{i}=\frac{Z_{i}}{\sqrt{Z_{1}^{2}+\ldots+Z_{d}^{2}}}, i=1, \ldots, d
$$

Sampling methods

Markov Chain Monte Carlo (MCMC)
\rightarrow The standard simulation techniques are usually difficult to apply, for example, when the target distribution is an unconventional one, or even worse, it is known only up to a normalizing constant such as:

$$
f(x)=\frac{h(x)}{c}
$$

for some explicit function h, but only c an implicit normalizing constant c because it cannot be computed exactly, or even to a high degree of accuracy

Sampling methods

\rightarrow For example, the problem of simulating from posterior densities of a parameter(s)

$$
\pi(\theta \mid x)=\frac{f(x \mid \theta) \pi(\theta)}{m(x)}
$$

where $f(x \mid \theta)$ is the likelihood function, $\pi(\theta)$ is the prior density, and $m(x)$ is the marginal density density of the observable X induced by (f, π). Thus

$$
m(x)=\int_{\Theta} f(x \mid \theta) \pi(\theta) d \theta
$$

Sampling methods

\rightarrow For example, the problem of simulating from posterior densities of a parameter(s)

$$
\pi(\theta \mid x)=\frac{f(x \mid \theta) \pi(\theta)}{m(x)}
$$

where $f(x \mid \theta)$ is the likelihood function, $\pi(\theta)$ is the prior density, and $m(x)$ is the marginal density density of the observable X induced by (f, π). Thus

$$
m(x)=\int_{\Theta} f(x \mid \theta) \pi(\theta) d \theta
$$

If the parameter θ is high-dimensional, and the prior density $\pi(\theta)$ is not a very conveniently chosen one, then $m(x)$ usually cannot be calculated in closed-form, or even to a high degree of numerical approximation.
All the simulation methods discussed in the previous section are useless in such a situation

Sampling methods

Markov chain Monte Carlo
Graph: A pair of sets $G=(V, E), E \subseteq E \times E, V \neq \emptyset$. Two vertices $v_{i}, v_{j} \in V$ are adjacent if $\left(v_{i}, v_{j}\right) \in E$.
${ }^{1}$ Klafter, J. and Sokolov, I.M., 2011. First steps in random walks: from tools to applications. Oxford University Press.

Sampling methods

Markov chain Monte Carlo
Graph: A pair of sets $G=(V, E), E \subseteq E \times E, V \neq \emptyset$. Two vertices $v_{i}, v_{j} \in V$ are adjacent if $\left(v_{i}, v_{j}\right) \in E$.

Walk: A sequence of vertices and edges

$$
v_{1}, e_{1}, v_{2}, e_{2}, \ldots, v_{k}, e_{k}, v_{k+1}
$$

such that end points of e_{i} are v_{i} and $v_{i+1}, 1 \leq i \leq k$
${ }^{1}$ Klafter, J. and Sokolov, I.M., 2011. First steps in random walks: from tools to applications. Oxford University Press.

Sampling methods

Markov chain Monte Carlo
Graph: A pair of sets $G=(V, E), E \subseteq E \times E, V \neq \emptyset$. Two vertices $v_{i}, v_{j} \in V$ are adjacent if $\left(v_{i}, v_{j}\right) \in E$.
Walk: A sequence of vertices and edges

$$
v_{1}, e_{1}, v_{2}, e_{2}, \ldots, v_{k}, e_{k}, v_{k+1}
$$

such that end points of e_{i} are v_{i} and $v_{i+1}, 1 \leq i \leq k$
The problem of a random walk ${ }^{1}$ was posed by Louis Bachelier in his thesis devoted to the theory of financial speculations in 1900. The term random walks was first introduced by Karl Pearson in 1905.

[^0]
Sampling methods

For each t, let X_{t} denote the index of the vertex at which the walker resides. Hence $\left\{X_{0}, X_{1}, \ldots\right\}$ is a stochastic process (Markov Chain) taking values in $\{1,2,3,4\}$ stands at time t

At time 0 , the random walker stands at $v_{1}: p\left(X_{0}=1\right)=1$
At time 1, flips a fair coin and moves immediately to v_{2} or v_{4} according to whether the coin comes up heads or tails:
$p\left(X_{1}=v_{2}\right)=\frac{1}{2}=p\left(X_{1}=v_{4}\right)$.

Sampling methods

Markov property

$$
\begin{aligned}
& p\left(X_{t+1}=v_{1} \mid X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{t-1}=i_{t-1}, X_{t}=v_{2}\right)=\frac{1}{2} \\
& p\left(X_{t+1}=v_{3} \mid X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{t-1}=i_{t-1}, X_{t}=v_{2}\right)=\frac{1}{2}
\end{aligned}
$$

for any choice of i_{0}, \ldots, i_{t-1}.

Sampling methods

Markov property

$$
\begin{aligned}
& p\left(X_{t+1}=v_{1} \mid X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{t-1}=i_{t-1}, X_{t}=v_{2}\right)=\frac{1}{2} \\
& p\left(X_{t+1}=v_{3} \mid X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{t-1}=i_{t-1}, X_{t}=v_{2}\right)=\frac{1}{2}
\end{aligned}
$$

for any choice of i_{0}, \ldots, i_{t-1}.
Time homogeneity

$$
p\left(X_{t+1} \mid X_{t}=v\right)=c
$$

for all t, for any $v \in V$

Sampling methods

Markov chain A sequence of random variables $\left\{X_{n}\right\}, n \geq 0$, is said to be a Markov chain if for some countable set $S \subset \mathbb{R}$, and any $n \geq 1$, $s_{n+1}, s_{n}, \ldots, s_{0} \in S$,

$$
P\left(X_{n+1}=s_{n+1} \mid X_{0}=s_{0}, \ldots, X_{n}=s_{n}\right)=P\left(X_{n+1}=s_{n+1} \mid X_{n}=s_{n}\right)
$$

Sampling methods

Markov chain A sequence of random variables $\left\{X_{n}\right\}, n \geq 0$, is said to be a Markov chain if for some countable set $S \subset \mathbb{R}$, and any $n \geq 1$,
$s_{n+1}, s_{n}, \ldots, s_{0} \in S$,

$$
P\left(X_{n+1}=s_{n+1} \mid X_{0}=s_{0}, \ldots, X_{n}=s_{n}\right)=P\left(X_{n+1}=s_{n+1} \mid X_{n}=s_{n}\right)
$$

The set S is called the state space of the chain. If S is a finite set, the chain is called a finite state Markov chain. X_{0} is called the initial state.

Sampling methods

Markov chain A sequence of random variables $\left\{X_{n}\right\}, n \geq 0$, is said to be a Markov chain if for some countable set $S \subset \mathbb{R}$, and any $n \geq 1$, $s_{n+1}, s_{n}, \ldots, s_{0} \in S$,

$$
P\left(X_{n+1}=s_{n+1} \mid X_{0}=s_{0}, \ldots, X_{n}=s_{n}\right)=P\left(X_{n+1}=s_{n+1} \mid X_{n}=s_{n}\right)
$$

The set S is called the state space of the chain. If S is a finite set, the chain is called a finite state Markov chain. X_{0} is called the initial state.

Example? the indices can be treated as time and the rvs as the observation of a process: Surfing Webpages, Weather prediction

Random walks

initial distribution the distribution of the initial state X_{0}, which tells us how the Markov chain starts

Random walks

initial distribution the distribution of the initial state X_{0}, which tells us how the Markov chain starts

Distribution of the Markov Chain Let $\mu^{(0)}$ denote the initial distribution of the Markov chain, defined as

$$
\mu^{(0)}=\left(p\left(X_{0}=s_{1}\right), p\left(X_{0}=s_{2}\right), \ldots, p\left(X_{0}=s_{k}\right)\right)
$$

with state space $S=\left\{s_{1}, \ldots, s_{k}\right\}$. Similarly,

$$
\mu^{(t)}=\left(p\left(X_{t}=s_{1}\right), p\left(X_{t}=s_{2}\right), \ldots, p\left(X_{t}=s_{k}\right)\right)
$$

Random walks

initial distribution the distribution of the initial state X_{0}, which tells us how the Markov chain starts

Distribution of the Markov Chain Let $\mu^{(0)}$ denote the initial distribution of the Markov chain, defined as

$$
\mu^{(0)}=\left(p\left(X_{0}=s_{1}\right), p\left(X_{0}=s_{2}\right), \ldots, p\left(X_{0}=s_{k}\right)\right)
$$

with state space $S=\left\{s_{1}, \ldots, s_{k}\right\}$. Similarly,

$$
\mu^{(t)}=\left(p\left(X_{t}=s_{1}\right), p\left(X_{t}=s_{2}\right), \ldots, p\left(X_{t}=s_{k}\right)\right)
$$

For example, $\mu^{(0)}=(1,0,0,0), \mu^{(1)}=\left(0, \frac{1}{2}, 0, \frac{1}{2}\right)$ in the previous example.

[^0]: ${ }^{1}$ Klafter, J. and Sokolov, I.M., 2011. First steps in random walks: from tools to applications. Oxford University Press.

