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Sampling methods

Proposition The probability that X ∼ g is accepted is 1
c , and is maximized

when c = supx
f (x)
g(x)

Proof

P

(
U ≤ f (X )

cg(X )

)
=

∫ ∞

−∞

∫ f (t)
cg(t)

0
g(t)du dt

=

∫ ∞

−∞

f (t)

cg(t)
g(t)dt

=

∫ ∞

−∞

f (t)

c
dt =

1

c

Efficiency Since supx
f (x)
g(x) =

√
2e
π is the acceptance rate, by the above

result, it would be
√

π
2e = 0.7602. Thus if we generate 100 x-values from

g , we can expect 75 of them would be retained, and the others discarded.
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Sampling methods
Question What is the acceptance rate when the standard normal is
sampled using Accept-Reject method through the standard Cauchy density

g(x) =
1

π(1 + x2)

Question What is the geometry of the Accept-Reject method?
Question How to choose g(x)?
Some more algorithms for standard distributions

Standard Exponential Generate X ∼ exp(1) : generate U(0, 1) and
use X = − logU

Gamma with parameters n and λ generate X ∼ G (n, λ), first
generate n independent values X1, . . . ,Xn from a standard
exponential, and use X = λ(X1 + . . .+ Xn)

Beta with parameters m, n To generate X ∼ Be(m, n), generate
U ∼ G (m, 1), V ∼ G (n, 1) independently, and use X = U

U+V
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Sampling methods
t distribution with n degrees of freedom To generate X ∼ t(n), first
generate Z1,Z2, . . . ,Zn+1 ∼ N (0, 1) independently, and use

X =
Z1√

Z2
2+...+Z2

n+1

n

Wishart with general parameters To generate S ∼ Wp(n,Σ), generate
X1,X2, . . . ,Xn ∼ Np(0,Σ) independently, and use

S =
n∑

i=1

XiX
T
i

Uniform on the surface of the unit ball Generate
Z1, . . . ,Zd ∼ N (0, 1) independently, and use

Xi =
Zi√

Z 2
1 + . . .+ Z 2

d

, i = 1, . . . , d
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Sampling methods

Markov Chain Monte Carlo (MCMC)

→ The standard simulation techniques are usually difficult to apply, for
example, when the target distribution is an unconventional one, or
even worse, it is known only up to a normalizing constant such as:

f (x) =
h(x)

c

for some explicit function h, but only c an implicit normalizing
constant c because it cannot be computed exactly, or even to a high
degree of accuracy
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Sampling methods

→ For example, the problem of simulating from posterior densities of a
parameter(s)

π(θ| x) = f (x | θ)π(θ)
m(x)

where f (x | θ) is the likelihood function, π(θ) is the prior density, and
m(x) is the marginal density density of the observable X induced by
(f , π). Thus

m(x) =

∫
Θ
f (x | θ)π(θ)dθ

If the parameter θ is high-dimensional, and the prior density π(θ) is
not a very conveniently chosen one, then m(x) usually cannot be
calculated in closed-form, or even to a high degree of numerical
approximation.
All the simulation methods discussed in the previous section are
useless in such a situation
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Sampling methods

Markov chain Monte Carlo
Graph: A pair of sets G = (V ,E ), E ⊆ E × E ,V ̸= ∅. Two vertices
vi , vj ∈ V are adjacent if (vi , vj) ∈ E .

Walk: A sequence of vertices and edges

v1, e1, v2, e2, . . . , vk , ek , vk+1

such that end points of ei are vi and vi+1, 1 ≤ i ≤ k

The problem of a random walk 1 was posed by Louis Bachelier in his thesis
devoted to the theory of financial speculations in 1900. The term random
walks was first introduced by Karl Pearson in 1905.

1Klafter, J. and Sokolov, I.M., 2011. First steps in random walks: from tools to
applications. Oxford University Press.

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 23 March 24, 2023 7 / 11



Sampling methods

Markov chain Monte Carlo
Graph: A pair of sets G = (V ,E ), E ⊆ E × E ,V ̸= ∅. Two vertices
vi , vj ∈ V are adjacent if (vi , vj) ∈ E .

Walk: A sequence of vertices and edges

v1, e1, v2, e2, . . . , vk , ek , vk+1

such that end points of ei are vi and vi+1, 1 ≤ i ≤ k

The problem of a random walk 1 was posed by Louis Bachelier in his thesis
devoted to the theory of financial speculations in 1900. The term random
walks was first introduced by Karl Pearson in 1905.

1Klafter, J. and Sokolov, I.M., 2011. First steps in random walks: from tools to
applications. Oxford University Press.

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 23 March 24, 2023 7 / 11



Sampling methods

Markov chain Monte Carlo
Graph: A pair of sets G = (V ,E ), E ⊆ E × E ,V ̸= ∅. Two vertices
vi , vj ∈ V are adjacent if (vi , vj) ∈ E .

Walk: A sequence of vertices and edges

v1, e1, v2, e2, . . . , vk , ek , vk+1

such that end points of ei are vi and vi+1, 1 ≤ i ≤ k

The problem of a random walk 1 was posed by Louis Bachelier in his thesis
devoted to the theory of financial speculations in 1900. The term random
walks was first introduced by Karl Pearson in 1905.

1Klafter, J. and Sokolov, I.M., 2011. First steps in random walks: from tools to
applications. Oxford University Press.

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 23 March 24, 2023 7 / 11



Sampling methods

For each t, let Xt denote the index of the vertex at which the walker
resides. Hence {X0,X1, . . .} is a stochastic process (Markov Chain) taking
values in {1, 2, 3, 4} stands at time t

At time 0, the random walker stands at v1 : p(X0 = 1) = 1

At time 1, flips a fair coin and moves immediately to v2 or v4
according to whether the coin comes up heads or tails:
p(X1 = v2) =

1
2 = p(X1 = v4).
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Sampling methods

Markov property

p(Xt+1 = v1|X0 = i0,X1 = i1, . . . ,Xt−1 = it−1,Xt = v2) =
1

2

p(Xt+1 = v3|X0 = i0,X1 = i1, . . . ,Xt−1 = it−1,Xt = v2) =
1

2

for any choice of i0, . . . , it−1.

Time homogeneity
p(Xt+1|Xt = v) = c

for all t, for any v ∈ V

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 23 March 24, 2023 9 / 11



Sampling methods

Markov property

p(Xt+1 = v1|X0 = i0,X1 = i1, . . . ,Xt−1 = it−1,Xt = v2) =
1

2

p(Xt+1 = v3|X0 = i0,X1 = i1, . . . ,Xt−1 = it−1,Xt = v2) =
1

2

for any choice of i0, . . . , it−1.

Time homogeneity
p(Xt+1|Xt = v) = c

for all t, for any v ∈ V
Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 23 March 24, 2023 9 / 11



Sampling methods

Markov chain A sequence of random variables {Xn}, n ≥ 0, is said to be a
Markov chain if for some countable set S ⊂ R, and any n ≥ 1,
sn+1, sn, . . . , s0 ∈ S ,

P(Xn+1 = sn+1|X0 = s0, . . . ,Xn = sn) = P(Xn+1 = sn+1|Xn = sn)

The set S is called the state space of the chain. If S is a finite set, the
chain is called a finite state Markov chain. X0 is called the initial state.

Example? the indices can be treated as time and the rvs as the
observation of a process: Surfing Webpages, Weather prediction
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Random walks

initial distribution the distribution of the initial state X0, which tells us
how the Markov chain starts

Distribution of the Markov Chain Let µ(0) denote the initial distribution of
the Markov chain, defined as

µ(0) = (p(X0 = s1), p(X0 = s2), . . . , p(X0 = sk)),

with state space S = {s1, . . . , sk}. Similarly,

µ(t) = (p(Xt = s1), p(Xt = s2), . . . , p(Xt = sk)),

For example, µ(0) = (1, 0, 0, 0), µ(1) = (0, 12 , 0,
1
2) in the previous example.
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