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Sampling methods
Sampling from standard normal Suppose T : Rn → Rn is a differentiable
transformation. Then the Jacobian of the transformation T , denoted by
JT is defined as the determinant of the matrix whose ij-th entry is ∂Ti

∂xj
(x)

If y = Tx has the inverse T−1(y) then we can prove that

JT−1(y) =
1

JT (T−1y)

i.e. the matrix of partial derivatives with entries ∂Ti
∂xj

(x) is invertible, and

its inverse is the matrix of partial derivatives whose entries are
∂T−1

i
∂xj

(y)

Change of variables for integration Let y = T (x), x ∈ S ⊆ Rn be a
differentiable one-to-one transformation from S to T (S). Then∫

S
f (x)dx =

∫
T−1(S)

f (T−1(y))JT−1(y)dy
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Sampling methods

Let X and Y be independent standard normal variables and consider the
vector (X ,Y ) ∈ R2.

Define the transformation

x =
√
d cos θ, y =

√
d sin θ, d > 0

Now since X ,Y are independent, then the joint distribution of (X ,Y ) is

f (x , y) =
1

2π
e−(x2+y2)/2

Since d = x2 + y2, and JT (x , y) = 1/2, then from the change-of-variables
formula that D and Θ have the joint distribution

f (d , θ) =
1

2π
· 1
2
e−d/2
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Sampling methods

This implies that D has the exponential distribution with λ = 1/2, and Θ
has the uniform distribution over [0, 2π] .

When sampling from these two distributions, the standard normal Y can
be samples from the equation

Y =
√
d sin θ

Thus Y can be sampled from

Y =
√
−2 lnU sin 2πV

where U,V are uniform distributions over (0, 1)
Homework Is the proof correct? Justify.
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Sampling methods

Sampling from multivariate normal Recall that if X ∼ Nd(µ,Σ) then

p(x) =
1

(2π)d/2|Σ|1/2
exp

(
−(x − µ)TΣ−1(x − µ)

2

)

Then a direct way of generating random vectors from the multivariate
normal distribution is to generate a d-vector iid standard normal
z = (z1, z2, . . . , zd) and then form the vector

x = RT z + µ

where R is a d × d matrix such that RTR = Σ (Choleskey factor of Σ).
Then x has Nd(µ,Σ) distribution
Another way Generate x1 from N (0, σ11), generate x2 conditionally on x1,
generate x3 conditionally on x1 and x2, and so on
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Sampling methods
Accept-Reject method This method is useful when it is difficult to directly
simulate from a given target density f (x) on the real line, however there

exists another density g(x) which is easier to simulate from such that f (x)
g(x)

is uniformly bounded

Then we can simulate X from g , and retain it or discard it according to
some specific rule. Because an X value is either retained or discarded,
depending on whether it passes the admission rule, the method is called
the accept–reject method. The density g is called the envelope density.
Method:

1. Find a density function g and find a constant c such that f (x)
g(x) ≤ c for

all x

2. Generate X ∼ g

3. Generate U(0, 1), independent of X

4. Retain this generated X value if U ≤ f (x)
cg(x)

5. Repeat the steps until the required number of n values of X has been
obtained
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Sampling methods

Theorem Let X ∼ g , and U, independent of X , uniformly distributed over
[0, 1]. Then the conditional density of X given that U ≤ f (x)

cg(x) is f

Proof denote the CDF of f by F . Then

P

(
X ≤ x |U ≤ f (x)

cg(x)

)
=

P
(
X ≤ x ,U ≤ f (x)

cg(x)

)
P
(
U ≤ f (x)

cg(x)

)
=

∫ x
−∞

∫ f (t)
cg(t)

0 g(t)du dt∫∞
−∞

∫ f (t)
cg(t)

0 g(t)du dt

=

∫ x
−∞

f (t)
cg(t)g(t)dt∫∞

−∞
f (t)
cg(t)g(t)dt

=

∫ x
−∞ f (t)dt∫∞
−∞ f (t)dt

= F (x)
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Sampling methods

Sampling normal distribution via Accept-reject Suppose we want to
generate X ∼ N (0, 1) and we denote the density as f . We need to find an

envelope density g such that f (x)
g(x) is uniformly bounded, and it should be

easy to sample from g

Consider g(x) = 1
2e

−|x |. Then

f (x)

g(x)
=

1√
2π
e−x2/2

1
2e

−|x | =

√
2

π
e |x |−x2/2≤

√
2e

π

for all real x

Set c =
√

2e
π in the accept-reject scheme and, g has the standard double

exponential density. The scheme works out to the following: generate U,
and a double exponential value of X , and retain X if

U ≤ e |X |−X 2/2− 1
2
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Sampling methods

Generation of double exponential value by several ways:

(a) Generate a standard exponential value Y and assign it a random sign
(+ or − with an equal probability).

(b) Generate two independent standard exponential values Y1,Y2 and set
X = Y1 − Y2.

Question Can we understand the Accept-Reject method through a graph?

For example plot the graph u = e |x |−x2/2− 1
2 , and the generated X value is

retained if and only if the pair (X ,U) is below the graph of the function.
Then we can see that one of the two generated values will be accepted,
and the other rejected

Question What is the acceptance percentage of the Accept-Reject scheme?
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Then we can see that one of the two generated values will be accepted,
and the other rejected

Question What is the acceptance percentage of the Accept-Reject scheme?
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