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Sampling methods
Generation of uniformly distributed random variables and methods from
transforming it to other distributions

→ digital computer cannot generate random numbers

→ this is not a disadvantage if there is some source of pseudorandom
numbers, samples of which seem to be randomly drawn from some
known distribution

→ there are two issues: randomness and knowledge of the distribution

Relevance to cryptography - dynamic concept of randomness

→ a process is “random” if the known conditional probability of the next
event, given the previous history (or any other information, for that
matter) is no different from the known unconditional probability.

→ This kind of definition leads to the concept of a “one-way function”

→ A one-way function is a function f , such that for any x in its domain,
f (x) can be computed in polynomial time, and given f (x), x cannot
be computed in polynomial time
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Sampling methods

→ The existence of a one-way function has not been proven

→ In random number generation, the function of interest yields a stream
of “unpredictable” numbers, that is,

xi = f (xi−1, xi−2, . . . , xi−k)

is easily computable; but xi−1, given xi , xi−2, ..., xi−k , is not easily
computable

→ In our context, random numbers simulate realizations of random
variables

(pseudo)Random number generation - a mechanism for generating a
sequence of random variables U1,U2, . . . with the property that

each Ui is uniformly distributed between 0 and 1

the Ui are mutually independent i.e. the value of Ui should not be
predictable from U1, . . . ,Ui−1
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Sampling methods
Uniform distribution over the unit interval (0, 1) with the pdf

f (x) =

{
1, if 0 < x < 1

0, otherwise

We denote it as U(0, 1)There are two basic methods:

1. congruential methods

2. feedback shift register methods

Usually random integers over some fixed range are first generated and then
scaled into the interval (0, 1)
Goal produce a finite sequence of numbers u1, . . . , uK in the unit interval

Uniformity - If the K is large then the fraction of values falling in any
subinterval of the unit interval should be approximately the length of
the subinterval

Independence - there should be no discernible pattern among the
values i.e. statistical test for independence should not easily reject
segments of the sequence u1, . . . , uK
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Sampling methods

Modular arithmetic Two integers a, b are said to be congruent or
equivalent modulo m if a− b is divisible by m, we write it as

a ≡ bmodm

This is an equivalence relation.

Reduction modulo method For a given b, find a such that a ≡ bmodm
and 0 ≤ a < m. If a satisfies these two conditions, a is called the residue of
b modulo m.
Reduction of b modulo m can be defined as:

a = b − ⌊b/m⌋m.
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Sampling methods

Linear (multiplicative) congruential generator

xi+1 = axi modm (1)

ui+1 = xi+1/m

the integers a and m determine the values generated, given an initial value
1 ≤ x0 ≤ m − 1, specified by the user.
If a,m are properly chosen then ui ’s ‘look like’ they are randomly and
uniformly distributed. The recurrence relation (1) is equivalent to the
recurrence

ui ≡ aui−1mod 1 with 0 < ui < 1
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Sampling methods

Note that the operation

y modm = y −
⌊ y

m

⌋
m

For example, 7mod 5 = 2.

Also note that 0 ≤ ui ≤ (m − 1)/m.

Observation

→ xi+1 = f (xi ), ui+1 = g(xi+1)

→ Suppose a = 6 and m = 11. Then starting from x0 = 1, the linear
congruential generator produces

1, 6, 3, 7, 9, 10, 5, 8, 4, 2, 1, 6, . . .

→ Once a value repeated, the entire sequence repeats

→ (Homework) What is your observation for different choices of x0?
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Sampling methods

General considerations

→ Period length - The generator of the above form eventually repeat
itself. The longest possible period for a linear congruent generator
with mod m is m − 1, and with full period the gaps between the
values ui are 1/m. Thus the larger m is more closely the values can
approximate a uniform distribution

→ Portability - An algo for random number generation should produce
the same sequence of values on all computing platforms

→ Randomness - theoretical properties and statistical test

Full period - A linear congruential generator is said to have full period if it
produces all m − 1 distinct values before repeating
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Sampling methods

(D. H. Lehmer, 1948) A general linear (mixed) congruential generator:

xi+1 = (axi + c)modm

ui+1 = xi+1/m (2)

a,m, c are integers (a is called ‘multiplier, c is called the ‘increment’, and
m is called the ‘modulus’ of the generator)

Produced values: When can the generator have full period i.e. the number
of distinct values generated from any seed x0 is m − 1?

c and m are relatively prime

every prime number that divides m divides a− 1

a− 1 is divisible by 4 if m is

If m is a power of 2, the generator has full period if c is odd and
a = 4n + 1 for some integer n
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a− 1 is divisible by 4 if m is

If m is a power of 2, the generator has full period if c is odd and
a = 4n + 1 for some integer n
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Sampling methods

Question How large should the value of m be?

Literature:

Modulus m Multiplier a

231 − 1 16807
(= 2147483647)

1226874159

2147483399 40692
40014

Note Currently the numbers used as moduli in production random number
generators are often primes in particular, Mersenne primes, which have the
form 2p − 1. Numbers of this form for p ≤ 31 are prime except for the
three values: p = 11, 23, and 29. Most larger values of p do not yield prime
(Write a program and check!), however p = 859433 does give a prime.
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Sampling methods
For random number generator to be useful in most practical application,
the period must be of the order of at least 109 or so, which means that the
9 modulus in a linear congruential generator must be at least that large.

Tests of linear congruential generator form any transformation on
subsequences of a produced sequence of numbers, determine the
distribution of the transformation under the null hypothesis of independent
uniformity of the sequence, and perform a goodness-of-fit test of that
distribution

What is the issue - avoid overflow

Some other methods

Multiple Recursive Generators

Lagged Fibonacci

Inversive Congruential Generators

Nonlinear Congruential Generators

Matrix Congruential Generators and many more including Monte
Carlo methods
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Sampling methods

Sampling from a nonuniform distribution - usually done by applying a
transformation to uniform sampler or from a sequence of uniform
samplers, other methods use a random walk sequence, a Markov chain

The performance of the algorithms is judged by - in speed, in accuracy, in
storage requirements, and in complexity of coding
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Sampling methods

Now we assume that there is a good way to generate independent samples
of the uniform random variable U on the interval (0, 1)

Sampling finite and discrete rvs

Bernoulli random variable: If

X =

{
1 if U ≤ p

0 otherwise

then X ∼ Ber(p) since 1 will be sampled with probability p, and 0
will be sampled with probability 1− p.
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Sampling methods

Inverse transform technique: Let X = {x1, . . . , xn} be a random
variable with probability distribution p, and where x1 ≤ . . . ≤ xn.
Then define

qi = P(X ≤ xi ) =
i∑

j=1

p(xj)

Then the following is the sampling formula for X as follows:

X =



x1 if U < q1

x2 if q1 ≤ U < q2
...
...

xn−1 if qn−2 ≤ U < qn−1

xn otherwise

Note that X = xi in the event that qi−1 ≤ U < qi , which has
probability p = qi − qi−1 = p(xi ).
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Sampling methods
Geometric rv For the uniform distribution U,

X =

⌊
lnU

ln q

⌋
+ 1 ∼ G (p)

with parameter p = 1− q

Proof First sample U(0, 1) and then return k , where

k−1∑
n=1

(1− p)n−1p ≤ U <
k∑

n=1

(1− p)n−1p,

which implies

1− (1− p)k−1 ≤ U < 1− (1− p)k ⇒ (1− p)k < 1− U ≤ (1− p)k−1

using
k∑

n=1

arn−1 = a
rk − 1

r − 1
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Sampling methods

Taking log both side and dividing by the negative number ln(1− p) then

k − 1 ≤ ln(1− U)

ln(1− p)
< k ⇒ k =

⌊
ln(1− U)

ln(1− p)

⌋
+ 1.

Finally, setting q = 1− p, and noting that 1− U is also uniformly
distributed over [0, 1, ] we have

k =

⌊
lnU

ln q

⌋
+ 1
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Sampling methods

Continuous rv - Inverse Transform Method Let X be a continuous random
variable with cdf F (x) which possesses an inverse F−1. Let Y = F−1(U),
then Y has the same distribution as X .

Proof It is sufficient to show that Y has the same cdf as X . Let F and FY
denote the cdfs of X and Y respectively. Then

FY (x) = P(Y ≤ x) = P(F−1(U) ≤ x)

= P(F (F−1(U) ≤ F (x)))

= P(U ≤ F (x)) = F (x)

where the third-to-last equality follows from the fact that F is strictly
increasing.

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 21 March 22, 2023 17 / 19



Sampling methods

Continuous rv - Inverse Transform Method Let X be a continuous random
variable with cdf F (x) which possesses an inverse F−1. Let Y = F−1(U),
then Y has the same distribution as X .
Proof It is sufficient to show that Y has the same cdf as X . Let F and FY
denote the cdfs of X and Y respectively. Then

FY (x) = P(Y ≤ x) = P(F−1(U) ≤ x)

= P(F (F−1(U) ≤ F (x)))

= P(U ≤ F (x)) = F (x)

where the third-to-last equality follows from the fact that F is strictly
increasing.

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 21 March 22, 2023 17 / 19



Sampling methods
Sampling from standard distributions

Uniform: X ∼ U(a, b) : X = a+ U(b − a)

Exponential: X ∼ Exp(λ) : X = − ln(U)/λ

Weibull: X ∼ W (α, β, ν) : X = ν + α[− ln(U)]1/β

Cauchy: X ∼ C (µ, σ2) : X = µ+ σ tan π(U − 1
2)

Empirical CDF Suppose x1 ≤ x2 ≤ . . . ≤ xn is a collection of n data
points, with xi ∈ [a, ∞] for some a ∈ R. Then the empirical CDF F (x)
with linear interpolation is defined as follows:

1. Given x ∈ {x1, . . . , xn}, let i be the largest index for which x = xi
then F (x) = i

n

2. F (x) = 0 for all x ≤ a

3. F (x) = 1 for all x ≥ xn

4. if x ∈ (a, x1) then F (x) = F (x1)
x1−a (x − a)

5. if x ∈ (xi , xi+1) then F (x) = F (xi ) +
(x−xi )[F (xi+1)−F (xi )]

xi+1−xi
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Sampling methods

Sampling from empirical CDFs Procedure for sampling a value from an
empirical CDF F (x)

1. Sample from U

2. if U = 0 return a

3. else if U = F (xi ) for some 1 ≤ i ≤ n then return xi

4. else if U < F (x1) then return

a+ (x1 − a)
U

F (x1)

5. else if F (xi ) < U < F (xi+1) then return

xi + (xi+1 − xi )
U − F (xi )

F (xi+1)− F (xi )
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