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Sampling methods

Some more observations from the last model through an example.

We call a node y , a descendant of a node x if there is a path from x to y
in which each step of the path follows the directions

D-separation

→ Consider a directed graph in which A,B,C are arbitrary
nonintersecting sets of nodes, whose union may be smaller than the
total set of nodes in the graph

→ We wish to ascertain whether a particular conditional independence
statement A⊥⊥ B|C is implied by a given directed acyclic graph!
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Sampling methods

Consider all possible paths from any node in A to any node in B. Any such
path is called blocked if it includes a node such that either

(a) the arrows on the path meet either head-to-tail or tail-to-tail at the
node which is in C , or

(b) the arrows meet head-to-head at the node, and neither the node, nor
any of its descendants, is in the set C

If all the paths are blocked, then A is said to be d-separated from B by C ,
and the joint distribution over all the variables in the graph will satisfy
A⊥⊥ B|C

Example Consider p(a, b, c , d , e) = p(a)p(e)p(d |a, e)p(b|e)p(c |d). Then
→ Justify: a ⊥̸⊥ b| c
→ Justify: a⊥⊥ b| e

Question Develop an algorithm for D-separation for DAGs.
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Sampling methods

Exponential family of distributions - The exponential family of distributions
over x, given parameters η is said to be distributions of the form

p(x;η) = h(x)g(η) exp{ηTu(x)},

where x may be scalar or vector, and may be continuous and discrete,
η = [η1, . . . , ηK ]

T is called the vector of natural parameters of the
distribution, and u(x) = [u1(x), . . . , uK (x)]

T is the vector of sufficient
statistics, each sufficient statistic uk(x) being a function of x, h(x) is the
base measure which is a function of x independent of η, and g(η) is the
partition function such that

1

g(η)
=

∫
exp(ηTu(x))h(x)dx

for continuous rvs and 1
g(η) =

∑
x exp(η

Tu(x))h(x) for discrete rv
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Sampling methods

Sufficient statistic Let p(x, θ) be the distribution of a rv X that depends
on θ. A function f (x) is a sufficient statistic for the estimate of θ if the
likelihood p(x, θ) of the parameters θ depends on x only through the
function f (x).

For example, X ∼ N (0, σ2), the function f (x) = x2 can be easily seen to
be sufficient for the estimate of the variance σ2

Bernoulli -

p(x , µ) = µx(1− µ)1−x = exp{x lnµ+ (1− x) ln(1− µ)}

= (1− µ) exp

{
ln

(
µ

1− µ

)
x

}
Set η = ln

(
µ

1−µ

)
and g(η) = 1

1+exp(−η) ⇒ p(x , µ) = g(−η) exp(ηx),

g is called the logistic sigmoid function
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Sampling methods

Gaussian -

p(x ;µ, σ2) =
1

(2πσ2)1/2
exp

{
− 1

−2σ2
(x − µ)2

}
=

1

(2πσ2)1/2
exp

{
− 1

−2σ2
x2 +

µ

σ2
x − 1

2σ2
µ2

}
= h(x)g(η) exp{ηTu(x)}

η =

[
µ/σ2

−1/2σ2

]
, u(x) =

[
x
x2

]
, h(x) = (2π)−1/2,

g(η) = (−2η2)
1/2 exp

(
η21
4η2

)
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Sampling methods

Examples of Exponential Families

Bernoulli: distribution on (0, 1)

Categorical: distribution on {1, 2, . . . , k}
Gaussian: distribution on Rd

Beta: distribution on [0, 1] (including uniform)

Dirichlet: distribution on discrete probabilities

Wishart: distribution on positive-definite matrices

Poisson: distribution on non-negative integers.

Gamma: distribution on positive real numbers

many more....
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Sampling methods

Maximum likelihood and sufficient statistics How to estimate the values of
the parameters from a data which supposedly follows a distribution from
the exponential family?
Recall that

→ The gradient of a differentiable function f (x) with
x = [x1, . . . , xd ] ∈ Rd is defined as

∇f (x) = [∂f (x)/∂x1, . . . , ∂f (x)/∂xd ]
T

→ The Hessian of f (x) is a d × d matrix with ij-th entry ∂2f (x)/∂xi∂xj
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Sampling methods

Taking the gradient both sides of g(η)
∫
h(x) exp

{
ηTu(x)

}
dx = 1 we

obtain

∇g(η)

∫
h(x) exp

{
ηTu(x)

}
dx+

g(η)

∫
h(x) exp

{
ηTu(x)

}
u(x)dx = 0

Which implies

− 1

g(η)
∇g(η) = g(η)

∫
h(x) exp

{
ηTu(x)

}
u(x)dx = E[u(x)]

Thus
−∇ ln g(η) = E[u(x)]

Similarly the covariance matrix of u(x) can be expressed in terms of the
second derivative of g(η), and the higher order moments. The covariance
matrix is also equal to the Fisher information matrix for natural parameters
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Sampling methods

Estimation of ηML Consider a set of iid data denoted by
X = {X1, . . . ,XN}. Then the likelihood function is

p(X,η) =

(
N∏

n=1

h(xn)

)
g(η)N exp

{
ηT

N∑
n=1

u(xn)

}

Setting the gradient of ln p(X,η) wrt η to zero, we obtain the following
condition to be satisfied by the maximum likelihood estimator ηML

−∇ ln g(ηML) =
1

N

N∑
n=1

u(xn),

which can in principle be solved to obtain ηML

Observation The MLE depends on the data through
∑

n u(xn), which is
therefore called the sufficient statistic of the distribution
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Sampling methods

Question Verify the above MLE for multivariate Gaussian distribution

The sufficient statistics are:

N∑
n=1

xn and
N∑

n=1

xnx
T
n

The ML estimates are:

µML =
1

N

N∑
n=1

xn, and ΣML =
1

N

N∑
n=1

(xn − µML)(xn − µML)
T
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Sampling methods

Observation Note that the partition function g(η) for the exponential
family

p(x;η) = g(η) exp{ηTu(x)}h(x),

normalizes the distribution.

Then the unnormalized distribution

p̃(x,η) = exp
(
ηTu(x)

)
h(x)

Then
ln p̃(x,η) = ηTu(x) + ln h(x)

is known as energy function, which is linear in η.
Thus the p(x;η) is referred as log-linear
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