# Big Data Analysis (MA60306) 

Bibhas Adhikari

Spring 2022-23, IIT Kharagpur

> Lecture 20
> March 17,2023

## Sampling methods

Some more observations from the last model through an example.

## Sampling methods

Some more observations from the last model through an example.
We call a node $y$, a descendant of a node $x$ if there is a path from $x$ to $y$ in which each step of the path follows the directions

## Sampling methods

Some more observations from the last model through an example.
We call a node $y$, a descendant of a node $x$ if there is a path from $x$ to $y$ in which each step of the path follows the directions
D-separation
$\rightarrow$ Consider a directed graph in which $A, B, C$ are arbitrary nonintersecting sets of nodes, whose union may be smaller than the total set of nodes in the graph

## Sampling methods

Some more observations from the last model through an example.
We call a node $y$, a descendant of a node $x$ if there is a path from $x$ to $y$ in which each step of the path follows the directions

D-separation
$\rightarrow$ Consider a directed graph in which $A, B, C$ are arbitrary nonintersecting sets of nodes, whose union may be smaller than the total set of nodes in the graph
$\rightarrow$ We wish to ascertain whether a particular conditional independence statement $A \Perp B \mid C$ is implied by a given directed acyclic graph!

## Sampling methods

Consider all possible paths from any node in $A$ to any node in $B$. Any such path is called blocked if it includes a node such that either
(a) the arrows on the path meet either head-to-tail or tail-to-tail at the node which is in $C$, or
(b) the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, is in the set $C$

## Sampling methods

Consider all possible paths from any node in $A$ to any node in $B$. Any such path is called blocked if it includes a node such that either
(a) the arrows on the path meet either head-to-tail or tail-to-tail at the node which is in $C$, or
(b) the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, is in the set $C$
If all the paths are blocked, then $A$ is said to be $d$-separated from $B$ by $C$, and the joint distribution over all the variables in the graph will satisfy $A \Perp B \mid C$

## Sampling methods

Consider all possible paths from any node in $A$ to any node in $B$. Any such path is called blocked if it includes a node such that either
(a) the arrows on the path meet either head-to-tail or tail-to-tail at the node which is in $C$, or
(b) the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, is in the set $C$
If all the paths are blocked, then $A$ is said to be $d$-separated from $B$ by $C$, and the joint distribution over all the variables in the graph will satisfy $A \Perp B \mid C$

Example Consider $p(a, b, c, d, e)=p(a) p(e) p(d \mid a, e) p(b \mid e) p(c \mid d)$. Then
$\rightarrow$ Justify: $a \not \Perp b \mid c$

## Sampling methods

Consider all possible paths from any node in $A$ to any node in $B$. Any such path is called blocked if it includes a node such that either
(a) the arrows on the path meet either head-to-tail or tail-to-tail at the node which is in $C$, or
(b) the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, is in the set $C$
If all the paths are blocked, then $A$ is said to be $d$-separated from $B$ by $C$, and the joint distribution over all the variables in the graph will satisfy $A \Perp B \mid C$

Example Consider $p(a, b, c, d, e)=p(a) p(e) p(d \mid a, e) p(b \mid e) p(c \mid d)$. Then
$\rightarrow$ Justify: $a \not \Perp b \mid c$
$\rightarrow$ Justify: $a \Perp b \mid e$

## Sampling methods

Consider all possible paths from any node in $A$ to any node in $B$. Any such path is called blocked if it includes a node such that either
(a) the arrows on the path meet either head-to-tail or tail-to-tail at the node which is in $C$, or
(b) the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, is in the set $C$
If all the paths are blocked, then $A$ is said to be $d$-separated from $B$ by $C$, and the joint distribution over all the variables in the graph will satisfy $A \Perp B \mid C$

Example Consider $p(a, b, c, d, e)=p(a) p(e) p(d \mid a, e) p(b \mid e) p(c \mid d)$. Then
$\rightarrow$ Justify: $a \not \Perp b \mid c$
$\rightarrow$ Justify: $a \Perp b \mid e$
Question Develop an algorithm for D-separation for DAGs.

## Sampling methods

Exponential family of distributions - The exponential family of distributions over $\mathbf{x}$, given parameters $\boldsymbol{\eta}$ is said to be distributions of the form

$$
p(\mathbf{x} ; \boldsymbol{\eta})=h(\mathbf{x}) g(\boldsymbol{\eta}) \exp \left\{\boldsymbol{\eta}^{T} \mathbf{u}(\mathbf{x})\right\}
$$

where x may be scalar or vector, and may be continuous and discrete, $\boldsymbol{\eta}=\left[\eta_{1}, \ldots, \eta_{K}\right]^{T}$ is called the vector of natural parameters of the distribution, and $\mathbf{u}(\mathbf{x})=\left[u_{1}(\mathbf{x}), \ldots, u_{K}(x)\right]^{T}$ is the vector of sufficient statistics, each sufficient statistic $u_{k}(\mathbf{x})$ being a function of $\mathbf{x}, h(\mathbf{x})$ is the base measure which is a function of $\mathbf{x}$ independent of $\boldsymbol{\eta}$, and $g(\boldsymbol{\eta})$ is the partition function such that

$$
\frac{1}{g(\boldsymbol{\eta})}=\int \exp \left(\boldsymbol{\eta}^{T} \mathbf{u}(\mathbf{x})\right) h(\mathbf{x}) d \mathbf{x}
$$

for continuous rvs and $\frac{1}{g(\boldsymbol{\eta})}=\sum_{\mathbf{x}} \exp \left(\boldsymbol{\eta}^{T} \mathbf{u}(x)\right) h(\mathbf{x})$ for discrete $r v$

## Sampling methods

Sufficient statistic Let $p(\mathbf{x}, \theta)$ be the distribution of a rv $\mathbf{X}$ that depends on $\theta$. A function $f(\mathbf{x})$ is a sufficient statistic for the estimate of $\theta$ if the likelihood $p(\mathbf{x}, \theta)$ of the parameters $\theta$ depends on $\mathbf{x}$ only through the function $f(\mathbf{x})$.

## Sampling methods

Sufficient statistic Let $p(\mathbf{x}, \theta)$ be the distribution of a rv $\mathbf{X}$ that depends on $\theta$. A function $f(\mathbf{x})$ is a sufficient statistic for the estimate of $\theta$ if the likelihood $p(\mathbf{x}, \theta)$ of the parameters $\theta$ depends on $\mathbf{x}$ only through the function $f(\mathbf{x})$.
For example, $X \sim \mathcal{N}\left(0, \sigma^{2}\right)$, the function $f(x)=x^{2}$ can be easily seen to be sufficient for the estimate of the variance $\sigma^{2}$

## Sampling methods

Sufficient statistic Let $p(\mathbf{x}, \theta)$ be the distribution of a rv $\mathbf{X}$ that depends on $\theta$. A function $f(\mathbf{x})$ is a sufficient statistic for the estimate of $\theta$ if the likelihood $p(\mathbf{x}, \theta)$ of the parameters $\theta$ depends on $\mathbf{x}$ only through the function $f(\mathbf{x})$.
For example, $X \sim \mathcal{N}\left(0, \sigma^{2}\right)$, the function $f(x)=x^{2}$ can be easily seen to be sufficient for the estimate of the variance $\sigma^{2}$

Bernoulli -

$$
\begin{aligned}
p(x, \mu) & =\mu^{x}(1-\mu)^{1-x}=\exp \{x \ln \mu+(1-x) \ln (1-\mu)\} \\
& =(1-\mu) \exp \left\{\ln \left(\frac{\mu}{1-\mu}\right) x\right\}
\end{aligned}
$$

## Sampling methods

Sufficient statistic Let $p(\mathbf{x}, \theta)$ be the distribution of a rv $\mathbf{X}$ that depends on $\theta$. A function $f(\mathbf{x})$ is a sufficient statistic for the estimate of $\theta$ if the likelihood $p(\mathbf{x}, \theta)$ of the parameters $\theta$ depends on $\mathbf{x}$ only through the function $f(\mathbf{x})$.
For example, $X \sim \mathcal{N}\left(0, \sigma^{2}\right)$, the function $f(x)=x^{2}$ can be easily seen to be sufficient for the estimate of the variance $\sigma^{2}$

Bernoulli -

$$
\begin{aligned}
p(x, \mu) & =\mu^{x}(1-\mu)^{1-x}=\exp \{x \ln \mu+(1-x) \ln (1-\mu)\} \\
& =(1-\mu) \exp \left\{\ln \left(\frac{\mu}{1-\mu}\right) x\right\}
\end{aligned}
$$

Set $\eta=\ln \left(\frac{\mu}{1-\mu}\right)$ and $g(\eta)=\frac{1}{1+\exp (-\eta)} \Rightarrow p(x, \mu)=g(-\eta) \exp (\eta x)$, $g$ is called the logistic sigmoid function

## Sampling methods

## Gaussian -

$$
\begin{aligned}
p\left(x ; \mu, \sigma^{2}\right) & =\frac{1}{\left(2 \pi \sigma^{2}\right)^{1} / 2} \exp \left\{-\frac{1}{-2 \sigma^{2}}(x-\mu)^{2}\right\} \\
& =\frac{1}{\left(2 \pi \sigma^{2}\right)^{1} / 2} \exp \left\{-\frac{1}{-2 \sigma^{2}} x^{2}+\frac{\mu}{\sigma^{2}} x-\frac{1}{2 \sigma^{2}} \mu^{2}\right\} \\
& =h(\mathbf{x}) g(\boldsymbol{\eta}) \exp \left\{\boldsymbol{\eta}^{T} u(\mathbf{x})\right\}
\end{aligned}
$$

$$
\boldsymbol{\eta}=\left[\begin{array}{c}
\mu / \sigma^{2} \\
-1 / 2 \sigma^{2}
\end{array}\right], u(x)=\left[\begin{array}{c}
x \\
x^{2}
\end{array}\right], h(x)=(2 \pi)^{-1 / 2}
$$

$$
g(\boldsymbol{\eta})=\left(-2 \eta_{2}\right)^{1 / 2} \exp \left(\frac{\eta_{1}^{2}}{4 \eta_{2}}\right)
$$

## Sampling methods

## Examples of Exponential Families

Bernoulli: distribution on $(0,1)$
Categorical: distribution on $\{1,2, \ldots, k\}$
Gaussian: distribution on $\mathbb{R}^{d}$
Beta: distribution on $[0,1]$ (including uniform)
Dirichlet: distribution on discrete probabilities
Wishart: distribution on positive-definite matrices
Poisson: distribution on non-negative integers.
Gamma: distribution on positive real numbers
many more....

## Sampling methods

Maximum likelihood and sufficient statistics How to estimate the values of the parameters from a data which supposedly follows a distribution from the exponential family?
Recall that
$\rightarrow$ The gradient of a differentiable function $f(\mathbf{x})$ with $\mathbf{x}=\left[x_{1}, \ldots, x_{d}\right] \in \mathbb{R}^{d}$ is defined as

$$
\nabla f(\mathbf{x})=\left[\partial f(\mathbf{x}) / \partial x_{1}, \ldots, \partial f(\mathbf{x}) / \partial x_{d}\right]^{T}
$$

## Sampling methods

Maximum likelihood and sufficient statistics How to estimate the values of the parameters from a data which supposedly follows a distribution from the exponential family?
Recall that
$\rightarrow$ The gradient of a differentiable function $f(\mathbf{x})$ with $\mathbf{x}=\left[x_{1}, \ldots, x_{d}\right] \in \mathbb{R}^{d}$ is defined as

$$
\nabla f(\mathbf{x})=\left[\partial f(\mathbf{x}) / \partial x_{1}, \ldots, \partial f(\mathbf{x}) / \partial x_{d}\right]^{T}
$$

$\rightarrow$ The Hessian of $f(\mathbf{x})$ is a $d \times d$ matrix with $i j$-th entry $\partial^{2} f(\mathbf{x}) / \partial x_{i} \partial x_{j}$

## Sampling methods

Taking the gradient both sides of $g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp \left\{\boldsymbol{\eta}^{T} \mathbf{u}(\mathbf{x})\right\} d \mathbf{x}=1$ we obtain
$\nabla g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp \left\{\boldsymbol{\eta}^{T} \mathbf{u}(\mathbf{x})\right\} d \mathbf{x}+$

## Sampling methods

Taking the gradient both sides of $g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp \left\{\boldsymbol{\eta}^{T} \mathbf{u}(\mathbf{x})\right\} d \mathbf{x}=1$ we obtain
$\nabla g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp \left\{\boldsymbol{\eta}^{T} \mathbf{u}(\mathbf{x})\right\} d \mathbf{x}+g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp \left\{\boldsymbol{\eta}^{T} \mathbf{u}(\mathbf{x})\right\} \mathbf{u}(\mathbf{x}) d \mathbf{x}=0$

## Sampling methods

Taking the gradient both sides of $g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp \left\{\boldsymbol{\eta}^{T} \mathbf{u}(\mathbf{x})\right\} d \mathbf{x}=1$ we obtain
$\nabla g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp \left\{\boldsymbol{\eta}^{T} \mathbf{u}(\mathbf{x})\right\} d \mathbf{x}+g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp \left\{\boldsymbol{\eta}^{T} \mathbf{u}(\mathbf{x})\right\} \mathbf{u}(\mathbf{x}) d \mathbf{x}=0$

Which implies

$$
-\frac{1}{g(\boldsymbol{\eta})} \nabla g(\boldsymbol{\eta})=g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp \left\{\boldsymbol{\eta}^{T} \mathbf{u}(\mathbf{x})\right\} \mathbf{u}(\mathbf{x}) d \mathbf{x}=\mathbb{E}[\mathbf{u}(\mathbf{x})]
$$

## Sampling methods

Taking the gradient both sides of $g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp \left\{\boldsymbol{\eta}^{T} \mathbf{u}(\mathbf{x})\right\} d \mathbf{x}=1$ we obtain
$\nabla g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp \left\{\boldsymbol{\eta}^{T} \mathbf{u}(\mathbf{x})\right\} d \mathbf{x}+g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp \left\{\boldsymbol{\eta}^{T} \mathbf{u}(\mathbf{x})\right\} \mathbf{u}(\mathbf{x}) d \mathbf{x}=0$

Which implies

$$
-\frac{1}{g(\boldsymbol{\eta})} \nabla g(\boldsymbol{\eta})=g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp \left\{\boldsymbol{\eta}^{T} \mathbf{u}(\mathbf{x})\right\} \mathbf{u}(\mathbf{x}) d \mathbf{x}=\mathbb{E}[\mathbf{u}(\mathbf{x})]
$$

Thus

$$
-\nabla \ln g(\boldsymbol{\eta})=\mathbb{E}[\mathbf{u}(\mathbf{x})]
$$

## Sampling methods

Taking the gradient both sides of $g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp \left\{\boldsymbol{\eta}^{T} \mathbf{u}(\mathbf{x})\right\} d \mathbf{x}=1$ we obtain
$\nabla g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp \left\{\boldsymbol{\eta}^{T} \mathbf{u}(\mathbf{x})\right\} d \mathbf{x}+g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp \left\{\boldsymbol{\eta}^{T} \mathbf{u}(\mathbf{x})\right\} \mathbf{u}(\mathbf{x}) d \mathbf{x}=0$

Which implies

$$
-\frac{1}{g(\boldsymbol{\eta})} \nabla g(\boldsymbol{\eta})=g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp \left\{\boldsymbol{\eta}^{T} \mathbf{u}(\mathbf{x})\right\} \mathbf{u}(\mathbf{x}) d \mathbf{x}=\mathbb{E}[\mathbf{u}(\mathbf{x})]
$$

Thus

$$
-\nabla \ln g(\boldsymbol{\eta})=\mathbb{E}[\mathbf{u}(\mathbf{x})]
$$

Similarly the covariance matrix of $\mathbf{u}(\mathbf{x})$ can be expressed in terms of the second derivative of $g(\boldsymbol{\eta})$, and the higher order moments. The covariance matrix is also equal to the Fisher information matrix for natural parameters

## Sampling methods

Estimation of $\boldsymbol{\eta}_{M L}$ Consider a set of iid data denoted by $\mathbf{X}=\left\{X_{1}, \ldots, X_{N}\right\}$. Then the likelihood function is

## Sampling methods

Estimation of $\boldsymbol{\eta}_{M L}$ Consider a set of iid data denoted by $\mathbf{X}=\left\{X_{1}, \ldots, X_{N}\right\}$. Then the likelihood function is

$$
p(\mathbf{X}, \boldsymbol{\eta})=\left(\prod_{n=1}^{N} h\left(\mathbf{x}_{n}\right)\right) g(\boldsymbol{\eta})^{N} \exp \left\{\boldsymbol{\eta}^{T} \sum_{n=1}^{N} \mathbf{u}\left(\mathbf{x}_{n}\right)\right\}
$$

## Sampling methods

Estimation of $\boldsymbol{\eta}_{M L}$ Consider a set of iid data denoted by $\mathbf{X}=\left\{X_{1}, \ldots, X_{N}\right\}$. Then the likelihood function is

$$
p(\mathbf{X}, \boldsymbol{\eta})=\left(\prod_{n=1}^{N} h\left(\mathbf{x}_{n}\right)\right) g(\boldsymbol{\eta})^{N} \exp \left\{\boldsymbol{\eta}^{T} \sum_{n=1}^{N} \mathbf{u}\left(\mathbf{x}_{n}\right)\right\}
$$

Setting the gradient of $\ln p(\mathbf{X}, \boldsymbol{\eta})$ wrt $\boldsymbol{\eta}$ to zero, we obtain the following condition to be satisfied by the maximum likelihood estimator $\boldsymbol{\eta}_{M L}$

$$
-\nabla \ln g\left(\boldsymbol{\eta}_{M L}\right)=\frac{1}{N} \sum_{n=1}^{N} \mathbf{u}\left(\mathbf{x}_{n}\right)
$$

which can in principle be solved to obtain $\boldsymbol{\eta}_{M L}$

## Sampling methods

Estimation of $\boldsymbol{\eta}_{M L}$ Consider a set of iid data denoted by $\mathbf{X}=\left\{X_{1}, \ldots, X_{N}\right\}$. Then the likelihood function is

$$
p(\mathbf{X}, \boldsymbol{\eta})=\left(\prod_{n=1}^{N} h\left(\mathbf{x}_{n}\right)\right) g(\boldsymbol{\eta})^{N} \exp \left\{\boldsymbol{\eta}^{T} \sum_{n=1}^{N} \mathbf{u}\left(\mathbf{x}_{n}\right)\right\}
$$

Setting the gradient of $\ln p(\mathbf{X}, \boldsymbol{\eta})$ wrt $\boldsymbol{\eta}$ to zero, we obtain the following condition to be satisfied by the maximum likelihood estimator $\boldsymbol{\eta}_{M L}$

$$
-\nabla \ln g\left(\boldsymbol{\eta}_{M L}\right)=\frac{1}{N} \sum_{n=1}^{N} \mathbf{u}\left(\mathbf{x}_{n}\right)
$$

which can in principle be solved to obtain $\boldsymbol{\eta}_{M L}$
Observation The MLE depends on the data through $\sum_{n} \mathbf{u}\left(\mathbf{x}_{n}\right)$, which is therefore called the sufficient statistic of the distribution

## Sampling methods

Question Verify the above MLE for multivariate Gaussian distribution

## Sampling methods

Question Verify the above MLE for multivariate Gaussian distribution The sufficient statistics are:

$$
\sum_{n=1}^{N} \mathbf{x}_{n} \text { and } \sum_{n=1}^{N} \mathbf{x}_{n} \mathbf{x}_{n}^{T}
$$

## Sampling methods

Question Verify the above MLE for multivariate Gaussian distribution The sufficient statistics are:

$$
\sum_{n=1}^{N} \mathbf{x}_{n} \text { and } \sum_{n=1}^{N} \mathbf{x}_{n} \mathbf{x}_{n}^{T}
$$

The ML estimates are:

$$
\boldsymbol{\mu}_{M L}=\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n}, \text { and } \boldsymbol{\Sigma}_{M L}=\frac{1}{N} \sum_{n=1}^{N}\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{M L}\right)\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{M L}\right)^{T}
$$

## Sampling methods

Observation Note that the partition function $g(\boldsymbol{\eta})$ for the exponential family

$$
p(\mathbf{x} ; \boldsymbol{\eta})=g(\boldsymbol{\eta}) \exp \left\{\boldsymbol{\eta}^{T} \mathbf{u}(\mathbf{x})\right\} h(\mathbf{x})
$$

normalizes the distribution.

## Sampling methods

Observation Note that the partition function $g(\boldsymbol{\eta})$ for the exponential family

$$
p(\mathbf{x} ; \boldsymbol{\eta})=g(\boldsymbol{\eta}) \exp \left\{\boldsymbol{\eta}^{T} \mathbf{u}(\mathbf{x})\right\} h(\mathbf{x})
$$

normalizes the distribution.
Then the unnormalized distribution

$$
\widetilde{p}(\mathbf{x}, \boldsymbol{\eta})=\exp \left(\boldsymbol{\eta}^{T} \mathbf{u}(\mathbf{x})\right) h(\mathbf{x})
$$

## Sampling methods

Observation Note that the partition function $g(\boldsymbol{\eta})$ for the exponential family

$$
p(\mathbf{x} ; \boldsymbol{\eta})=g(\boldsymbol{\eta}) \exp \left\{\boldsymbol{\eta}^{T} \mathbf{u}(\mathbf{x})\right\} h(\mathbf{x})
$$

normalizes the distribution.
Then the unnormalized distribution

$$
\widetilde{p}(\mathbf{x}, \boldsymbol{\eta})=\exp \left(\boldsymbol{\eta}^{T} \mathbf{u}(\mathbf{x})\right) h(\mathbf{x})
$$

Then

$$
\ln \widetilde{p}(\mathbf{x}, \boldsymbol{\eta})=\boldsymbol{\eta}^{T} \mathbf{u}(\mathbf{x})+\ln h(\mathbf{x})
$$

is known as energy function, which is linear in $\boldsymbol{\eta}$.

## Sampling methods

Observation Note that the partition function $g(\boldsymbol{\eta})$ for the exponential family

$$
p(\mathbf{x} ; \boldsymbol{\eta})=g(\boldsymbol{\eta}) \exp \left\{\boldsymbol{\eta}^{T} \mathbf{u}(\mathbf{x})\right\} h(\mathbf{x})
$$

normalizes the distribution.
Then the unnormalized distribution

$$
\widetilde{p}(\mathbf{x}, \boldsymbol{\eta})=\exp \left(\boldsymbol{\eta}^{T} \mathbf{u}(\mathbf{x})\right) h(\mathbf{x})
$$

Then

$$
\ln \widetilde{p}(\mathbf{x}, \boldsymbol{\eta})=\boldsymbol{\eta}^{T} \mathbf{u}(\mathbf{x})+\ln h(\mathbf{x})
$$

is known as energy function, which is linear in $\eta$.
Thus the $p(\mathbf{x} ; \boldsymbol{\eta})$ is referred as log-linear

