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Monte Carlo methods
Observation from LDA The posterior distribution is a primary concept to
make predictions. Finding E[L(x)] = E[bTx] and Var [L(x)] is crucial

Problem Find the expected value of a function f (x) with respect to a
probability distribution p(x) using a numerical sampling!

→ If f is continuous then E[f ] =
∫
f (x)p(x)dx and replace the integral

by summation for discrete random variables

→ The idea of sampling methods is to obtain a set of samples from
{xl : 1 ≤ l ≤ L} drawn independently from the distribution p(x)

→ Then the expectation can be approximated by a finite sum

f̂ =
1

L

L∑
l=1

f (xl)

→ The variance of this estimator is

var [f̂ ] =
1

L
E[(f − E[f ])2]
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Sampling methods

Note

→ Accuracy of the estimator does not depend on the dimension of x

→ In principle, high accuracy may be achievable with a relatively small
number of samples xl

Problem Are the samples independent?
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Sampling methods

Graphical model A convenient representation of joint distribution p(x)

→ Graph: G = (V ,E ), where V is called the vertex set, E ⊂ V × V is
called the edge set

→ The nodes represent random variables, and edges represent
probabilistic relationship between those random variables

→ The graph captures the way in which a joint distribution over all the
random variables can be decomposed into a product of factors each
depending only on a subset of random variables

Belief networks/Bayesian networks/directed graphical models - the edges
in these graphs are directed with other certain structure. The edges
express causal relationships between the variables
Markov random fields/undirected graphical models - the edges express
constraints between random variables
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Sampling methods

Bayesian networks Consider a joint random variables X = (X1,X2,X3).
Then by product rule:

p(a, b, c) = p(X1 = a,X2 = b,X3 = c) = p(c |a, b) p(a, b)

= p(c |a, b) p(b|a) p(a)

This is valid for any choice of the distribution. The graphical model
representation of this joint distribution is given by:
For each conditional distribution, we add directed edge to the graph from
the nodes corresponding to the random variables on which the distribution
is conditional
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Sampling methods

Thus a link going from a node a to a node b, we say that node a is the
parent of node b, and we say that the node b is the child of a

From p(a, b, c) = p(c |a, b) p(b|a) p(a), observe that the left-hand side is
symmetrical wrt the variables a, b, c but the right-hand side is not. In
general, for K random variables,

p(X1, . . . ,XK ) = p(XK |X1, . . . ,XK−1) . . . p(X2|X1) p(X1)

Then observe that, for any K , the corresponding Graphical model is fully
connected, i.e. any two pair of nodes there is an link connecting them.
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Sampling methods

Consider the graph

p(X) = p(X1)p(X2)p(X3)p(X4|X1,X2,X3)p(X5|X1,X3)p(X6|X4)p(X7|X4,X5)

For any graph with K nodes, the joint distribution is given by

p(X) =
K∏

k=1

p(Xk |pak)

where pak denotes the set of parents of Xk , and X = (X1, . . . ,XK )
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Sampling methods

Directed acyclic graphs (DAGs) - a directed graph without cycles i.e. there
are no closed paths within the graph

Ancestral sampling Suppose that the random variables have been ordered
such that there are no links from any node to any lower numbered node
i.e. each node has a higher number than any of its parents.

Goal: Draw a sample X̂1, . . . , X̂K from the joint distribution, starting from
the lowest-numbered node

In practical applications, the higher numbered nodes correspond to the
observed values and the lower numbered nodes correspond to the latent
variables. For example, if an image is considered as an observation then
object, position, and orientation will be the latent variables. (Draw a
graphical model!)
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Sampling methods

→ Draw a sample from the distribution p(X1), call it x̂1

→ Do the same for each conditional distribution p(Xk |pak) attached
with all the nodes sequentially in order

→ Once we have sampled from the final random variable xK , we will
have achieved our objective of obtaining a sample from the joint
distribution

→ To obtain a sample from some marginal distribution corresponding to
a subset of variables, the sampled values for the required nodes are
taken out ignoring the samples values for the remaining nodes

For example, to draw a sample from a distribution p(x2, x4), we
sample from the full joint distribution and then retain the values
x̂2, x̂4 and discard the remaining values {x̂j ̸=2,4}
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Monte Carlo methods

Linear-Gaussian models - a multivariate Gaussian can be expressed as a
directed graph corresponding to a linear-Gaussian model

Consider an arbitrary directed acyclic graph with n nodes, which is
attached with a random variable Xi having Gaussian distribution. The
mean of this distribution is taken to be a linear combination of the states
of the parent nodes pai of node i :

p(Xi |pai ) = N

Xi

∣∣∣∣∣∣
∑
j∈pai

wijxj + bi , vi

 ,

where wij and bi are parameters governing the mean, and vi is the
variance of the conditional distribution for Xi
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Sampling methods
Then setting X = (X1,X2, . . . ,Xn). Then

ln p(x) =
n∑

i=1

ln p(xi |pai )

= −
n∑

i=1

1

2vi

xi −
∑
j∈pai

wijxj − bi

2

+ constant

Finding mean and covariance of the joint distribution recursively:

→ From the expression of p(Xi |pai ),

Xi =
∑
j∈pai

wijXj + bi +
√
viϵi ,

where ϵi is a zero mean, unit variance Gaussian rv satisfying E[ϵi ] = 0
and E[ϵiϵj ] = Iij , the ij-th entry of the identity matrix

→ Then
E[Xi ] =

∑
j∈pai

wijE[Xj ] + bi
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Sampling methods

Further

Cov [Xi ,Xj ] = E[(Xi − E[Xi ])(Xj − E[Xj ])]

= E

(Xi − E[Xi ])

 ∑
k∈paj

wjk(Xk − E(Xk)) +
√
vjϵj




=
∑
k∈paj

wjkCov [Xi ,Xk ] + Iijvj

Thus covariance can similarly be evaluated recursively starting from the
lowest numbered node

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 18 March 15, 2023 12 / 14



Sampling methods

Example Suppose the graph corresponding to a graphical model has no
links and only with n isolated nodes i.e. random variables.

→ There are no wij and hence only n parameters vi

→ From the recursive relations of E[Xi ] and Cov [Xi ,Xj ], we see that the
mean of X is (b1, b2, . . . , bn)

→ The covariance matrix is diagonal of the form diag(v1, . . . , vn)

→ The joint distribution has 2n parameters and represents a set of n
independent univariate Gaussian distributions
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Sampling methods

Example Suppose the graph corresponding to a Graphical model is fully
connected i.e. each node has all lower numbered nodes as parents

→ The matrix defined by wij has i − 1 nonzero entries in each row with
the diagonal entry 0

→ The total number of parameters wij is n(n − 1)/2

→ The total number of independent parameters wij and vi is then
n(n + 1)/2 corresponding to a general symmetric matrix

Example

µ = (b1, b2 + w21b1, b3 + w32b2 + w32w21b1)

Σ =

 v1 w21v1 w32w21v1
w21v1 v2 + w2

21v1 w32(v2 + w2
21v1)

w32w21v1 w32(v2 + w2
21v1) v3 + w2

32(v2 + w2
21v1)


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