Big Data Analysis (MA60306)

Bibhas Adhikari

Spring 2022-23, IIT Kharagpur

> Lecture 17
> March 10,2023

QDA

Multiclass LDA Suppose the data set is divided into $K>2$ disjoint classes Bayes's rule classifier Let

$$
\begin{aligned}
P\left(\mathbf{X} \in \Pi_{i}\right) & =\pi_{i}, i=1, \ldots, K \\
P\left(\mathbf{X}=\mathbf{x} \mid \mathbf{X} \in \Pi_{i}\right) & =f_{i}(\mathbf{x}) \\
p\left(\Pi_{i} \mid \mathbf{x}\right) & =P\left(\mathbf{X} \in \Pi_{i} \mid \mathbf{X}=\mathbf{x}\right)=\frac{f_{i}(\mathbf{x}) \pi_{i}}{\sum_{k=1}^{K} f_{k}(\mathbf{x}) \pi_{k}}
\end{aligned}
$$

QDA

Multiclass LDA Suppose the data set is divided into $K>2$ disjoint classes Bayes's rule classifier Let

$$
\begin{aligned}
P\left(\mathbf{X} \in \Pi_{i}\right) & =\pi_{i}, i=1, \ldots, K \\
P\left(\mathbf{X}=\mathbf{x} \mid \mathbf{X} \in \Pi_{i}\right) & =f_{i}(\mathbf{x}) \\
p\left(\Pi_{i} \mid \mathbf{x}\right) & =P\left(\mathbf{X} \in \Pi_{i} \mid \mathbf{X}=\mathbf{x}\right)=\frac{f_{i}(\mathbf{x}) \pi_{i}}{\sum_{k=1}^{K} f_{k}(\mathbf{x}) \pi_{k}}
\end{aligned}
$$

Assign x to Π_{i} if

$$
f_{i}(\mathbf{x}) \pi_{i}=\max _{1 \leq j \leq K} f_{j}(\mathbf{x}) \pi_{j}
$$

QDA

Multiclass LDA Suppose the data set is divided into $K>2$ disjoint classes Bayes's rule classifier Let

$$
\begin{aligned}
P\left(\mathbf{X} \in \Pi_{i}\right) & =\pi_{i}, i=1, \ldots, K \\
P\left(\mathbf{X}=\mathbf{x} \mid \mathbf{X} \in \Pi_{i}\right) & =f_{i}(\mathbf{x}) \\
p\left(\Pi_{i} \mid \mathbf{x}\right) & =P\left(\mathbf{X} \in \Pi_{i} \mid \mathbf{X}=\mathbf{x}\right)=\frac{f_{i}(\mathbf{x}) \pi_{i}}{\sum_{k=1}^{K} f_{k}(\mathbf{x}) \pi_{k}}
\end{aligned}
$$

Assign x to Π_{i} if

$$
f_{i}(\mathbf{x}) \pi_{i}=\max _{1 \leq j \leq K} f_{j}(\mathbf{x}) \pi_{j}
$$

If the maximizer is not unique then assign \mathbf{x} randomly to break the tie.

LDA

Thus \mathbf{x} gets assigned to Π_{i} if $f_{i}(\mathbf{x}) \pi_{i}>f_{j}(\mathbf{x}) \pi_{j}$ for all $i \neq j$ i.e. $\log _{e}\left(f_{i}(\mathbf{x}) \pi_{i}\right)>\log _{e}\left(f_{j}(\mathbf{x}) \pi_{j}\right)$. Finally, define

$$
L_{i j}(\mathbf{x})=\log _{e}\left[\frac{f_{i}(\mathbf{x}) \pi_{i}}{f_{j}(\mathbf{x}) \pi_{j}}\right]
$$

and assign \mathbf{x} to Π_{i} if $L_{i j}(\mathbf{x})>0$, otherwise assign \mathbf{x} to Π_{j}.

LDA

Thus \mathbf{x} gets assigned to Π_{i} if $f_{i}(\mathbf{x}) \pi_{i}>f_{j}(\mathbf{x}) \pi_{j}$ for all $i \neq j$ i.e. $\log _{e}\left(f_{i}(\mathbf{x}) \pi_{i}\right)>\log _{e}\left(f_{j}(\mathbf{x}) \pi_{j}\right)$. Finally, define

$$
L_{i j}(\mathbf{x})=\log _{e}\left[\frac{f_{i}(\mathbf{x}) \pi_{i}}{f_{j}(\mathbf{x}) \pi_{j}}\right]
$$

and assign \mathbf{x} to Π_{i} if $L_{i j}(\mathbf{x})>0$, otherwise assign \mathbf{x} to Π_{j}.
The classification regions in the feature space \mathbb{R}^{d} are

$$
\begin{aligned}
& \quad R_{i}=\left\{\mathbf{x} \in \mathbb{R}^{d}: L_{i j}(\mathbf{x})>0, j=1,2 \ldots, K, j \neq i\right\}, \\
& i=1,2, \ldots, K
\end{aligned}
$$

LDA

Assuming that $f_{i}(\mathbf{x}) \sim \mathcal{N}_{d}\left(\boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}\right)$ we have

$$
L_{i j}(\mathbf{x})=b_{0 i j}+\mathbf{b}_{i j}^{T} \mathbf{x}
$$

where

$$
\begin{aligned}
\mathbf{b}_{i j} & =\left(\boldsymbol{\mu}_{i}-\boldsymbol{\mu}_{j}\right)^{T} \boldsymbol{\Sigma}^{-1} \\
b_{0 i j} & =-\frac{1}{2}\left[\boldsymbol{\mu}_{i}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_{i}-\boldsymbol{\mu}_{j}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_{j}\right]+\log _{e}\left(\pi_{i} / \pi_{j}\right)
\end{aligned}
$$

LDA

Assuming that $f_{i}(\mathbf{x}) \sim \mathcal{N}_{d}\left(\boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}\right)$ we have

$$
L_{i j}(\mathbf{x})=b_{0 i j}+\mathbf{b}_{i j}^{T} \mathbf{x}
$$

where

$$
\begin{aligned}
\mathbf{b}_{i j} & =\left(\boldsymbol{\mu}_{i}-\boldsymbol{\mu}_{j}\right)^{T} \boldsymbol{\Sigma}^{-1} \\
b_{0 i j} & =-\frac{1}{2}\left[\boldsymbol{\mu}_{i}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_{i}-\boldsymbol{\mu}_{j}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_{j}\right]+\log _{e}\left(\pi_{i} / \pi_{j}\right)
\end{aligned}
$$

Conclusion Since $L_{i j}(\mathbf{x})$ is linear in \mathbf{x}, the regions $R_{i}, i=1, \ldots, K$ partition the feature space by means of hyperplanes

LDA

Question How to implement in real data?
\rightarrow The mean vectors $\mu_{i}, 1 \leq i \leq K$ and the common covariance matrix $\boldsymbol{\Sigma}$ are not known

LDA

Question How to implement in real data?
\rightarrow The mean vectors $\mu_{i}, 1 \leq i \leq K$ and the common covariance matrix $\boldsymbol{\Sigma}$ are not known
\rightarrow There are $K d+d(d+1) / 2$ parameters we need to estimate from learning the sampled feature vectors

LDA

Question How to implement in real data?
\rightarrow The mean vectors $\mu_{i}, 1 \leq i \leq K$ and the common covariance matrix $\boldsymbol{\Sigma}$ are not known
\rightarrow There are $K d+d(d+1) / 2$ parameters we need to estimate from learning the sampled feature vectors
\rightarrow Let $\mathbf{x}_{i j}$ denote the data points in the $\Pi_{i}, 1 \leq j \leq n_{i}$

LDA

Question How to implement in real data?
\rightarrow The mean vectors $\mu_{i}, 1 \leq i \leq K$ and the common covariance matrix $\boldsymbol{\Sigma}$ are not known
\rightarrow There are $K d+d(d+1) / 2$ parameters we need to estimate from learning the sampled feature vectors
\rightarrow Let $\mathbf{x}_{i j}$ denote the data points in the $\Pi_{i}, 1 \leq j \leq n_{i}$
\rightarrow Set $\mathcal{X}_{i}=\left[\mathbf{x}_{i 1} \mathbf{x}_{i 2} \ldots \mathbf{x}_{i n_{i}}\right]_{d \times n_{i}}, 1 \leq i \leq K$

LDA

Question How to implement in real data?
\rightarrow The mean vectors $\mu_{i}, 1 \leq i \leq K$ and the common covariance matrix $\boldsymbol{\Sigma}$ are not known
\rightarrow There are $K d+d(d+1) / 2$ parameters we need to estimate from learning the sampled feature vectors
\rightarrow Let $\mathbf{x}_{i j}$ denote the data points in the $\Pi_{i}, 1 \leq j \leq n_{i}$
\rightarrow Set $\mathcal{X}_{i}=\left[\begin{array}{llll}\mathbf{x}_{i 1} & \left.\mathbf{x}_{i 2} \ldots \mathbf{x}_{i n_{i}}\right]_{d \times n_{i}}, 1 \leq i \leq K\end{array}\right.$
\rightarrow Set $n=\sum_{i=1}^{K} n_{i}$ and

$$
\mathcal{X}=\left[\begin{array}{llll}
\mathcal{X}_{1} & \mathcal{X}_{2} & \ldots & \mathcal{X}_{K}
\end{array}\right]=\left[\begin{array}{llll}
\mathbf{x}_{11} & \ldots & \mathbf{x}_{1 n_{1}} & \ldots \\
\mathbf{x}_{K 1} & \ldots & \mathbf{x}_{K n_{K}}
\end{array}\right]
$$

\rightarrow Set $\overline{\mathbf{x}}_{i}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}} x_{i j}=\frac{1}{n_{i}} \mathcal{X}_{i} \mathbf{1}_{n_{i}}, 1 \leq i \leq K$ and

LDA

\rightarrow Let

$$
\mathcal{X}_{c}=\mathcal{X}-\overline{\mathcal{X}}=\left(\mathcal{X}_{1} C_{n_{1}} \ldots \mathcal{X}_{K} C_{n_{K}}\right) \in \mathbb{R}^{d \times n}
$$

where $C_{n_{j}}, j=1,2, \ldots, K$ is the centering matrix.

LDA

\rightarrow Let

$$
\mathcal{X}_{c}=\mathcal{X}-\overline{\mathcal{X}}=\left(\mathcal{X}_{1} C_{n_{1}} \ldots \mathcal{X}_{K} C_{n_{K}}\right) \in \mathbb{R}^{d \times n}
$$

where $C_{n_{j}}, j=1,2, \ldots, K$ is the centering matrix.
\rightarrow Then compute

$$
S=\mathcal{X}_{c} \mathcal{X}_{c}^{T}=\sum_{i=1}^{K} \sum_{j=1}^{n_{i}}\left(\mathbf{x}_{i j}-\overline{\mathbf{x}}_{i}\right)\left(\mathbf{x}_{i j}-\overline{\mathbf{x}}_{i}\right)^{T} .
$$

\rightarrow Let

$$
\mathcal{X}_{c}=\mathcal{X}-\overline{\mathcal{X}}=\left(\mathcal{X}_{1} C_{n_{1}} \ldots \mathcal{X}_{K} C_{n_{K}}\right) \in \mathbb{R}^{d \times n}
$$

where $C_{n_{j}}, j=1,2, \ldots, K$ is the centering matrix.
\rightarrow Then compute

$$
S=\mathcal{X}_{c} \mathcal{X}_{c}^{T}=\sum_{i=1}^{K} \sum_{j=1}^{n_{i}}\left(\mathbf{x}_{i j}-\overline{\mathbf{x}}_{i}\right)\left(\mathbf{x}_{i j}-\overline{\mathbf{x}}_{i}\right)^{T} .
$$

\rightarrow Consider $\mathbf{x}_{i j}-\overline{\mathbf{x}}=\left(\mathbf{x}_{i j}-\overline{\mathbf{x}}_{i}\right)+\left(\overline{\mathbf{x}}_{i}-\overline{\mathbf{x}}\right)$, where

$$
\overline{\mathbf{x}}=\frac{1}{n} \mathcal{X} \mathbf{1}_{n}=\frac{1}{n} \sum_{i=1}^{K} \sum_{j=1}^{n_{i}} \mathbf{x}_{i j}=\left(\overline{\mathbf{x}}_{1}, \overline{\mathbf{x}}_{2}, \ldots, \overline{\mathbf{x}}_{d}\right)^{T}
$$

is the overall mean vector ignoring class identifiers

Then

Source of variation	df	Sum of squares matrix
Between classes	$K-1$	$S_{b}=\sum_{i=1}^{K} n_{i}\left(\overline{\mathbf{x}}_{i}-\overline{\mathbf{x}}\right)\left(\overline{\mathbf{x}}_{i}-\overline{\mathbf{x}}\right)^{T}$

Within classes $n-K \quad S_{w}=\sum_{i=1}^{K} \sum_{j=1}^{n_{i}}\left(\mathbf{x}_{i j}-\overline{\mathbf{x}}_{i}\right)\left(\mathbf{x}_{i j}-\overline{\mathbf{x}}_{i}\right)^{T}$

Total $n-1$	$S_{\text {total }}=S_{b}+S_{w}$
	$=\sum_{i=1}^{K} \sum_{j=1}^{n_{i}}\left(\mathbf{x}_{i j}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{i j}-\overline{\mathbf{x}}\right)^{T}$

Table: Multivariate analysis of variance (MANOVA)

Then

Source of variation	df	Sum of squares matrix
Between classes	$K-1$	$S_{b}=\sum_{i=1}^{K} n_{i}\left(\overline{\mathbf{x}}_{i}-\overline{\mathbf{x}}\right)\left(\overline{\mathbf{x}}_{i}-\overline{\mathbf{x}}\right)^{T}$
Within classes	$n-K$	$S_{w}=\sum_{i=1}^{K} \sum_{j=1}^{n_{i}}\left(\mathbf{x}_{i j}-\overline{\mathbf{x}}_{i}\right)\left(\mathbf{x}_{i j}-\overline{\mathbf{x}}_{i}\right)^{T}$
Total	$n-1$	$=\sum_{i=1}^{K} \sum_{\text {total }}^{\sum_{j=1}^{n_{i}}\left(\mathbf{x}_{i j}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{i j}-\overline{\mathbf{x}}\right)^{T}}$

Table: Multivariate analysis of variance (MANOVA)

The total covariance matrix of the observations, $S_{\text {total }}$, having $n-1$ degrees of freedom (df) and calculated by ignoring the class identity, formed by the between-class covariance/scatter matrix S_{b} and the pooled within-class covariance/scatter matrix, S_{w}

LDA

An unbiased estimator of the common covariance matrix is then given by

$$
\widehat{\boldsymbol{\Sigma}}=\frac{1}{n-K} S_{w}
$$

LDA

An unbiased estimator of the common covariance matrix is then given by

$$
\widehat{\boldsymbol{\Sigma}}=\frac{1}{n-K} S_{w}
$$

Thus setting $\widehat{L}_{i j}(\mathbf{x})=\widehat{b}_{0 i j}+\widehat{\mathbf{b}}_{i j}^{T} \mathbf{x}$, where

$$
\begin{aligned}
\widehat{\mathbf{b}}_{i j} & =\left(\overline{\mathbf{x}}_{i}-j\right)^{T} \widehat{\boldsymbol{\Sigma}}^{-1} \\
\widehat{b}_{0 i j} & =-\frac{1}{2}\left\{\overline{\mathbf{x}}_{i}^{T} \widehat{\boldsymbol{\Sigma}}^{-1} \overline{\mathbf{x}}_{i}-\overline{\mathbf{x}}_{j}^{T} \widehat{\boldsymbol{\Sigma}}^{-1} \overline{\mathbf{x}}_{j}\right\}+\log _{e} \frac{n_{i}}{n}-\log _{e} \frac{n_{j}}{n}
\end{aligned}
$$

LDA

An unbiased estimator of the common covariance matrix is then given by

$$
\widehat{\boldsymbol{\Sigma}}=\frac{1}{n-K} S_{w}
$$

Thus setting $\widehat{L}_{i j}(\mathbf{x})=\widehat{b}_{0 i j}+\widehat{\mathbf{b}}_{i j}^{T} \mathbf{x}$, where

$$
\begin{aligned}
\widehat{\mathbf{b}}_{i j} & =\left(\overline{\mathbf{x}}_{i}-j\right)^{T} \widehat{\boldsymbol{\Sigma}}^{-1} \\
\widehat{b}_{0 i j} & =-\frac{1}{2}\left\{\overline{\mathbf{x}}_{i}^{T} \widehat{\boldsymbol{\Sigma}}^{-1} \overline{\mathbf{x}}_{i}-\overline{\mathbf{x}}_{j}^{T} \widehat{\boldsymbol{\Sigma}}^{-1} \overline{\mathbf{x}}_{j}\right\}+\log _{e} \frac{n_{i}}{n}-\log _{e} \frac{n_{j}}{n}
\end{aligned}
$$

The classification rule Assign \mathbf{x} to Π_{i} if $\widehat{L}_{i j}(\mathbf{x})>0, j=1,2, \ldots, K, j \neq i$

QDA

For Quadratic Discriminant Analysis, set

$$
\widehat{\boldsymbol{\Sigma}}_{i}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}}\left(\mathbf{x}_{i j}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{i j}-\overline{\mathbf{x}}_{i}\right)^{T}, i=1,2, \ldots, K
$$

QDA

For Quadratic Discriminant Analysis, set

$$
\widehat{\boldsymbol{\Sigma}}_{i}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}}\left(\mathbf{x}_{i j}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{i j}-\overline{\mathbf{x}}_{i}\right)^{T}, i=1,2, \ldots, K
$$

Note that if d is large then the number of distinct parameters $K d+k d(d+1) / 2$ are to be estimated, hence this could be a huge increase compare to LDA. The $Q(\mathbf{x})$ will be similar to the 2-class problem.

QDA

For Quadratic Discriminant Analysis, set

$$
\widehat{\boldsymbol{\Sigma}}_{i}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}}\left(\mathbf{x}_{i j}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{i j}-\overline{\mathbf{x}}_{i}\right)^{T}, i=1,2, \ldots, K
$$

Note that if d is large then the number of distinct parameters $K d+k d(d+1) / 2$ are to be estimated, hence this could be a huge increase compare to LDA. The $Q(\mathbf{x})$ will be similar to the 2-class problem.

The method that we have followed is called maximum likelihood estimation

