Big Data Analysis (MA60306)

Bibhas Adhikari

Spring 2022-23, IIT Kharagpur

Lecture 16 March 9, 2023

Bibhas Adhikari (Spring 2022-23, IIT Kharag

Big Data Analysis

Lecture 16 March 9, 2023 1 / 11

3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

LDA 2-class classification

 \rightarrow Classes: Π_1, Π_2 and prior probabilities - $P(\mathbf{X} \in \Pi_i) = \pi_i, i = 1, 2$

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

LDA 2-class classification

- \rightarrow Classes: Π_1, Π_2 and prior probabilities $P(\mathbf{X} \in \Pi_i) = \pi_i, i = 1, 2$
- \rightarrow Conditional probabilities $P(\mathbf{X} = \mathbf{x} | \mathbf{X} \in \Pi_i) = f_i(\mathbf{x}), i = 1, 2$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

LDA 2-class classification

- \rightarrow Classes: Π_1, Π_2 and prior probabilities $P(\mathbf{X} \in \Pi_i) = \pi_i, i = 1, 2$
- \rightarrow Conditional probabilities $P(\mathbf{X} = \mathbf{x} | \mathbf{X} \in \Pi_i) = f_i(\mathbf{x}), i = 1, 2$

 $\rightarrow\,$ posterior probabilities -

$$p(\Pi_i | \mathbf{x}) = \frac{f_i(\mathbf{x})\pi_i}{f_1(\mathbf{x})\pi_1 + f_2(\mathbf{x})\pi_2}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

LDA 2-class classification

- \rightarrow Classes: Π_1, Π_2 and prior probabilities $P(\mathbf{X} \in \Pi_i) = \pi_i, i = 1, 2$
- \rightarrow Conditional probabilities $P(\mathbf{X} = \mathbf{x} | \mathbf{X} \in \Pi_i) = f_i(\mathbf{x}), i = 1, 2$
- $\rightarrow\,$ posterior probabilities -

$$p(\Pi_i | \mathbf{x}) = \frac{f_i(\mathbf{x})\pi_i}{f_1(\mathbf{x})\pi_1 + f_2(\mathbf{x})\pi_2}$$

 $\rightarrow\,$ Bayes's rule classifier: Assign x to Π_1 if

$$r = \frac{p(\Pi_1 | \mathbf{x})}{p(\Pi_2 | \mathbf{x})} > 1$$
 i.e. $\frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} > \frac{\pi_2}{\pi_1}$

and assign \mathbf{x} to Π_2 otherwise.

A B M A B M

 \rightarrow Gaussian LDA: $f_1(x)$ and $f_2(x)$ be multivariate Gaussian having arbitrary mean vectors and a common covariance matrix Σ : (what is the geometry?)

$$f_1(\cdot) \sim \mathcal{N}_d(\mu_1, \Sigma), \text{ and } f_2(\cdot) \sim \mathcal{N}_d(\mu_2, \Sigma).$$

 \rightarrow *d*-variate Gaussian (Normal) distribution with mean vector μ and positive-definite *d* \times *d* covariance matrix Σ is

$$f(\mathbf{x}) = (2\pi)^{-d/2} |\mathbf{\Sigma}|^{-1/2} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \mathbf{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}$$

 \rightarrow Gaussian LDA: $f_1(x)$ and $f_2(x)$ be multivariate Gaussian having arbitrary mean vectors and a common covariance matrix Σ : (what is the geometry?)

$$f_1(\cdot) \sim \mathcal{N}_d(\mu_1, \Sigma), \text{ and } f_2(\cdot) \sim \mathcal{N}_d(\mu_2, \Sigma).$$

 \rightarrow *d*-variate Gaussian (Normal) distribution with mean vector μ and positive-definite *d* \times *d* covariance matrix Σ is

$$f(\mathbf{x}) = (2\pi)^{-d/2} |\mathbf{\Sigma}|^{-1/2} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \mathbf{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}$$

→ Classification rule (Gaussian LDA): Assign **x** to Π_1 if $L(\mathbf{x}) > 0$, otherwise assign **x** to Π_2 , where $L(\mathbf{x}) = \log_e \left\{ \frac{f_1(\mathbf{x})\pi_1}{f_2(\mathbf{z})\pi_2} \right\} = b_0 + \mathbf{b}^T \mathbf{x}$, with

$$\mathbf{b} = \Sigma^{-1}(\mu_1 - \mu_2) b_0 = -\frac{1}{2} \left\{ \mu_1^T \Sigma^{-1} \mu_1 - \mu_2^T \Sigma^{-1} \mu_2 \right\} + \log_e(\pi_2/\pi_1)$$

Squared Mahalanobis distance The squared Mahalanobis distance between Π_1 and Π_2 is defined as

$$\triangle^2 = (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2).$$

3

< □ > < 同 > < 回 > < 回 > < 回 >

Squared Mahalanobis distance The squared Mahalanobis distance between Π_1 and Π_2 is defined as

$$\triangle^2 = (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2).$$

Question What does Mahalanobis distance measure?

э

(B)

Squared Mahalanobis distance The squared Mahalanobis distance between Π_1 and Π_2 is defined as

$$\triangle^2 = (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2).$$

Question What does Mahalanobis distance measure? Recall Let X be a random matrix. For the random matrix $Y = AXB^T + C$, where A, B, C are compatible matrices, $\mathbb{E}(Y) = A\mathbb{E}(X)B^T$ and the covariance matrix of vec(Y) is $\Sigma_{YY} = (A \otimes B)\Sigma_{XX}(A \otimes B)^T$

Squared Mahalanobis distance The squared Mahalanobis distance between Π_1 and Π_2 is defined as

$$\triangle^2 = (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2).$$

Question What does Mahalanobis distance measure?

Recall Let X be a random matrix. For the random matrix $Y = AXB^T + C$, where A, B, C are compatible matrices, $\mathbb{E}(Y) = A\mathbb{E}(X)B^T$ and the covariance matrix of vec(Y) is $\Sigma_{YY} = (A \otimes B)\Sigma_{XX}(A \otimes B)^T$ Set $U = \mathbf{b}^T \mathbf{x}$, which is a random variable. Then

$$\mathbb{E}(U|\mathbf{x} \in \Pi_i) = \mathbf{b}^T \mu_i = (\mu_1 - \mu_2)^T \Sigma^{-1} \mu_i Var(U|\mathbf{x} \in \Pi_i) = \mathbf{b}^T \Sigma \mathbf{b} = (\mu_1 - \mu_2)^T \Sigma^{-1} \Sigma \Sigma^{-1} (\mu_1 - \mu_2) = \Delta^2.$$

Squared Mahalanobis distance The squared Mahalanobis distance between Π_1 and Π_2 is defined as

$$\triangle^2 = (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2).$$

Question What does Mahalanobis distance measure?

Recall Let X be a random matrix. For the random matrix $Y = AXB^T + C$, where A, B, C are compatible matrices, $\mathbb{E}(Y) = A\mathbb{E}(X)B^T$ and the covariance matrix of vec(Y) is $\Sigma_{YY} = (A \otimes B)\Sigma_{XX}(A \otimes B)^T$ Set $U = \mathbf{b}^T \mathbf{x}$, which is a random variable. Then

$$\mathbb{E}(U|\mathbf{x} \in \Pi_i) = \mathbf{b}^T \mu_i = (\mu_1 - \mu_2)^T \Sigma^{-1} \mu_i Var(U|\mathbf{x} \in \Pi_i) = \mathbf{b}^T \Sigma \mathbf{b} = (\mu_1 - \mu_2)^T \Sigma^{-1} \Sigma \Sigma^{-1} (\mu_1 - \mu_2) = \Delta^2.$$

Let R_1, R_2 be the regions given by the classification rule. Then the total misclassification probability:

$$P(\mathbf{x} \in R_2 | \mathbf{x} \in \Pi_1) \pi_1 + P(\mathbf{x} \in R_1 | \mathbf{x} \in \Pi_2) \pi_2$$
 is the set of

Bibhas Adhikari (Spring 2022-23, IIT Kharag

Big Data Analysis

LDA Now

$$P(\mathbf{x} \in R_2 | \mathbf{x} \in \Pi_1) = P(L(\mathbf{x}) < 0 | \mathbf{x} \in \Pi_1).$$

Bibhas Adhikari (Spring 2022-23, IIT Kharag

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Now

$$P(\mathbf{x} \in R_2 | \mathbf{x} \in \Pi_1) = P(L(\mathbf{x}) < 0 | \mathbf{x} \in \Pi_1).$$

Note that $L(\mathbf{x}) = b_0 + U$. (what is the distribution of U?)

- 2

イロト イポト イヨト イヨト

Now

$$P(\mathbf{x} \in R_2 | \mathbf{x} \in \Pi_1) = P(L(\mathbf{x}) < 0 | \mathbf{x} \in \Pi_1).$$

Note that $L(\mathbf{x}) = b_0 + U$. (what is the distribution of U?) Also, $Z = \frac{U - \mathbb{E}(U|\mathbf{x} \in \Pi_i)}{\sqrt{var(U|\mathbf{x} \in \Pi_i)}} \sim \mathcal{N}(0, 1)$

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Now

$$P(\mathbf{x} \in R_2 | \mathbf{x} \in \Pi_1) = P(L(\mathbf{x}) < 0 | \mathbf{x} \in \Pi_1).$$

Note that $L(\mathbf{x}) = b_0 + U$. (what is the distribution of U?) Also,

$$Z = \frac{U - \mathbb{E}(U | \mathbf{x} \in \Pi_i)}{\sqrt{var(U | \mathbf{x} \in \Pi_i)}} \sim \mathcal{N}(0, 1)$$

Then from using the expressions for $\mathbb{E}(U|\mathbf{x} \in \Pi_i)$, $Var(U|\mathbf{x} \in \Pi_i)$, and b_0 as derived above,

$$P(L(\mathbf{x}) < 0 | \mathbf{x} \in \Pi_1) = P(U < -b_0 | \mathbf{x} \in \Pi_1)$$

$$= P(Z < \frac{-b_0 - (\mu_1 - \mu_2)^T \Sigma^{-1} \mu_1}{\Delta})$$

$$= P(Z < -\frac{\Delta}{2} - \frac{1}{\Delta} \log_e \frac{\pi_2}{\pi_1})$$

$$= \Phi\left(-\frac{\Delta}{2} - \frac{1}{\Delta} \log_e \frac{\pi_2}{\pi_1}\right)$$

Similarly we can obtain

$$P(\mathbf{x} \in R_1 | \mathbf{x} \in \Pi_2) = P(L(\mathbf{x}) > 0 | \mathbf{x} \in \Pi_2)$$

= $P(Z < -\frac{\Delta}{2} - \frac{1}{\Delta} \log_e \frac{\pi_2}{\pi_1})$
= $\Phi\left(-\frac{\Delta}{2} + \frac{1}{\Delta} \log_e \frac{\pi_2}{\pi_1}\right)$

3

<ロト <問ト < 目ト < 目ト

Similarly we can obtain

$$P(\mathbf{x} \in R_1 | \mathbf{x} \in \Pi_2) = P(L(\mathbf{x}) > 0 | \mathbf{x} \in \Pi_2)$$

= $P(Z < -\frac{\Delta}{2} - \frac{1}{\Delta} \log_e \frac{\pi_2}{\pi_1})$
= $\Phi\left(-\frac{\Delta}{2} + \frac{1}{\Delta} \log_e \frac{\pi_2}{\pi_1}\right)$

If $\pi_1 = \pi_2 = 1/2$ then

 $P(\mathbf{X} \in R_2 | \mathbf{X} \in \Pi_1) = P(\mathbf{X} \in R_1 | \mathbf{X} \in \Pi_2) = \Phi(-\triangle/2)$

Bibhas Adhikari (Spring 2022-23, IIT Kharag

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Similarly we can obtain

$$P(\mathbf{x} \in R_1 | \mathbf{x} \in \Pi_2) = P(L(\mathbf{x}) > 0 | \mathbf{x} \in \Pi_2)$$

= $P(Z < -\frac{\Delta}{2} - \frac{1}{\Delta} \log_e \frac{\pi_2}{\pi_1})$
= $\Phi\left(-\frac{\Delta}{2} + \frac{1}{\Delta} \log_e \frac{\pi_2}{\pi_1}\right)$

If $\pi_1 = \pi_2 = 1/2$ then

$$P(\mathbf{X} \in R_2 | \mathbf{X} \in \Pi_1) = P(\mathbf{X} \in R_1 | \mathbf{X} \in \Pi_2) = \Phi(-\triangle/2)$$

Observation Since miscalculation probability depends on \triangle , we can write the probability of miscalculation as $P(\triangle)$. Plotting the graph for $\pi_1 = \pi_2 = 1/2$, what is your conclusion?

イロト 不得 トイラト イラト 一日

Question How do we implement the method in real data?

< □ > < 同 > < 回 > < 回 > < 回 >

2

Question How do we implement the method in real data? Observations

 $\rightarrow\,$ Note that $\mu_1,\mu_1,\boldsymbol{\Sigma}$ are not known

3

< □ > < 同 > < 回 > < 回 > < 回 >

Question How do we implement the method in real data? Observations

- $\rightarrow~$ Note that $\mu_1, \mu_1, \boldsymbol{\Sigma}$ are not known
- \rightarrow In general there are 2d + d(d + 2) distinct parameters in μ_1, μ_2, Σ that can possibly be estimated from learning the data

• • = • • = •

Question How do we implement the method in real data? Observations

- $\rightarrow~$ Note that $\mu_1, \mu_1, \boldsymbol{\Sigma}$ are not known
- \rightarrow In general there are 2d + d(d + 2) distinct parameters in μ_1, μ_2, Σ that can possibly be estimated from learning the data
- → Suppose we have a random sample $\mathbf{X}_{1j}, 1 \leq j \leq n_1$, and $\mathbf{X}_{2l}, 1 \leq l \leq n_2$ with values \mathbf{x}_{1j} and \mathbf{x}_{2l} from Π_1 and Π_2 respectively

Question How do we implement the method in real data? Observations

- $\rightarrow~$ Note that $\mu_1, \mu_1, \boldsymbol{\Sigma}$ are not known
- \rightarrow In general there are 2d + d(d + 2) distinct parameters in μ_1, μ_2, Σ that can possibly be estimated from learning the data
- → Suppose we have a random sample $X_{1j}, 1 \le j \le n_1$, and $X_{2l}, 1 \le l \le n_2$ with values x_{1j} and x_{2l} from Π_1 and Π_2 respectively

Sampling methods from a population

 \rightarrow Mixture sampling - a sample of $n=n_1+n_2$ is selected so that n_1 and n_2 are randomly selected

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Question How do we implement the method in real data? Observations

- $\rightarrow~$ Note that $\mu_1, \mu_1, \boldsymbol{\Sigma}$ are not known
- \rightarrow In general there are 2d + d(d + 2) distinct parameters in μ_1, μ_2, Σ that can possibly be estimated from learning the data
- → Suppose we have a random sample $X_{1j}, 1 \le j \le n_1$, and $X_{2l}, 1 \le l \le n_2$ with values x_{1j} and x_{2l} from Π_1 and Π_2 respectively

Sampling methods from a population

- \rightarrow Mixture sampling a sample of $n=n_1+n_2$ is selected so that n_1 and n_2 are randomly selected
- \rightarrow Separate sampling a sample of n_i is randomly selected from $\Pi_i, i = 1, 2$ and $n = n_1 + n_2$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Estimation of parameters The ML estimates of μ_i , i = 1, 2 and Σ are

< □ > < 同 > < 回 > < 回 > < 回 >

3

Estimation of parameters The ML estimates of μ_i , i = 1, 2 and Σ are

$$\widehat{\mu}_{i} = \overline{\mathbf{x}}_{i} = \frac{1}{n_{i}} \sum_{j=1}^{n_{i}} \mathbf{x}_{ij}, i = 1, 2 \text{ and}$$

$$\widehat{\Sigma} = \frac{1}{n} S, \ S = S_{1} + S_{2}, \ S_{i} = \sum_{j=1}^{n_{i}} (\mathbf{x}_{ij} - \overline{\mathbf{x}}_{i}) (\mathbf{x}_{ij} - \overline{\mathbf{x}}_{i})^{T}$$

3

< □ > < 同 > < 回 > < 回 > < 回 >

Estimation of parameters The ML estimates of μ_i , i = 1, 2 and Σ are

$$\widehat{\mu}_{i} = \overline{\mathbf{x}}_{i} = \frac{1}{n_{i}} \sum_{j=1}^{n_{i}} \mathbf{x}_{ij}, i = 1, 2 \text{ and}$$

$$\widehat{\Sigma} = \frac{1}{n} S, \ S = S_{1} + S_{2}, \ S_{i} = \sum_{j=1}^{n_{i}} (\mathbf{x}_{ij} - \overline{\mathbf{x}}_{i}) (\mathbf{x}_{ij} - \overline{\mathbf{x}}_{i})^{T}$$

Note that for unbiased estimator of Σ , we can divide S by its degree of freedom $n-2 = n_1 + n_2 - 2$ rather than n to make $\widehat{\Sigma}$

イロト 不得下 イヨト イヨト 二日

The probabilities π_1, π_2 can be chosen based on past experiences or can be estimated as

$$\widehat{\pi}_i = \frac{n_i}{n}, i = 1, 2$$

3

イロト イポト イヨト イヨト

The probabilities π_1, π_2 can be chosen based on past experiences or can be estimated as

$$\widehat{\pi}_i = \frac{n_i}{n}, i = 1, 2$$

Then $\widehat{L}(\mathbf{x}) = \widehat{b}_0 + \widehat{\mathbf{b}}^T \mathbf{x}$, where

$$\widehat{\mathbf{b}} = \widehat{\mathbf{\Sigma}}^{-1}(\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2) \widehat{b}_0 = -\frac{1}{2} \left[\overline{\mathbf{x}}_1^T \widehat{\mathbf{\Sigma}}^{-1} \overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2^T \widehat{\mathbf{\Sigma}}^{-1} \overline{\mathbf{x}}_2 \right] + \log_e \frac{n_1}{n} - \log_e \frac{n_2}{n}$$

are ML estimates of \mathbf{b} and b_0 respectively.

★ ∃ ► < ∃ ►</p>

The probabilities π_1, π_2 can be chosen based on past experiences or can be estimated as

$$\widehat{\pi}_i = \frac{n_i}{n}, i = 1, 2$$

Then $\widehat{L}(\mathbf{x}) = \widehat{b}_0 + \widehat{\mathbf{b}}^T \mathbf{x}$, where

$$\widehat{\mathbf{b}} = \widehat{\mathbf{\Sigma}}^{-1}(\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2) \widehat{b}_0 = -\frac{1}{2} \left[\overline{\mathbf{x}}_1^T \widehat{\mathbf{\Sigma}}^{-1} \overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2^T \widehat{\mathbf{\Sigma}}^{-1} \overline{\mathbf{x}}_2 \right] + \log_e \frac{n_1}{n} - \log_e \frac{n_2}{n}$$

are ML estimates of **b** and b_0 respectively.

Classification rule The classification rule assigns \mathbf{x} to Π_1 if $\widehat{L}(\mathbf{x}) > 0$, and assigns \mathbf{x} to Π_2 otherwise.

Quadratic Discriminant Analysis

Question How would the classification be affected if the covariance matrices of the two Gaussian populations are not equal to each other?

Quadratic Discriminant Analysis

Question How would the classification be affected if the covariance matrices of the two Gaussian populations are not equal to each other? Then

$$\log_{e} \frac{f_{1}(\mathbf{x})}{f_{2}(\mathbf{x})} = c_{0} - \frac{1}{2} \left[(\mathbf{x} - \boldsymbol{\mu}_{1})^{T} \boldsymbol{\Sigma}_{1}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{1}) - (\mathbf{x} - \boldsymbol{\mu}_{2})^{T} \boldsymbol{\Sigma}_{2}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{2}) \right]$$

$$= c_{1} - \frac{1}{2} \mathbf{x}^{T} (\boldsymbol{\Sigma}_{1}^{-1} - \boldsymbol{\Sigma}_{2}^{-1}) \mathbf{x} + (\boldsymbol{\mu}_{1}^{T} \boldsymbol{\Sigma}_{1}^{-1} - \boldsymbol{\mu}_{2}^{T} \boldsymbol{\Sigma}_{2}^{-1}) \mathbf{x},$$

where c_0 and c_1 are constants that depend on μ_1, μ_2, Σ_1 and Σ_2 .

QDA

Thus the log-likelihood ration has the form of a quadratic function of \mathbf{x} :

$$Q(\mathbf{x}) = \beta_0 + \boldsymbol{\beta}^T \mathbf{x} + \mathbf{x}^T \boldsymbol{\Omega} \mathbf{x},$$

where

$$\begin{aligned} \Omega &= -\frac{1}{2} (\boldsymbol{\Sigma}_{1}^{-1} - \boldsymbol{\Sigma}_{2}^{-1}) \\ \beta &= \boldsymbol{\Sigma}_{1}^{-1} \boldsymbol{\mu}_{1} - \boldsymbol{\Sigma}_{2}^{-1} \boldsymbol{\mu}_{2} \\ \beta_{0} &= -\frac{1}{2} \left[\log_{e} \frac{|\boldsymbol{\Sigma}_{1}|}{|\boldsymbol{\Sigma}_{2}|} + \boldsymbol{\mu}_{1}^{T} \boldsymbol{\Sigma}_{1}^{-1} \boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2} \boldsymbol{\Sigma}_{2}^{-1} \boldsymbol{\mu}_{2} \right] - \log_{e} (\pi_{2} / \pi_{1}) \end{aligned}$$

2

イロト イポト イヨト イヨト

QDA

Thus the log-likelihood ration has the form of a quadratic function of \mathbf{x} :

$$Q(\mathbf{x}) = \beta_0 + \boldsymbol{\beta}^T \mathbf{x} + \mathbf{x}^T \boldsymbol{\Omega} \mathbf{x},$$

where

$$\begin{aligned} \Omega &= -\frac{1}{2} (\boldsymbol{\Sigma}_{1}^{-1} - \boldsymbol{\Sigma}_{2}^{-1}) \\ \beta &= \boldsymbol{\Sigma}_{1}^{-1} \boldsymbol{\mu}_{1} - \boldsymbol{\Sigma}_{2}^{-1} \boldsymbol{\mu}_{2} \\ \beta_{0} &= -\frac{1}{2} \left[\log_{e} \frac{|\boldsymbol{\Sigma}_{1}|}{|\boldsymbol{\Sigma}_{2}|} + \boldsymbol{\mu}_{1}^{T} \boldsymbol{\Sigma}_{1}^{-1} \boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2} \boldsymbol{\Sigma}_{2}^{-1} \boldsymbol{\mu}_{2} \right] - \log_{e} (\pi_{2} / \pi_{1}) \end{aligned}$$

Classification rule If $Q(\mathbf{x}) > 0$ assign \mathbf{x} to Π_1 , and assign \mathbf{x} to Π_2 otherwise.

3

イロト イポト イヨト イヨト

QDA

Thus the log-likelihood ration has the form of a quadratic function of \mathbf{x} :

$$Q(\mathbf{x}) = \beta_0 + \boldsymbol{\beta}^T \mathbf{x} + \mathbf{x}^T \boldsymbol{\Omega} \mathbf{x},$$

where

$$\begin{aligned} \Omega &= -\frac{1}{2} (\boldsymbol{\Sigma}_{1}^{-1} - \boldsymbol{\Sigma}_{2}^{-1}) \\ \beta &= \boldsymbol{\Sigma}_{1}^{-1} \boldsymbol{\mu}_{1} - \boldsymbol{\Sigma}_{2}^{-1} \boldsymbol{\mu}_{2} \\ \beta_{0} &= -\frac{1}{2} \left[\log_{e} \frac{|\boldsymbol{\Sigma}_{1}|}{|\boldsymbol{\Sigma}_{2}|} + \boldsymbol{\mu}_{1}^{T} \boldsymbol{\Sigma}_{1}^{-1} \boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2} \boldsymbol{\Sigma}_{2}^{-1} \boldsymbol{\mu}_{2} \right] - \log_{e} (\pi_{2} / \pi_{1}) \end{aligned}$$

Classification rule If $Q(\mathbf{x}) > 0$ assign \mathbf{x} to Π_1 , and assign \mathbf{x} to Π_2 otherwise.

Question How do you implement it in real data?

3

<日

<</p>