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Review

LDA 2-class classification

→ Classes: Π1,Π2 and prior probabilities - P(X ∈ Πi ) = πi , i = 1, 2

→ Conditional probabilities - P(X = x |X ∈ Πi ) = fi (x), i = 1, 2

→ posterior probabilities -

p(Πi |x) =
fi (x)πi

f1(x)π1 + f2(x)π2

→ Bayes’s rule classifier: Assign x to Π1 if

r =
p(Π1|x)
p(Π2|x)

> 1 i.e.
f1(x)

f2(x)
>

π2
π1

and assign x to Π2 otherwise.

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 16 March 9, 2023 2 / 11



Review

LDA 2-class classification

→ Classes: Π1,Π2 and prior probabilities - P(X ∈ Πi ) = πi , i = 1, 2

→ Conditional probabilities - P(X = x |X ∈ Πi ) = fi (x), i = 1, 2

→ posterior probabilities -

p(Πi |x) =
fi (x)πi

f1(x)π1 + f2(x)π2

→ Bayes’s rule classifier: Assign x to Π1 if

r =
p(Π1|x)
p(Π2|x)

> 1 i.e.
f1(x)

f2(x)
>

π2
π1

and assign x to Π2 otherwise.

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 16 March 9, 2023 2 / 11



Review

LDA 2-class classification

→ Classes: Π1,Π2 and prior probabilities - P(X ∈ Πi ) = πi , i = 1, 2

→ Conditional probabilities - P(X = x |X ∈ Πi ) = fi (x), i = 1, 2

→ posterior probabilities -

p(Πi |x) =
fi (x)πi

f1(x)π1 + f2(x)π2

→ Bayes’s rule classifier: Assign x to Π1 if

r =
p(Π1|x)
p(Π2|x)

> 1 i.e.
f1(x)

f2(x)
>

π2
π1

and assign x to Π2 otherwise.

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 16 March 9, 2023 2 / 11



Review

LDA 2-class classification

→ Classes: Π1,Π2 and prior probabilities - P(X ∈ Πi ) = πi , i = 1, 2

→ Conditional probabilities - P(X = x |X ∈ Πi ) = fi (x), i = 1, 2

→ posterior probabilities -

p(Πi |x) =
fi (x)πi

f1(x)π1 + f2(x)π2

→ Bayes’s rule classifier: Assign x to Π1 if

r =
p(Π1|x)
p(Π2|x)

> 1 i.e.
f1(x)

f2(x)
>

π2
π1

and assign x to Π2 otherwise.

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 16 March 9, 2023 2 / 11



Review
→ Gaussian LDA: f1(x) and f2(x) be multivariate Gaussian having

arbitrary mean vectors and a common covariance matrix Σ: (what is
the geometry?)

f1(·) ∼ Nd(µ1,Σ), and f2(·) ∼ Nd(µ2,Σ).

→ d-variate Gaussian (Normal) distribution with mean vector µ and
positive-definite d × d covariance matrix Σ is

f (x) = (2π)−d/2|Σ|−1/2e−
1
2
(x−µ)TΣ−1(x−µ)

→ Classification rule (Gaussian LDA): Assign x to Π1 if L(x) > 0,

otherwise assign x to Π2, where L(x) = loge

{
f1(x)π1

f2(z)π2

}
= b0 + bTx,

with

b = Σ−1(µ1 − µ2)

b0 = −1

2

{
µT
1 Σ

−1µ1 − µT
2 Σ

−1µ2

}
+ loge(π2/π1)
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LDA
Squared Mahalanobis distance The squared Mahalanobis distance between
Π1 and Π2 is defined as

△2 = (µ1 − µ2)
TΣ−1(µ1 − µ2).

Question What does Mahalanobis distance measure?
Recall Let X be a random matrix. For the random matrix Y = AXBT +C ,
where A,B,C are compatible matrices, E(Y ) = AE(X )BT and the
covariance matrix of vec(Y ) is ΣYY = (A⊗ B)ΣXX (A⊗ B)T

Set U = bTx, which is a random variable. Then

E(U|x ∈ Πi ) = bTµi = (µ1 − µ2)
TΣ−1µi

Var(U|x ∈ Πi ) = bTΣb = (µ1 − µ2)
TΣ−1ΣΣ−1(µ1 − µ2)= △2.

Let R1,R2 be the regions given by the classification rule. Then the total
misclassification probability:

P(x ∈ R2|x ∈ Π1)π1 + P(x ∈ R1|x ∈ Π2)π2
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LDA
Now

P(x ∈ R2|x ∈ Π1) = P(L(x) < 0|x ∈ Π1).

Note that L(x) = b0 + U. (what is the distribution of U?) Also,

Z =
U − E(U|x ∈ Πi )√

var(U|x ∈ Πi )
∼ N (0, 1)

Then from using the expressions for E(U|x ∈ Πi ), Var(U|x ∈ Πi ), and b0
as derived above,

P(L(x) < 0|x ∈ Π1) = P(U < −b0|x ∈ Π1)

= P(Z <
−b0 − (µ1 − µ2)

TΣ−1µ1

△
)

= P(Z < −△
2

− 1

△
loge

π2
π1

)

= Φ

(
−△

2
− 1

△
loge

π2
π1

)
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LDA

Similarly we can obtain

P(x ∈ R1|x ∈ Π2) = P(L(x) > 0|x ∈ Π2)

= P(Z < −△
2

− 1

△
loge

π2
π1

)

= Φ

(
−△

2
+

1

△
loge

π2
π1

)

If π1 = π2 = 1/2 then

P(X ∈ R2|X ∈ Π1) = P(X ∈ R1|X ∈ Π2) = Φ(−△/2)

Observation Since miscalculation probability depends on △, we can write
the probability of miscalculation as P(△). Plotting the graph for
π1 = π2 = 1/2, what is your conclusion?
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LDA

Question How do we implement the method in real data?

Observations

→ Note that µ1, µ1,Σ are not known

→ In general there are 2d + d(d + 2) distinct parameters in µ1, µ2,Σ
that can possibly be estimated from learning the data

→ Suppose we have a random sample X1j , 1 ≤ j ≤ n1, and
X2l , 1 ≤ l ≤ n2 with values x1j and x2l from Π1 and Π2 respectively

Sampling methods from a population

→ Mixture sampling - a sample of n = n1 + n2 is selected so that n1 and
n2 are randomly selected

→ Separate sampling - a sample of ni is randomly selected from
Πi , i = 1, 2 and n = n1 + n2
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LDA

Estimation of parameters The ML estimates of µi , i = 1, 2 and Σ are

µ̂i = xi =
1

ni

ni∑
j=1

xij , i = 1, 2 and

Σ̂ =
1

n
S , S = S1 + S2, Si =

ni∑
j=1

(xij − xi )(xij − xi )
T

Note that for unbiased estimator of Σ, we can divide S by its degree of
freedom n − 2 = n1 + n2 − 2 rather than n to make Σ̂
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LDA

The probabilities π1, π2 can be chosen based on past experiences or can be
estimated as

π̂i =
ni
n
, i = 1, 2

Then L̂(x) = b̂0 + b̂Tx, where

b̂ = Σ̂−1(x1 − x2)

b̂0 = −1

2

[
xT1 Σ̂

−1x1 − xT2 Σ̂
−1x2

]
+ loge

n1
n

− loge
n2
n

are ML estimates of b and b0 respectively.

Classification rule The classification rule assigns x to Π1 if L̂(x) > 0, and
assigns x to Π2 otherwise.
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Quadratic Discriminant Analysis

Question How would the classification be affected if the covariance
matrices of the two Gaussian populations are not equal to each other?

Then

loge
f1(x)

f2(x)
= c0 −

1

2

[
(x− µ1)

TΣ−1
1 (x− µ1)− (x− µ2)

TΣ−1
2 (x− µ2)

]
= c1 −

1

2
xT (Σ−1

1 −Σ−1
2 )x+ (µT

1 Σ
−1
1 − µT

2 Σ
−1
2 )x,

where c0 and c1 are constants that depend on µ1,µ2, Σ1 and Σ2.
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Quadratic Discriminant Analysis
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QDA

Thus the log-likelihood ration has the form of a quadratic function of x :

Q(x) = β0 + βTx+ xTΩx,

where

Ω = −1

2
(Σ−1

1 −Σ−1
2 )

β = Σ−1
1 µ1 −Σ−1

2 µ2

β0 = −1

2

[
loge

|Σ1|
|Σ2|

+ µT
1 Σ

−1
1 µ1 − µ2Σ

−1
2 µ2

]
− loge(π2/π1)

Classification rule If Q(x) > 0 assign x to Π1, and assign x to Π2

otherwise.

Question How do you implement it in real data?
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