Big Data Analysis (MA60306)

Bibhas Adhikari

Spring 2022-23, IIT Kharagpur
Lecture 16
March 9, 2023

Review

LDA 2-class classification
\rightarrow Classes: Π_{1}, Π_{2} and prior probabilities $-P\left(\mathbf{X} \in \Pi_{i}\right)=\pi_{i}, i=1,2$

Review

LDA 2-class classification
\rightarrow Classes: Π_{1}, Π_{2} and prior probabilities $-P\left(\mathbf{X} \in \Pi_{i}\right)=\pi_{i}, i=1,2$
\rightarrow Conditional probabilities - $P\left(\mathbf{X}=\mathbf{x} \mid \mathbf{X} \in \Pi_{i}\right)=f_{i}(\mathbf{x}), i=1,2$

Review

LDA 2-class classification
\rightarrow Classes: Π_{1}, Π_{2} and prior probabilities $-P\left(\mathbf{X} \in \Pi_{i}\right)=\pi_{i}, i=1,2$
\rightarrow Conditional probabilities - $P\left(\mathbf{X}=\mathbf{x} \mid \mathbf{X} \in \Pi_{i}\right)=f_{i}(\mathbf{x}), i=1,2$
\rightarrow posterior probabilities -

$$
p\left(\Pi_{i} \mid \mathbf{x}\right)=\frac{f_{i}(\mathbf{x}) \pi_{i}}{f_{1}(\mathbf{x}) \pi_{1}+f_{2}(\mathbf{x}) \pi_{2}}
$$

Review

LDA 2-class classification
\rightarrow Classes: Π_{1}, Π_{2} and prior probabilities $-P\left(\mathbf{X} \in \Pi_{i}\right)=\pi_{i}, i=1,2$
\rightarrow Conditional probabilities - $P\left(\mathbf{X}=\mathbf{x} \mid \mathbf{X} \in \Pi_{i}\right)=f_{i}(\mathbf{x}), i=1,2$
\rightarrow posterior probabilities -

$$
p\left(\Pi_{i} \mid \mathbf{x}\right)=\frac{f_{i}(\mathbf{x}) \pi_{i}}{f_{1}(\mathbf{x}) \pi_{1}+f_{2}(\mathbf{x}) \pi_{2}}
$$

\rightarrow Bayes's rule classifier: Assign \mathbf{x} to Π_{1} if

$$
r=\frac{p\left(\Pi_{1} \mid \mathbf{x}\right)}{p\left(\Pi_{2} \mid \mathbf{x}\right)}>1 \text { i.e. } \frac{f_{1}(\mathbf{x})}{f_{2}(\mathbf{x})}>\frac{\pi_{2}}{\pi_{1}}
$$

and assign \mathbf{x} to Π_{2} otherwise.

Review

\rightarrow Gaussian LDA: $f_{1}(x)$ and $f_{2}(x)$ be multivariate Gaussian having arbitrary mean vectors and a common covariance matrix Σ : (what is the geometry?)

$$
f_{1}(\cdot) \sim \mathcal{N}_{d}\left(\mu_{1}, \Sigma\right), \text { and } f_{2}(\cdot) \sim \mathcal{N}_{d}\left(\mu_{2}, \Sigma\right)
$$

$\rightarrow d$-variate Gaussian (Normal) distribution with mean vector $\boldsymbol{\mu}$ and positive-definite $d \times d$ covariance matrix $\boldsymbol{\Sigma}$ is

$$
f(\mathbf{x})=(2 \pi)^{-d / 2}|\boldsymbol{\Sigma}|^{-1 / 2} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}
$$

Review

\rightarrow Gaussian LDA: $f_{1}(x)$ and $f_{2}(x)$ be multivariate Gaussian having arbitrary mean vectors and a common covariance matrix Σ : (what is the geometry?)

$$
f_{1}(\cdot) \sim \mathcal{N}_{d}\left(\mu_{1}, \Sigma\right), \text { and } f_{2}(\cdot) \sim \mathcal{N}_{d}\left(\mu_{2}, \Sigma\right)
$$

$\rightarrow d$-variate Gaussian (Normal) distribution with mean vector $\boldsymbol{\mu}$ and positive-definite $d \times d$ covariance matrix $\boldsymbol{\Sigma}$ is

$$
f(\mathbf{x})=(2 \pi)^{-d / 2}|\boldsymbol{\Sigma}|^{-1 / 2} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}
$$

\rightarrow Classification rule (Gaussian LDA): Assign \mathbf{x} to Π_{1} if $L(\mathbf{x})>0$, otherwise assign \mathbf{x} to Π_{2}, where $L(\mathbf{x})=\log _{e}\left\{\frac{f_{1}(\mathbf{x}) \pi_{1}}{f_{2}(\mathbf{z}) \pi_{2}}\right\}=b_{0}+\mathbf{b}^{T} \mathbf{x}$, with

$$
\begin{aligned}
\mathbf{b} & =\Sigma^{-1}\left(\mu_{1}-\mu_{2}\right) \\
b_{0} & =-\frac{1}{2}\left\{\mu_{1}^{T} \Sigma^{-1} \mu_{1}-\mu_{2}^{T} \Sigma^{-1} \mu_{2}\right\}+\log _{e}\left(\pi_{2} / \pi_{1}\right)
\end{aligned}
$$

LDA

Squared Mahalanobis distance The squared Mahalanobis distance between Π_{1} and Π_{2} is defined as

$$
\triangle^{2}=\left(\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2}\right)
$$

LDA

Squared Mahalanobis distance The squared Mahalanobis distance between
Π_{1} and Π_{2} is defined as

$$
\triangle^{2}=\left(\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2}\right)
$$

Question What does Mahalanobis distance measure?

LDA

Squared Mahalanobis distance The squared Mahalanobis distance between Π_{1} and Π_{2} is defined as

$$
\triangle^{2}=\left(\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2}\right)
$$

Question What does Mahalanobis distance measure? Recall Let X be a random matrix. For the random matrix $Y=A X B^{T}+C$, where A, B, C are compatible matrices, $\mathbb{E}(Y)=A \mathbb{E}(X) B^{T}$ and the covariance matrix of $\operatorname{vec}(Y)$ is $\Sigma_{Y Y}=(A \otimes B) \Sigma_{X X}(A \otimes B)^{T}$

LDA

Squared Mahalanobis distance The squared Mahalanobis distance between Π_{1} and Π_{2} is defined as

$$
\triangle^{2}=\left(\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2}\right)
$$

Question What does Mahalanobis distance measure?
Recall Let X be a random matrix. For the random matrix $Y=A X B^{T}+C$, where A, B, C are compatible matrices, $\mathbb{E}(Y)=A \mathbb{E}(X) B^{T}$ and the covariance matrix of $\operatorname{vec}(Y)$ is $\Sigma_{Y Y}=(A \otimes B) \Sigma_{X X}(A \otimes B)^{T}$ Set $U=\mathbf{b}^{T} \mathbf{x}$, which is a random variable. Then

$$
\begin{aligned}
\mathbb{E}\left(U \mid \mathbf{x} \in \Pi_{i}\right) & =\mathbf{b}^{T} \mu_{i}=\left(\mu_{1}-\mu_{2}\right)^{T} \Sigma^{-1} \mu_{i} \\
\operatorname{Var}\left(U \mid \mathbf{x} \in \Pi_{i}\right) & =\mathbf{b}^{T} \Sigma \mathbf{b}=\left(\mu_{1}-\mu_{2}\right)^{T} \Sigma^{-1} \Sigma \Sigma^{-1}\left(\mu_{1}-\mu_{2}\right)=\triangle^{2}
\end{aligned}
$$

LDA

Squared Mahalanobis distance The squared Mahalanobis distance between Π_{1} and Π_{2} is defined as

$$
\triangle^{2}=\left(\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2}\right)
$$

Question What does Mahalanobis distance measure?
Recall Let X be a random matrix. For the random matrix $Y=A X B^{T}+C$, where A, B, C are compatible matrices, $\mathbb{E}(Y)=A \mathbb{E}(X) B^{T}$ and the covariance matrix of $\operatorname{vec}(Y)$ is $\Sigma_{Y Y}=(A \otimes B) \Sigma_{X X}(A \otimes B)^{T}$ Set $U=\mathbf{b}^{T} \mathbf{x}$, which is a random variable. Then

$$
\begin{aligned}
\mathbb{E}\left(U \mid \mathbf{x} \in \Pi_{i}\right) & =\mathbf{b}^{T} \mu_{i}=\left(\mu_{1}-\mu_{2}\right)^{T} \Sigma^{-1} \mu_{i} \\
\operatorname{Var}\left(U \mid \mathbf{x} \in \Pi_{i}\right) & =\mathbf{b}^{T} \Sigma \mathbf{b}=\left(\mu_{1}-\mu_{2}\right)^{T} \Sigma^{-1} \Sigma \Sigma^{-1}\left(\mu_{1}-\mu_{2}\right)=\triangle^{2}
\end{aligned}
$$

Let R_{1}, R_{2} be the regions given by the classification rule. Then the total misclassification probability:

$$
P\left(\mathbf{x} \in R_{2} \mid \mathbf{x} \in \Pi_{1}\right) \pi_{1}+P\left(\mathbf{x} \in R_{1} \mid \mathbf{x} \in \Pi_{2}\right) \pi_{2}
$$

LDA
Now

$$
P\left(\mathbf{x} \in R_{2} \mid \mathbf{x} \in \Pi_{1}\right)=P\left(L(\mathbf{x})<0 \mid \mathbf{x} \in \Pi_{1}\right) .
$$

LDA
Now

$$
P\left(\mathbf{x} \in R_{2} \mid \mathbf{x} \in \Pi_{1}\right)=P\left(L(\mathbf{x})<0 \mid \mathbf{x} \in \Pi_{1}\right)
$$

Note that $L(\mathbf{x})=b_{0}+U$. (what is the distribution of U ?)

LDA
Now

$$
P\left(\mathbf{x} \in R_{2} \mid \mathbf{x} \in \Pi_{1}\right)=P\left(L(\mathbf{x})<0 \mid \mathbf{x} \in \Pi_{1}\right)
$$

Note that $L(\mathbf{x})=b_{0}+U$. (what is the distribution of U ?) Also,

$$
Z=\frac{U-\mathbb{E}\left(U \mid \mathbf{x} \in \Pi_{i}\right)}{\sqrt{\operatorname{var}\left(U \mid \mathbf{x} \in \Pi_{i}\right)}} \sim \mathcal{N}(0,1)
$$

LDA
Now

$$
P\left(\mathbf{x} \in R_{2} \mid \mathbf{x} \in \Pi_{1}\right)=P\left(L(\mathbf{x})<0 \mid \mathbf{x} \in \Pi_{1}\right) .
$$

Note that $L(\mathbf{x})=b_{0}+U$. (what is the distribution of U ?) Also,

$$
Z=\frac{U-\mathbb{E}\left(U \mid \mathbf{x} \in \Pi_{i}\right)}{\sqrt{\operatorname{var}\left(U \mid \mathbf{x} \in \Pi_{i}\right)}} \sim \mathcal{N}(0,1)
$$

Then from using the expressions for $\mathbb{E}\left(U \mid \mathbf{x} \in \Pi_{i}\right), \operatorname{Var}\left(U \mid \mathbf{x} \in \Pi_{i}\right)$, and b_{0} as derived above,

$$
\begin{aligned}
P\left(L(\mathbf{x})<0 \mid \mathbf{x} \in \Pi_{1}\right) & =P\left(U<-b_{0} \mid \mathbf{x} \in \Pi_{1}\right) \\
& =P\left(Z<\frac{-b_{0}-\left(\mu_{1}-\mu_{2}\right)^{T} \Sigma^{-1} \mu_{1}}{\triangle}\right) \\
& =P\left(Z<-\frac{\triangle}{2}-\frac{1}{\triangle} \log _{e} \frac{\pi_{2}}{\pi_{1}}\right) \\
& =\Phi\left(-\frac{\triangle}{2}-\frac{1}{\triangle} \log _{e} \frac{\pi_{2}}{\pi_{1}}\right)
\end{aligned}
$$

LDA

Similarly we can obtain

$$
\begin{aligned}
P\left(\mathbf{x} \in R_{1} \mid \mathbf{x} \in \Pi_{2}\right) & =P\left(L(\mathbf{x})>0 \mid \mathbf{x} \in \Pi_{2}\right) \\
& =P\left(Z<-\frac{\triangle}{2}-\frac{1}{\triangle} \log _{e} \frac{\pi_{2}}{\pi_{1}}\right) \\
& =\Phi\left(-\frac{\triangle}{2}+\frac{1}{\triangle} \log _{e} \frac{\pi_{2}}{\pi_{1}}\right)
\end{aligned}
$$

LDA
Similarly we can obtain

$$
\begin{aligned}
P\left(\mathbf{x} \in R_{1} \mid \mathbf{x} \in \Pi_{2}\right) & =P\left(L(\mathbf{x})>0 \mid \mathbf{x} \in \Pi_{2}\right) \\
& =P\left(Z<-\frac{\triangle}{2}-\frac{1}{\triangle} \log _{e} \frac{\pi_{2}}{\pi_{1}}\right) \\
& =\Phi\left(-\frac{\triangle}{2}+\frac{1}{\triangle} \log _{e} \frac{\pi_{2}}{\pi_{1}}\right)
\end{aligned}
$$

If $\pi_{1}=\pi_{2}=1 / 2$ then

$$
P\left(\mathbf{X} \in R_{2} \mid \mathbf{X} \in \Pi_{1}\right)=P\left(\mathbf{X} \in R_{1} \mid \mathbf{X} \in \Pi_{2}\right)=\Phi(-\triangle / 2)
$$

Similarly we can obtain

$$
\begin{aligned}
P\left(\mathbf{x} \in R_{1} \mid \mathbf{x} \in \Pi_{2}\right) & =P\left(L(\mathbf{x})>0 \mid \mathbf{x} \in \Pi_{2}\right) \\
& =P\left(Z<-\frac{\triangle}{2}-\frac{1}{\triangle} \log _{e} \frac{\pi_{2}}{\pi_{1}}\right) \\
& =\Phi\left(-\frac{\triangle}{2}+\frac{1}{\triangle} \log _{e} \frac{\pi_{2}}{\pi_{1}}\right)
\end{aligned}
$$

If $\pi_{1}=\pi_{2}=1 / 2$ then

$$
P\left(\mathbf{X} \in R_{2} \mid \mathbf{X} \in \Pi_{1}\right)=P\left(\mathbf{X} \in R_{1} \mid \mathbf{X} \in \Pi_{2}\right)=\Phi(-\triangle / 2)
$$

Observation Since miscalculation probability depends on \triangle, we can write the probability of miscalculation as $P(\triangle)$. Plotting the graph for $\pi_{1}=\pi_{2}=1 / 2$, what is your conclusion?

LDA

Question How do we implement the method in real data?

LDA

Question How do we implement the method in real data?
Observations
\rightarrow Note that $\mu_{1}, \mu_{1}, \boldsymbol{\Sigma}$ are not known

LDA

Question How do we implement the method in real data?
Observations
\rightarrow Note that $\mu_{1}, \mu_{1}, \boldsymbol{\Sigma}$ are not known
\rightarrow In general there are $2 d+d(d+2)$ distinct parameters in $\mu_{1}, \mu_{2}, \boldsymbol{\Sigma}$ that can possibly be estimated from learning the data

Question How do we implement the method in real data?
Observations
\rightarrow Note that $\mu_{1}, \mu_{1}, \boldsymbol{\Sigma}$ are not known
\rightarrow In general there are $2 d+d(d+2)$ distinct parameters in $\mu_{1}, \mu_{2}, \boldsymbol{\Sigma}$ that can possibly be estimated from learning the data
\rightarrow Suppose we have a random sample $\mathbf{X}_{1 j}, 1 \leq j \leq n_{1}$, and $\mathbf{X}_{2 l}, 1 \leq I \leq n_{2}$ with values $\mathbf{x}_{1 j}$ and $\mathbf{x}_{2 /}$ from Π_{1} and Π_{2} respectively

Question How do we implement the method in real data?
Observations
\rightarrow Note that $\mu_{1}, \mu_{1}, \boldsymbol{\Sigma}$ are not known
\rightarrow In general there are $2 d+d(d+2)$ distinct parameters in $\mu_{1}, \mu_{2}, \boldsymbol{\Sigma}$ that can possibly be estimated from learning the data
\rightarrow Suppose we have a random sample $\mathbf{X}_{1 j}, 1 \leq j \leq n_{1}$, and $\mathbf{X}_{2 l}, 1 \leq I \leq n_{2}$ with values $\mathbf{x}_{1 j}$ and $\mathbf{x}_{2 /}$ from Π_{1} and Π_{2} respectively
Sampling methods from a population
\rightarrow Mixture sampling - a sample of $n=n_{1}+n_{2}$ is selected so that n_{1} and n_{2} are randomly selected

Question How do we implement the method in real data?
Observations
\rightarrow Note that $\mu_{1}, \mu_{1}, \boldsymbol{\Sigma}$ are not known
\rightarrow In general there are $2 d+d(d+2)$ distinct parameters in $\mu_{1}, \mu_{2}, \boldsymbol{\Sigma}$ that can possibly be estimated from learning the data
\rightarrow Suppose we have a random sample $\mathbf{X}_{1 j}, 1 \leq j \leq n_{1}$, and $\mathbf{X}_{2 l}, 1 \leq I \leq n_{2}$ with values $\mathbf{x}_{1 j}$ and $\mathbf{x}_{2 /}$ from Π_{1} and Π_{2} respectively
Sampling methods from a population
\rightarrow Mixture sampling - a sample of $n=n_{1}+n_{2}$ is selected so that n_{1} and n_{2} are randomly selected
\rightarrow Separate sampling - a sample of n_{i} is randomly selected from $\Pi_{i}, i=1,2$ and $n=n_{1}+n_{2}$

LDA

Estimation of parameters The ML estimates of $\mu_{i}, i=1,2$ and $\boldsymbol{\Sigma}$ are

LDA

Estimation of parameters The ML estimates of $\mu_{i}, i=1,2$ and $\boldsymbol{\Sigma}$ are

$$
\begin{aligned}
\widehat{\mu}_{i} & =\overline{\mathbf{x}}_{i}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}} \mathbf{x}_{i j}, i=1,2 \text { and } \\
\widehat{\Sigma} & =\frac{1}{n} S, S=S_{1}+S_{2}, S_{i}=\sum_{j=1}^{n_{i}}\left(\mathbf{x}_{i j}-\overline{\mathbf{x}}_{i}\right)\left(\mathbf{x}_{i j}-\overline{\mathbf{x}}_{i}\right)^{T}
\end{aligned}
$$

Estimation of parameters The ML estimates of $\mu_{i}, i=1,2$ and $\boldsymbol{\Sigma}$ are

$$
\begin{aligned}
\widehat{\mu}_{i} & =\overline{\mathbf{x}}_{i}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}} \mathbf{x}_{i j}, i=1,2 \text { and } \\
\widehat{\Sigma} & =\frac{1}{n} S, S=S_{1}+S_{2}, \quad S_{i}=\sum_{j=1}^{n_{i}}\left(\mathbf{x}_{i j}-\overline{\mathbf{x}}_{i}\right)\left(\mathbf{x}_{i j}-\overline{\mathbf{x}}_{i}\right)^{T}
\end{aligned}
$$

Note that for unbiased estimator of $\boldsymbol{\Sigma}$, we can divide S by its degree of freedom $n-2=n_{1}+n_{2}-2$ rather than n to make $\widehat{\boldsymbol{\Sigma}}$

LDA

The probabilities π_{1}, π_{2} can be chosen based on past experiences or can be estimated as

$$
\widehat{\pi}_{i}=\frac{n_{i}}{n}, i=1,2
$$

LDA

The probabilities π_{1}, π_{2} can be chosen based on past experiences or can be estimated as

$$
\widehat{\pi}_{i}=\frac{n_{i}}{n}, i=1,2
$$

Then $\widehat{L}(\mathbf{x})=\widehat{b}_{0}+\widehat{\mathbf{b}}^{T} \mathbf{x}$, where

$$
\begin{aligned}
\widehat{\mathbf{b}} & =\widehat{\boldsymbol{\Sigma}}^{-1}\left(\overline{\mathbf{x}}_{1}-\overline{\mathbf{x}}_{2}\right) \\
\widehat{b}_{0} & =-\frac{1}{2}\left[\overline{\mathbf{x}}_{1}^{T} \widehat{\boldsymbol{\Sigma}}^{-1} \overline{\mathbf{x}}_{1}-\overline{\mathbf{x}}_{2}^{T} \widehat{\boldsymbol{\Sigma}}^{-1} \overline{\mathbf{x}}_{2}\right]+\log _{e} \frac{n_{1}}{n}-\log _{e} \frac{n_{2}}{n}
\end{aligned}
$$

are ML estimates of \mathbf{b} and b_{0} respectively.

LDA

The probabilities π_{1}, π_{2} can be chosen based on past experiences or can be estimated as

$$
\widehat{\pi}_{i}=\frac{n_{i}}{n}, i=1,2
$$

Then $\widehat{L}(\mathbf{x})=\widehat{b}_{0}+\widehat{\mathbf{b}}^{T} \mathbf{x}$, where

$$
\begin{aligned}
\widehat{\mathbf{b}} & =\widehat{\boldsymbol{\Sigma}}^{-1}\left(\overline{\mathbf{x}}_{1}-\overline{\mathbf{x}}_{2}\right) \\
\widehat{b}_{0} & =-\frac{1}{2}\left[\overline{\mathbf{x}}_{1}^{T} \widehat{\boldsymbol{\Sigma}}^{-1} \overline{\mathbf{x}}_{1}-\overline{\mathbf{x}}_{2}^{T} \widehat{\boldsymbol{\Sigma}}^{-1} \overline{\mathbf{x}}_{2}\right]+\log _{e} \frac{n_{1}}{n}-\log _{e} \frac{n_{2}}{n}
\end{aligned}
$$

are ML estimates of \mathbf{b} and b_{0} respectively.
Classification rule The classification rule assigns \mathbf{x} to Π_{1} if $\widehat{L}(\mathbf{x})>0$, and assigns \mathbf{x} to Π_{2} otherwise.

Quadratic Discriminant Analysis

Question How would the classification be affected if the covariance matrices of the two Gaussian populations are not equal to each other?

Quadratic Discriminant Analysis

Question How would the classification be affected if the covariance matrices of the two Gaussian populations are not equal to each other?
Then

$$
\begin{aligned}
\log _{e} \frac{f_{1}(\mathbf{x})}{f_{2}(\mathbf{x})} & =c_{0}-\frac{1}{2}\left[\left(\mathbf{x}-\boldsymbol{\mu}_{1}\right)^{T} \boldsymbol{\Sigma}_{1}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{1}\right)-\left(\mathbf{x}-\boldsymbol{\mu}_{2}\right)^{T} \boldsymbol{\Sigma}_{2}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{2}\right)\right] \\
& =c_{1}-\frac{1}{2} \mathbf{x}^{T}\left(\boldsymbol{\Sigma}_{1}^{-1}-\boldsymbol{\Sigma}_{2}^{-1}\right) \mathbf{x}+\left(\boldsymbol{\mu}_{1}^{T} \boldsymbol{\Sigma}_{1}^{-1}-\boldsymbol{\mu}_{2}^{T} \boldsymbol{\Sigma}_{2}^{-1}\right) \mathbf{x}
\end{aligned}
$$

where c_{0} and c_{1} are constants that depend on $\boldsymbol{\mu}_{1}, \boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{1}$ and $\boldsymbol{\Sigma}_{2}$.

QDA

Thus the log-likelihood ration has the form of a quadratic function of \mathbf{x} :

$$
Q(\mathbf{x})=\beta_{0}+\boldsymbol{\beta}^{T} \mathbf{x}+\mathbf{x}^{T} \boldsymbol{\Omega} \mathbf{x}
$$

where

$$
\begin{aligned}
\boldsymbol{\Omega} & =-\frac{1}{2}\left(\boldsymbol{\Sigma}_{1}^{-1}-\boldsymbol{\Sigma}_{2}^{-1}\right) \\
\boldsymbol{\beta} & =\boldsymbol{\Sigma}_{1}^{-1} \boldsymbol{\mu}_{1}-\boldsymbol{\Sigma}_{2}^{-1} \boldsymbol{\mu}_{2} \\
\beta_{0} & =-\frac{1}{2}\left[\log _{e} \frac{\left|\boldsymbol{\Sigma}_{1}\right|}{\left|\boldsymbol{\Sigma}_{2}\right|}+\boldsymbol{\mu}_{1}^{T} \boldsymbol{\Sigma}_{1}^{-1} \boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2} \boldsymbol{\Sigma}_{2}^{-1} \boldsymbol{\mu}_{2}\right]-\log _{e}\left(\pi_{2} / \pi_{1}\right)
\end{aligned}
$$

QDA

Thus the log-likelihood ration has the form of a quadratic function of \mathbf{x} :

$$
Q(\mathbf{x})=\beta_{0}+\boldsymbol{\beta}^{T} \mathbf{x}+\mathbf{x}^{T} \boldsymbol{\Omega} \mathbf{x}
$$

where

$$
\begin{aligned}
\boldsymbol{\Omega} & =-\frac{1}{2}\left(\boldsymbol{\Sigma}_{1}^{-1}-\boldsymbol{\Sigma}_{2}^{-1}\right) \\
\boldsymbol{\beta} & =\boldsymbol{\Sigma}_{1}^{-1} \boldsymbol{\mu}_{1}-\boldsymbol{\Sigma}_{2}^{-1} \boldsymbol{\mu}_{2} \\
\beta_{0} & =-\frac{1}{2}\left[\log _{e} \frac{\left|\boldsymbol{\Sigma}_{1}\right|}{\left|\boldsymbol{\Sigma}_{2}\right|}+\boldsymbol{\mu}_{1}^{T} \boldsymbol{\Sigma}_{1}^{-1} \boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2} \boldsymbol{\Sigma}_{2}^{-1} \boldsymbol{\mu}_{2}\right]-\log _{e}\left(\pi_{2} / \pi_{1}\right)
\end{aligned}
$$

Classification rule If $Q(\mathbf{x})>0$ assign \mathbf{x} to Π_{1}, and assign \mathbf{x} to Π_{2} otherwise.

QDA

Thus the log-likelihood ration has the form of a quadratic function of \mathbf{x} :

$$
Q(\mathbf{x})=\beta_{0}+\boldsymbol{\beta}^{T} \mathbf{x}+\mathbf{x}^{T} \boldsymbol{\Omega} \mathbf{x}
$$

where

$$
\begin{aligned}
\boldsymbol{\Omega} & =-\frac{1}{2}\left(\boldsymbol{\Sigma}_{1}^{-1}-\boldsymbol{\Sigma}_{2}^{-1}\right) \\
\boldsymbol{\beta} & =\boldsymbol{\Sigma}_{1}^{-1} \boldsymbol{\mu}_{1}-\boldsymbol{\Sigma}_{2}^{-1} \boldsymbol{\mu}_{2} \\
\beta_{0} & =-\frac{1}{2}\left[\log _{e} \frac{\left|\boldsymbol{\Sigma}_{1}\right|}{\left|\boldsymbol{\Sigma}_{2}\right|}+\boldsymbol{\mu}_{1}^{T} \boldsymbol{\Sigma}_{1}^{-1} \boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2} \boldsymbol{\Sigma}_{2}^{-1} \boldsymbol{\mu}_{2}\right]-\log _{e}\left(\pi_{2} / \pi_{1}\right)
\end{aligned}
$$

Classification rule If $Q(\mathbf{x})>0$ assign \mathbf{x} to Π_{1}, and assign \mathbf{x} to Π_{2} otherwise.

Question How do you implement it in real data?

