Big Data Analysis (MA60306)

Bibhas Adhikari

Spring 2022-23, IIT Kharagpur
Lecture 14
March 2, 2023

Linear Discriminant Analysis

\rightarrow Suppose each observation $\boldsymbol{x}_{\boldsymbol{i}}$ comes from several, say K classes having similar characteristics

Linear Discriminant Analysis

\rightarrow Suppose each observation $\boldsymbol{x}_{\boldsymbol{i}}$ comes from several, say K classes having similar characteristics
\rightarrow Each class has a level and the observations are lebeled

Linear Discriminant Analysis

\rightarrow Suppose each observation $\boldsymbol{x}_{\boldsymbol{i}}$ comes from several, say K classes having similar characteristics
\rightarrow Each class has a level and the observations are lebeled
Goal
\triangle Discrimination Use the information of the labeled observations in a learning set to construct a classifier which will separate the predefined classes

Linear Discriminant Analysis

\rightarrow Suppose each observation $\boldsymbol{x}_{\boldsymbol{i}}$ comes from several, say K classes having similar characteristics
\rightarrow Each class has a level and the observations are lebeled

Goal

\triangle Discrimination Use the information of the labeled observations in a learning set to construct a classifier which will separate the predefined classes
\triangle Classification For a set of measurements on a new unlebeled observation, use the classifier to predict the class of the observation

LDA

Question How many classifiers are needed to differentiate the classes and to predict the class for a future observation?

Question How many classifiers are needed to differentiate the classes and to predict the class for a future observation?
Example: medical diagnosis problem, handwriting, gene expression data

Question How many classifiers are needed to differentiate the classes and to predict the class for a future observation?
Example: medical diagnosis problem, handwriting, gene expression data
\rightarrow Assume that the population \mathcal{P} is partitioned into K unordered classes: Π_{1}, \ldots, Π_{K}

Question How many classifiers are needed to differentiate the classes and to predict the class for a future observation?
Example: medical diagnosis problem, handwriting, gene expression data
\rightarrow Assume that the population \mathcal{P} is partitioned into K unordered classes: Π_{1}, \ldots, Π_{K}
\rightarrow Define feature vector

$$
\mathbf{X}=\left(x_{1}, x_{2}, \ldots, x_{d}\right)^{T}
$$

where x_{i} denotes a measurement

LDA

Binary classification: $K=2$
\rightarrow Let $P\left(\mathbf{X} \in \Pi_{i}\right)=\pi_{i}, i=1,2$ denote the prior probabilities such that a randomly selected observation $\mathbf{X}=\mathbf{x}$ belongs to either Π_{1} or Π_{2}.

LDA

Binary classification: $K=2$
\rightarrow Let $P\left(\mathbf{X} \in \Pi_{i}\right)=\pi_{i}, i=1,2$ denote the prior probabilities such that a randomly selected observation $\mathbf{X}=\mathbf{x}$ belongs to either Π_{1} or Π_{2}.
\rightarrow Let the conditional pdf of \mathbf{X} for class i by

$$
P\left(\mathbf{X}=\mathbf{x} \mid \mathbf{X} \in \Pi_{i}\right)=f_{i}(\mathbf{x}), i=1,2
$$

LDA

Binary classification: $K=2$
\rightarrow Let $P\left(\mathbf{X} \in \Pi_{i}\right)=\pi_{i}, i=1,2$ denote the prior probabilities such that a randomly selected observation $\mathbf{X}=\mathbf{x}$ belongs to either Π_{1} or Π_{2}.
\rightarrow Let the conditional pdf of \mathbf{X} for class i by

$$
P\left(\mathbf{X}=\mathbf{x} \mid \mathbf{X} \in \Pi_{i}\right)=f_{i}(\mathbf{x}), i=1,2
$$

\rightarrow By Bayes's theorem, the posterior probability is given by

$$
p\left(\Pi_{i} \mid \mathbf{x}\right)=P\left(\mathbf{X} \in \Pi_{i} \mid \mathbf{X}=\mathbf{x}\right)=\frac{f_{i}(\mathbf{x}) \pi_{i}}{f_{1}(\mathbf{x}) \pi_{1}+f_{2}(\mathbf{x}) \pi_{2}}
$$

that the observed x belongs to $\Pi_{i}, i=1,2$

LDA

Classification strategy

Bayes's rule classifier Assign \mathbf{x} to Π_{1} if

$$
r=\frac{p\left(\Pi_{1} \mid \mathbf{x}\right)}{p\left(\Pi_{2} \mid \mathbf{x}\right)}>1 \text { i.e. } \frac{f_{1}(\mathbf{x})}{f_{2}(\mathbf{x})}>\frac{\pi_{2}}{\pi_{1}}
$$

and assign \mathbf{x} to Π_{2} otherwise.

LDA

Classification strategy

Bayes's rule classifier Assign \mathbf{x} to Π_{1} if

$$
r=\frac{p\left(\Pi_{1} \mid \mathbf{x}\right)}{p\left(\Pi_{2} \mid \mathbf{x}\right)}>1 \text { i.e. } \frac{f_{1}(\mathbf{x})}{f_{2}(\mathbf{x})}>\frac{\pi_{2}}{\pi_{1}}
$$

and assign \mathbf{x} to Π_{2} otherwise.
If

$$
\frac{f_{1}(\mathbf{x})}{f_{2}(\mathbf{x})}=\frac{\pi_{2}}{\pi_{1}}
$$

then decide the class by tossing a coin

LDA

Classification strategy

Bayes's rule classifier
Assign \mathbf{x} to Π_{1} if

$$
r=\frac{p\left(\Pi_{1} \mid \mathbf{x}\right)}{p\left(\Pi_{2} \mid \mathbf{x}\right)}>1 \text { i.e. } \frac{f_{1}(\mathbf{x})}{f_{2}(\mathbf{x})}>\frac{\pi_{2}}{\pi_{1}}
$$

and assign \mathbf{x} to Π_{2} otherwise.
If

$$
\frac{f_{1}(\mathbf{x})}{f_{2}(\mathbf{x})}=\frac{\pi_{2}}{\pi_{1}}
$$

then decide the class by tossing a coin r is referred to as the 'odds-ratio' that Π_{1} is the correct class than Π_{2} given the information of \mathbf{x}

LDA

Recall: A random d-vector \mathbf{X} is said to have d-variate Gaussian (Normal) distribution with mean vector $\boldsymbol{\mu}$ and positive-definite $d \times d$ covariance matrix $\boldsymbol{\Sigma}$ is given by

$$
f(\mathbf{x})=(2 \pi)^{-d / 2}|\boldsymbol{\Sigma}|^{-1 / 2} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}
$$

LDA

Recall: A random d-vector \mathbf{X} is said to have d-variate Gaussian (Normal) distribution with mean vector $\boldsymbol{\mu}$ and positive-definite $d \times d$ covariance matrix $\boldsymbol{\Sigma}$ is given by

$$
f(\mathbf{x})=(2 \pi)^{-d / 2}|\boldsymbol{\Sigma}|^{-1 / 2} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}
$$

Then we write $\mathbf{X} \sim \mathcal{N}_{d}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

Recall: A random d-vector \mathbf{X} is said to have d-variate Gaussian (Normal) distribution with mean vector $\boldsymbol{\mu}$ and positive-definite $d \times d$ covariance matrix $\boldsymbol{\Sigma}$ is given by

$$
f(\mathbf{x})=(2 \pi)^{-d / 2}|\boldsymbol{\Sigma}|^{-1 / 2} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}
$$

Then we write $\mathbf{X} \sim \mathcal{N}_{d}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

$$
\triangle=\sqrt{(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}
$$

is referred to as the Mahalanobis distance from \mathbf{x} to μ

LDA

Gaussian LDA, Fisher 1936
Let $f_{1}(x)$ and $f_{2}(x)$ be multivariate Gaussian having arbitrary mean vectors and a common covariance matrix Σ :

$$
f_{1}(\cdot) \sim \mathcal{N}_{d}\left(\mu_{1}, \Sigma\right), \text { and } f_{2}(\cdot) \sim \mathcal{N}_{d}\left(\mu_{2}, \Sigma\right)
$$

LDA

Gaussian LDA, Fisher 1936
Let $f_{1}(x)$ and $f_{2}(x)$ be multivariate Gaussian having arbitrary mean vectors and a common covariance matrix Σ :

$$
f_{1}(\cdot) \sim \mathcal{N}_{d}\left(\mu_{1}, \Sigma\right) \text {, and } f_{2}(\cdot) \sim \mathcal{N}_{d}\left(\mu_{2}, \Sigma\right) .
$$

Then

$$
\frac{f_{1}(\mathbf{x})}{f_{2}(\mathbf{x})}=\frac{\exp \left\{-\frac{1}{2}\left(\mathbf{x}-\mu_{1}\right)^{T} \Sigma^{-1}\left(\mathbf{x}-\mu_{1}\right)\right\}}{\exp \left\{-\frac{1}{2}\left(\mathbf{x}-\mu_{2}\right)^{T} \Sigma^{-1}\left(\mathbf{x}-\mu_{2}\right)\right\}}
$$

where the normalization factor $(2 \pi)^{-d / 2}|\Sigma|^{-1 / 2}$ got cancelled.

LDA

Gaussian LDA, Fisher 1936
Let $f_{1}(x)$ and $f_{2}(x)$ be multivariate Gaussian having arbitrary mean vectors and a common covariance matrix Σ :

$$
f_{1}(\cdot) \sim \mathcal{N}_{d}\left(\mu_{1}, \Sigma\right), \text { and } f_{2}(\cdot) \sim \mathcal{N}_{d}\left(\mu_{2}, \Sigma\right)
$$

Then

$$
\frac{f_{1}(\mathbf{x})}{f_{2}(\mathbf{x})}=\frac{\exp \left\{-\frac{1}{2}\left(\mathbf{x}-\mu_{1}\right)^{T} \Sigma^{-1}\left(\mathbf{x}-\mu_{1}\right)\right\}}{\exp \left\{-\frac{1}{2}\left(\mathbf{x}-\mu_{2}\right)^{T} \Sigma^{-1}\left(\mathbf{x}-\mu_{2}\right)\right\}}
$$

where the normalization factor $(2 \pi)^{-d / 2}|\Sigma|^{-1 / 2}$ got cancelled.
Then

$$
\log _{e} \frac{f_{1}(\mathbf{x})}{f_{2}(\mathbf{x})}=\left(\mu_{1}-\mu_{2}\right)^{T} \Sigma^{-1} \mathbf{x}-\frac{1}{2}\left(\mu_{1}-\mu_{2}\right)^{T} \Sigma^{-1}\left(\mu_{1}+\mu_{2}\right)
$$

LDA

Gaussian LDA, Fisher 1936
Let $f_{1}(x)$ and $f_{2}(x)$ be multivariate Gaussian having arbitrary mean vectors and a common covariance matrix Σ :

$$
f_{1}(\cdot) \sim \mathcal{N}_{d}\left(\mu_{1}, \Sigma\right), \text { and } f_{2}(\cdot) \sim \mathcal{N}_{d}\left(\mu_{2}, \Sigma\right)
$$

Then

$$
\frac{f_{1}(\mathbf{x})}{f_{2}(\mathbf{x})}=\frac{\exp \left\{-\frac{1}{2}\left(\mathbf{x}-\mu_{1}\right)^{T} \Sigma^{-1}\left(\mathbf{x}-\mu_{1}\right)\right\}}{\exp \left\{-\frac{1}{2}\left(\mathbf{x}-\mu_{2}\right)^{T} \Sigma^{-1}\left(\mathbf{x}-\mu_{2}\right)\right\}}
$$

where the normalization factor $(2 \pi)^{-d / 2}|\Sigma|^{-1 / 2}$ got cancelled. Then

$$
\begin{aligned}
\log _{e} \frac{f_{1}(\mathbf{x})}{f_{2}(\mathbf{x})} & =\left(\mu_{1}-\mu_{2}\right)^{T} \Sigma^{-1} \mathbf{x}-\frac{1}{2}\left(\mu_{1}-\mu_{2}\right)^{T} \Sigma^{-1}\left(\mu_{1}+\mu_{2}\right) \\
& =\left(\mu_{1}-\mu_{2}\right)^{T} \Sigma^{-1}(\mathbf{x}-\bar{\mu}), \quad \bar{\mu}=\left(\mu_{1}+\mu_{2}\right) / 2
\end{aligned}
$$

LDA

Further,

$$
L(\mathbf{x})=\log _{e}\left\{\frac{f_{1}(\mathbf{x}) \pi_{1}}{f_{2}(\mathbf{z}) \pi_{2}}\right\}=b_{0}+\mathbf{b}^{T} \mathbf{x}
$$

a linear function of \mathbf{x}, where

$$
\begin{aligned}
\mathbf{b} & =\Sigma^{-1}\left(\mu_{1}-\mu_{2}\right) \\
b_{0} & =-\frac{1}{2}\left\{\mu_{1}^{T} \Sigma^{-1} \mu_{1}-\mu_{2} \Sigma^{-1} \mu_{2}\right\}+\log _{e}\left(\pi_{2} / \pi_{1}\right)
\end{aligned}
$$

LDA

Further,

$$
L(\mathbf{x})=\log _{e}\left\{\frac{f_{1}(\mathbf{x}) \pi_{1}}{f_{2}(\mathbf{z}) \pi_{2}}\right\}=b_{0}+\mathbf{b}^{T} \mathbf{x}
$$

a linear function of \mathbf{x}, where

$$
\begin{aligned}
\mathbf{b} & =\Sigma^{-1}\left(\mu_{1}-\mu_{2}\right) \\
b_{0} & =-\frac{1}{2}\left\{\mu_{1}^{T} \Sigma^{-1} \mu_{1}-\mu_{2} \Sigma^{-1} \mu_{2}\right\}+\log _{e}\left(\pi_{2} / \pi_{1}\right)
\end{aligned}
$$

Classification rule Gaussian LDA: Assign \mathbf{x} to Π_{1} if $L(\mathbf{x})>0$, otherwise assign x to Π_{2}.

