Big Data Analysis (MA60306)

Bibhas Adhikari

Spring 2022-23, IIT Kharagpur

Lecture 14 March 2, 2023

Bibhas Adhikari (Spring 2022-23, IIT Kharag

Big Data Analysis

Lecture 14 March 2, 2023 1/8

3

A D N A B N A B N A B N

 \rightarrow Suppose each observation x_i comes from several, say K classes having similar characteristics

ヨト イヨト

- \rightarrow Suppose each observation \mathbf{x}_i comes from several, say K classes having similar characteristics
- $\rightarrow\,$ Each class has a level and the observations are lebeled

- \rightarrow Suppose each observation x_i comes from several, say K classes having similar characteristics
- $\rightarrow\,$ Each class has a level and the observations are lebeled

Goal

 \triangle **Discrimination** Use the information of the labeled observations in a learning set to construct a *classifier* which will separate the predefined classes

- \rightarrow Suppose each observation x_i comes from several, say K classes having similar characteristics
- $\rightarrow\,$ Each class has a level and the observations are lebeled

Goal

- \triangle **Discrimination** Use the information of the labeled observations in a learning set to construct a *classifier* which will separate the predefined classes
- \bigtriangleup Classification For a set of measurements on a new unlebeled observation, use the classifier to predict the class of the observation

Question How many classifiers are needed to differentiate the classes and to predict the class for a future observation?

3

< □ > < 同 > < 回 > < 回 > < 回 >

Question How many classifiers are needed to differentiate the classes and to predict the class for a future observation? Example: medical diagnosis problem, handwriting, gene expression data

3

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Question How many classifiers are needed to differentiate the classes and to predict the class for a future observation? Example: medical diagnosis problem, handwriting, gene expression data

 \rightarrow Assume that the population \mathcal{P} is partitioned into K unordered classes: Π_1, \ldots, Π_K

3

A B b A B b

Question How many classifiers are needed to differentiate the classes and to predict the class for a future observation? Example: medical diagnosis problem, handwriting, gene expression data

- \to Assume that the population ${\cal P}$ is partitioned into ${\cal K}$ unordered classes: $\Pi_1,\ldots,\Pi_{\cal K}$
- $\rightarrow\,$ Define *feature vector*

$$\mathbf{X} = (x_1, x_2, \dots, x_d)^T$$

where x_i denotes a measurement

Binary classification: K = 2

→ Let $P(\mathbf{X} \in \Pi_i) = \pi_i$, i = 1, 2 denote the *prior probabilities* such that a randomly selected observation $\mathbf{X} = \mathbf{x}$ belongs to either Π_1 or Π_2 .

3

- 4 回 ト 4 ヨ ト 4 ヨ ト

Binary classification: K = 2

- → Let $P(\mathbf{X} \in \Pi_i) = \pi_i$, i = 1, 2 denote the *prior probabilities* such that a randomly selected observation $\mathbf{X} = \mathbf{x}$ belongs to either Π_1 or Π_2 .
- \rightarrow Let the conditional pdf of **X** for class *i* by

$$P(\mathbf{X} = \mathbf{x} \,|\, \mathbf{X} \in \Pi_i) = f_i(\mathbf{x}), i = 1, 2$$

3

・ 何 ト ・ ヨ ト ・ ヨ ト

Binary classification: K = 2

- → Let $P(\mathbf{X} \in \Pi_i) = \pi_i$, i = 1, 2 denote the *prior probabilities* such that a randomly selected observation $\mathbf{X} = \mathbf{x}$ belongs to either Π_1 or Π_2 .
- \rightarrow Let the conditional pdf of **X** for class *i* by

$$P(\mathbf{X} = \mathbf{x} \,|\, \mathbf{X} \in \Pi_i) = f_i(\mathbf{x}), i = 1, 2$$

 $\rightarrow\,$ By Bayes's theorem, the *posterior probability* is given by

$$p(\Pi_i | \mathbf{x}) = P(\mathbf{X} \in \Pi_i | \mathbf{X} = \mathbf{x}) = \frac{f_i(\mathbf{x}) \pi_i}{f_1(\mathbf{x}) \pi_1 + f_2(\mathbf{x}) \pi_2}$$

that the observed **x** belongs to Π_i , i = 1, 2

A B b A B b

LDA Classification strategy

Bayes's rule classifier Assign \mathbf{x} to Π_1 if

$$r = rac{p(\Pi_1 | \mathbf{x})}{p(\Pi_2 | \mathbf{x})} > 1$$
 i.e. $rac{f_1(\mathbf{x})}{f_2(\mathbf{x})} > rac{\pi_2}{\pi_1}$

and assign \boldsymbol{x} to Π_2 otherwise.

3

イロト イポト イヨト イヨト

LDA Classification strategy

Bayes's rule classifier Assign \mathbf{x} to Π_1 if

$$r = \frac{p(\Pi_1 | \mathbf{x})}{p(\Pi_2 | \mathbf{x})} > 1$$
 i.e. $\frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} > \frac{\pi_2}{\pi_1}$

and assign \boldsymbol{x} to Π_2 otherwise.

lf

$$\frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} = \frac{\pi_2}{\pi_1}$$

then decide the class by tossing a coin

3

LDA Classification strategy

Bayes's rule classifier Assign \mathbf{x} to Π_1 if

$$r = \frac{p(\Pi_1 | \mathbf{x})}{p(\Pi_2 | \mathbf{x})} > 1$$
 i.e. $\frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} > \frac{\pi_2}{\pi_1}$

and assign \boldsymbol{x} to Π_2 otherwise.

lf

$$\frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} = \frac{\pi_2}{\pi_1}$$

then decide the class by tossing a coin

r is referred to as the 'odds-ratio' that Π_1 is the correct class than Π_2 given the information of ${\bf x}$

Recall: A random *d*-vector **X** is said to have *d*-variate Gaussian (Normal) distribution with mean vector μ and positive-definite $d \times d$ covariance matrix Σ is given by

$$f(\mathbf{x}) = (2\pi)^{-d/2} |\mathbf{\Sigma}|^{-1/2} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \mathbf{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}$$

3

A B b A B b

Recall: A random *d*-vector **X** is said to have *d*-variate Gaussian (Normal) distribution with mean vector μ and positive-definite $d \times d$ covariance matrix Σ is given by

$$f(\mathbf{x}) = (2\pi)^{-d/2} |\mathbf{\Sigma}|^{-1/2} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \mathbf{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}$$

Then we write $\mathbf{X} \sim \mathcal{N}_d(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

< □ > < 同 > < 回 > < 回 > < 回 >

Recall: A random *d*-vector **X** is said to have *d*-variate Gaussian (Normal) distribution with mean vector μ and positive-definite $d \times d$ covariance matrix Σ is given by

$$f(\mathbf{x}) = (2\pi)^{-d/2} |\mathbf{\Sigma}|^{-1/2} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}$$

Then we write $\mathbf{X} \sim \mathcal{N}_d(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

$$riangle = \sqrt{(\mathsf{x}-\boldsymbol{\mu})^{ op} \mathbf{\Sigma}^{-1} (\mathsf{x}-\boldsymbol{\mu})}$$

is referred to as the *Mahalanobis distance* from \mathbf{x} to $\boldsymbol{\mu}$

Gaussian LDA, Fisher 1936

Let $f_1(x)$ and $f_2(x)$ be multivariate Gaussian having arbitrary mean vectors and a common covariance matrix Σ :

 $f_1(\cdot) \sim \mathcal{N}_d(\mu_1, \Sigma), \text{ and } f_2(\cdot) \sim \mathcal{N}_d(\mu_2, \Sigma).$

< □ > < □ > < □ > < □ > < □ > < □ >

- 34

Gaussian LDA, Fisher 1936

Let $f_1(x)$ and $f_2(x)$ be multivariate Gaussian having arbitrary mean vectors and a common covariance matrix Σ :

$$f_1(\cdot) \sim \mathcal{N}_d(\mu_1, \Sigma), \text{ and } f_2(\cdot) \sim \mathcal{N}_d(\mu_2, \Sigma).$$

Then

$$\frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} = \frac{\exp\left\{-\frac{1}{2}(\mathbf{x}-\mu_1)^T \Sigma^{-1}(\mathbf{x}-\mu_1)\right\}}{\exp\left\{-\frac{1}{2}(\mathbf{x}-\mu_2)^T \Sigma^{-1}(\mathbf{x}-\mu_2)\right\}}$$

where the normalization factor $(2\pi)^{-d/2}|\Sigma|^{-1/2}$ got cancelled.

イロト 不得 トイラト イラト 一日

Gaussian LDA, Fisher 1936

Let $f_1(x)$ and $f_2(x)$ be multivariate Gaussian having arbitrary mean vectors and a common covariance matrix Σ :

$$f_1(\cdot) \sim \mathcal{N}_d(\mu_1, \Sigma), \text{ and } f_2(\cdot) \sim \mathcal{N}_d(\mu_2, \Sigma).$$

Then

$$\frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} = \frac{\exp\left\{-\frac{1}{2}(\mathbf{x}-\mu_1)^T \Sigma^{-1}(\mathbf{x}-\mu_1)\right\}}{\exp\left\{-\frac{1}{2}(\mathbf{x}-\mu_2)^T \Sigma^{-1}(\mathbf{x}-\mu_2)\right\}}$$

where the normalization factor $(2\pi)^{-d/2}|\Sigma|^{-1/2}$ got cancelled. Then

$$\log_{e} \frac{f_{1}(\mathbf{x})}{f_{2}(\mathbf{x})} = (\mu_{1} - \mu_{2})^{T} \Sigma^{-1} \mathbf{x} - \frac{1}{2} (\mu_{1} - \mu_{2})^{T} \Sigma^{-1} (\mu_{1} + \mu_{2})$$

イロト 不得 トイラト イラト 一日

Gaussian LDA, Fisher 1936

Let $f_1(x)$ and $f_2(x)$ be multivariate Gaussian having arbitrary mean vectors and a common covariance matrix Σ :

$$f_1(\cdot) \sim \mathcal{N}_d(\mu_1, \Sigma), \text{ and } f_2(\cdot) \sim \mathcal{N}_d(\mu_2, \Sigma).$$

Then

$$\frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} = \frac{\exp\left\{-\frac{1}{2}(\mathbf{x}-\mu_1)^T \Sigma^{-1}(\mathbf{x}-\mu_1)\right\}}{\exp\left\{-\frac{1}{2}(\mathbf{x}-\mu_2)^T \Sigma^{-1}(\mathbf{x}-\mu_2)\right\}}$$

where the normalization factor $(2\pi)^{-d/2}|\Sigma|^{-1/2}$ got cancelled. Then

$$\log_{e} \frac{f_{1}(\mathbf{x})}{f_{2}(\mathbf{x})} = (\mu_{1} - \mu_{2})^{T} \Sigma^{-1} \mathbf{x} - \frac{1}{2} (\mu_{1} - \mu_{2})^{T} \Sigma^{-1} (\mu_{1} + \mu_{2})$$
$$= (\mu_{1} - \mu_{2})^{T} \Sigma^{-1} (\mathbf{x} - \overline{\mu}), \quad \overline{\mu} = (\mu_{1} + \mu_{2})/2$$

7/8

イロト 不得 トイラト イラト 一日

Further,

$$L(\mathbf{x}) = \log_e \left\{ \frac{f_1(\mathbf{x})\pi_1}{f_2(\mathbf{z})\pi_2} \right\} = b_0 + \mathbf{b}^T \mathbf{x},$$

a linear function of $\boldsymbol{x},$ where

$$\mathbf{b} = \Sigma^{-1}(\mu_1 - \mu_2) b_0 = -\frac{1}{2} \left\{ \mu_1^T \Sigma^{-1} \mu_1 - \mu_2 \Sigma^{-1} \mu_2 \right\} + \log_e(\pi_2/\pi_1)$$

2

< □ > < □ > < □ > < □ > < □ >

Further,

$$L(\mathbf{x}) = \log_e \left\{ \frac{f_1(\mathbf{x})\pi_1}{f_2(\mathbf{z})\pi_2} \right\} = b_0 + \mathbf{b}^T \mathbf{x},$$

a linear function of $\boldsymbol{x},$ where

$$\mathbf{b} = \Sigma^{-1}(\mu_1 - \mu_2) b_0 = -\frac{1}{2} \left\{ \mu_1^T \Sigma^{-1} \mu_1 - \mu_2 \Sigma^{-1} \mu_2 \right\} + \log_e(\pi_2/\pi_1)$$

Classification rule Gaussian LDA: Assign \mathbf{x} to Π_1 if $L(\mathbf{x}) > 0$, otherwise assign \mathbf{x} to Π_2 .

3

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Image: A matrix