Big Data Analysis (MA60306)

Bibhas Adhikari

Spring 2022-23, IIT Kharagpur
Lecture 13
March 1, 2023

Linear discriminant analysis

Background

\rightarrow PCA is unsupervised i.e. blind to training labels
\rightarrow PCS focuses on variance which need not be always relevant

Linear discriminant analysis

Background
\rightarrow PCA is unsupervised i.e. blind to training labels
\rightarrow PCS focuses on variance which need not be always relevant
Linear Discriminant Analysis (LDA)
\rightarrow is a dimensionality reduction technique in machine learning to solve more than two-class classification problems
\rightarrow is also known as Normal Discriminant Analysis (NDA) or Discriminant Function Analysis (DFA) (why!!)

Linear discriminant analysis

Background
\rightarrow PCA is unsupervised i.e. blind to training labels
\rightarrow PCS focuses on variance which need not be always relevant
Linear Discriminant Analysis (LDA)
\rightarrow is a dimensionality reduction technique in machine learning to solve more than two-class classification problems
\rightarrow is also known as Normal Discriminant Analysis (NDA) or Discriminant Function Analysis (DFA) (why!!)
\rightarrow Uses - Face Recognition, medical data analysis, customer identification etc.

LDA

Two-class problem Let $\mathcal{X}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\} \in \mathbb{R}^{d}$ be a given data set consisting of two classes Π_{1}, Π_{2} with n_{1} and n_{2} number of points respectively. Then find a unit vector that 'best' discriminates between the classes.

LDA

Two-class problem Let $\mathcal{X}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\} \in \mathbb{R}^{d}$ be a given data set consisting of two classes Π_{1}, Π_{2} with n_{1} and n_{2} number of points respectively. Then find a unit vector that 'best' discriminates between the classes.
Let \mathbf{v} be the direction. The orthogonal projections of the points are

$$
a_{i}=\mathbf{v}^{\top} \mathbf{x}_{i}, 1 \leq i \leq n
$$

LDA

Naive idea The separation between the two classes can be measured by the distance between the two class means:

$$
\text { measure of separation: } \quad\left|\mu_{1}-\mu_{2}\right|
$$

where

$$
\mu_{1}=\frac{1}{n_{1}} \sum_{\mathbf{x}_{i} \in \Pi_{1}} a_{i}=\frac{1}{n_{1}} \sum_{\mathbf{x} \in \Pi_{1}} \mathbf{v}^{\top} \mathbf{x}_{i}=\mathbf{v}^{T} \cdot \frac{1}{n_{1}} \sum_{\mathbf{x}_{i} \in \Pi_{i}} \mathbf{x}_{i}=\mathbf{v}^{T} \mathbf{m}_{1}
$$

LDA

Naive idea The separation between the two classes can be measured by the distance between the two class means:

$$
\text { measure of separation: } \quad\left|\mu_{1}-\mu_{2}\right|
$$

where

$$
\mu_{1}=\frac{1}{n_{1}} \sum_{\mathbf{x}_{i} \in \Pi_{1}} a_{i}=\frac{1}{n_{1}} \sum_{\mathbf{x} \in \Pi_{1}} \mathbf{v}^{\top} \mathbf{x}_{i}=\mathbf{v}^{T} \cdot \frac{1}{n_{1}} \sum_{\mathbf{x}_{i} \in \Pi_{i}} \mathbf{x}_{i}=\mathbf{v}^{\top} \mathbf{m}_{1}
$$

Similarly,

$$
\mu_{2}=\mathbf{v}^{T} \mathbf{m}_{2}, \mathbf{m}_{2}=\frac{1}{n_{2}} \sum_{\mathbf{x}_{i} \in \Pi_{2}} \mathbf{x}_{i}
$$

LDA

Thus the problem is:

$$
\max _{\|\mathbf{v}\|=1}\left|\mu_{1}-\mu_{2}\right|
$$

where

$$
\mu_{j}=\mathbf{v}^{\top} \mathbf{m}_{j}, j=1,2 .
$$

LDA

Thus the problem is:

$$
\max _{\|\mathbf{v}\|=1}\left|\mu_{1}-\mu_{2}\right|
$$

where

$$
\mu_{j}=\mathbf{v}^{\top} \mathbf{m}_{j}, j=1,2 .
$$

Further, we should pay attention to the variances of the projected classes:

$$
s_{1}^{2}=\sum_{\mathbf{x}_{i} \in \Pi_{1}}\left(a_{i}-\mu_{i}\right)^{2}, s_{2}^{2}=\sum_{\mathbf{x}_{i} \in \Pi_{2}}\left(a_{i}-\mu_{2}\right)^{2}
$$

LDA

Thus the problem is:

$$
\max _{\|\mathbf{v}\|=1}\left|\mu_{1}-\mu_{2}\right|
$$

where

$$
\mu_{j}=\mathbf{v}^{\top} \mathbf{m}_{j}, j=1,2 .
$$

Further, we should pay attention to the variances of the projected classes:

$$
s_{1}^{2}=\sum_{\mathbf{x}_{i} \in \Pi_{1}}\left(a_{i}-\mu_{i}\right)^{2}, s_{2}^{2}=\sum_{\mathbf{x}_{i} \in \Pi_{2}}\left(a_{i}-\mu_{2}\right)^{2}
$$

Thus modified problem is:

$$
\max _{\|\mathbf{v}\|=1} \frac{\left(\mu_{1}-\mu_{2}\right)^{2}}{s_{1}^{2}+s_{2}^{2}}
$$

where the optimal \mathbf{v} should be be such that $\left(\mu_{1}-\mu_{2}\right)^{2}$ large and s_{1}^{2}, s_{2}^{2} both small.

LDA

Now

$$
\begin{aligned}
\left(\mu_{1}-\mu_{2}\right)^{2} & =\left(\mathbf{v}^{T} \mathbf{m}_{1}-\mathbf{v}^{T} \mathbf{m}_{2}\right)^{2} \\
& =\left(\mathbf{v}^{T}\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)\right)^{2} \\
& =\mathbf{v}^{T}\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right) \cdot\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)^{T} \mathbf{v} \\
& =\mathbf{v}^{T} S_{b} \mathbf{v}, \text { where } \\
S_{b}=\left(\mathbf{m}_{1}\right. & \left.-\mathbf{m}_{2}\right) \cdot\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)^{T} \in \mathbb{R}^{d \times d}
\end{aligned}
$$

is called the between-class scatter matrix.

Now

$$
\begin{aligned}
\left(\mu_{1}-\mu_{2}\right)^{2} & =\left(\mathbf{v}^{T} \mathbf{m}_{1}-\mathbf{v}^{T} \mathbf{m}_{2}\right)^{2} \\
& =\left(\mathbf{v}^{T}\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)\right)^{2} \\
& =\mathbf{v}^{T}\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right) \cdot\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)^{T} \mathbf{v} \\
& =\mathbf{v}^{T} S_{b} \mathbf{v}, \text { where } \\
S_{b}=\left(\mathbf{m}_{1}\right. & \left.-\mathbf{m}_{2}\right) \cdot\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)^{T} \in \mathbb{R}^{d \times d}
\end{aligned}
$$

is called the between-class scatter matrix.
Note The matrix S_{b} is symmetric positive semi-definite with rank one matrix.

Further, for each class $\Pi_{j}, j=1,2$, the variance of the projection onto \mathbf{v} is

$$
\begin{aligned}
s_{j}^{2} & =\sum_{\mathbf{x}_{i} \in \Pi_{j}}\left(a_{i}-\mu_{j}\right)^{2}=\sum_{\mathbf{x}_{i} \in \Pi_{j}}\left(\mathbf{v}^{T} \mathbf{x}_{i}-\mathbf{v}^{T} \mathbf{m}_{j}\right)^{2} \\
& =\sum_{\mathbf{x}_{i} \in \Pi_{j}} \mathbf{v}^{T}\left(\mathbf{x}_{i}-\mathbf{m}_{j}\right)\left(\mathbf{x}_{i}-\mathbf{m}_{j}\right)^{T} \mathbf{v} \\
& =\mathbf{v}^{T}\left(\sum_{\mathbf{x}_{i} \in \Pi_{j}}\left(\mathbf{x}_{i}-\mathbf{m}_{j}\right)\left(\mathbf{x}_{i}-\mathbf{m}_{j}\right)^{T}\right) \mathbf{v} \\
& =\mathbf{v}^{T} S_{j} \mathbf{v}, \text { where }
\end{aligned}
$$

$S_{j}=\sum_{\mathbf{x}_{i} \in \Pi_{j}}\left(\mathbf{x}_{i}-\mathbf{m}_{j}\right)\left(\mathbf{x}_{i}-\mathbf{m}_{j}\right)^{T} \in \mathbb{R}^{d \times d}$ is called the within-class scatter matrix for class j.

LDA

Then the total within-class scatter of the two classes in the project space is

$$
s_{1}^{2}+s_{2}^{2}=\mathbf{v}^{T} S_{1} \mathbf{v}+\mathbf{v} S_{2} \mathbf{v}=\mathbf{v}^{T}\left(S_{1}+S_{2}\right) \mathbf{v}=\mathbf{v}^{T} S_{w} \mathbf{v}
$$

where

$$
S_{w}=S_{1}+S_{2}=\sum_{\mathbf{x}_{i} \in \Pi_{1}}\left(\mathbf{x}_{i}-\mathbf{m}_{1}\right)\left(\mathbf{x}_{i}-\mathbf{m}_{1}\right)^{T}+\sum_{\mathbf{x}_{i} \in \Pi_{2}}\left(\mathbf{x}_{i}-\mathbf{m}_{2}\right)\left(\mathbf{x}_{i}-\mathbf{m}_{2}\right)^{T}
$$

is called the total within-class scatter matrix of the original data

LDA

Then the total within-class scatter of the two classes in the project space is

$$
s_{1}^{2}+s_{2}^{2}=\mathbf{v}^{\top} S_{1} \mathbf{v}+\mathbf{v} S_{2} \mathbf{v}=\mathbf{v}^{\top}\left(S_{1}+S_{2}\right) \mathbf{v}=\mathbf{v}^{\top} S_{w} \mathbf{v}
$$

where

$$
S_{w}=S_{1}+S_{2}=\sum_{\mathbf{x}_{i} \in \Pi_{1}}\left(\mathbf{x}_{i}-\mathbf{m}_{1}\right)\left(\mathbf{x}_{i}-\mathbf{m}_{1}\right)^{T}+\sum_{\mathbf{x}_{i} \in \Pi_{2}}\left(\mathbf{x}_{i}-\mathbf{m}_{2}\right)\left(\mathbf{x}_{i}-\mathbf{m}_{2}\right)^{T}
$$

is called the total within-class scatter matrix of the original data
Therefore we arrive at the optimization problem

$$
\max _{\|\mathbf{v}\|=1} \frac{\mathbf{v}^{T} S_{b} \mathbf{v}}{\mathbf{v}^{\top} S_{w} \mathbf{v}}
$$

LDA

Theorem Suppose S_{w} is nonsingular. Then the maximizer of the problem is given by the largest eigenvector \mathbf{v}_{1} of $S_{w}^{-1} S_{b}$

Theorem Suppose S_{w} is nonsingular. Then the maximizer of the problem is given by the largest eigenvector \mathbf{v}_{1} of $S_{w}^{-1} S_{b}$
Note The rank of $S_{w}^{-1} S_{b}=$ rank of $S_{b}=1$, hence there is only one nonzero eigenvalue (positive!!) can be found. It represents the largest amount of separation between the two classes along any single direction.

Theorem Suppose S_{w} is nonsingular. Then the maximizer of the problem is given by the largest eigenvector \mathbf{v}_{1} of $S_{w}^{-1} S_{b}$
Note The rank of $S_{w}^{-1} S_{b}=$ rank of $S_{b}=1$, hence there is only one nonzero eigenvalue (positive!!) can be found. It represents the largest amount of separation between the two classes along any single direction.

Question What happens if S_{w} is not invertible?

Theorem Suppose S_{w} is nonsingular. Then the maximizer of the problem is given by the largest eigenvector \mathbf{v}_{1} of $S_{w}^{-1} S_{b}$
Note The rank of $S_{w}^{-1} S_{b}=$ rank of $S_{b}=1$, hence there is only one nonzero eigenvalue (positive!!) can be found. It represents the largest amount of separation between the two classes along any single direction.

Question What happens if S_{w} is not invertible?
Question What is generalized eigenvalue problem?

LDA

Multiclass problem When there are more than 2 classes, what is the most discriminatory direction?

LDA

Multiclass problem When there are more than 2 classes, what is the most discriminatory direction?

Intuition The optimal direction v should project the different classes such that
\triangle each class is as dense as possible
Δ the centroids of the classes are as far as possible

Assume that there are c classes and a class Π_{j} contains n_{j} data points. Then for any unit vector \mathbf{v}, the tightness of the projected classes of the training data is described by the total within-class scatter:

$$
\sum_{j=1}^{c} s_{j}^{2}=\sum \mathbf{v}^{T} S_{j} \mathbf{v}=\mathbf{v}^{T}\left(\sum_{j} S_{j}\right) \mathbf{v}=\mathbf{v}^{T} S_{w} \mathbf{v}
$$

where

$$
S_{j}=\sum_{\mathbf{x} \in \Pi_{j}}\left(\mathbf{x}-\mathbf{m}_{j}\right)\left(\mathbf{x}-\mathbf{m}_{j}\right)^{T}
$$

and $S_{w}=\sum S_{j}$ is the total within-class scatter matrix

LDA

To make the class centroids in the project space as far from each other as possible, we can maximize the variance of these centroids set $\left\{\mu_{1}, \ldots, \mu_{c}\right\}$:

$$
\sum_{j=1}^{c}\left(\mu_{j}-\bar{\mu}\right)^{2}=\frac{1}{c} \sum_{j<l}\left(\mu_{j}-\mu_{l}\right)^{2}
$$

where

$$
\bar{\mu}=\frac{1}{c} \sum_{j=1}^{c} \mu_{j}
$$

LDA

Indeed, we use a weighted mean of the projected centroids to define the between-class scatter:

$$
\sum_{j=1}^{c} n_{j}\left(\mu_{j}-\mu\right)^{2}, \text { where } \mu=\frac{1}{n} \sum_{j=1}^{c} n_{j} \mu_{j}
$$

since the weighted mean μ is the projection of the global centroid \mathbf{m} on the training data onto \mathbf{v} :

$$
\mathbf{v}^{T} \mathbf{m}=\mathbf{v}^{T}\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}\right)=\mathbf{v}^{T}\left(\frac{1}{n} \sum_{j=1}^{c} n_{j} \mathbf{m}_{j}\right)=\frac{1}{n} \sum_{j=1}^{c} n_{j} \mu_{j}=\mu
$$

LDA

Indeed, we use a weighted mean of the projected centroids to define the between-class scatter:

$$
\sum_{j=1}^{c} n_{j}\left(\mu_{j}-\mu\right)^{2}, \text { where } \mu=\frac{1}{n} \sum_{j=1}^{c} n_{j} \mu_{j}
$$

since the weighted mean μ is the projection of the global centroid \mathbf{m} on the training data onto \mathbf{v} :

$$
\mathbf{v}^{T} \mathbf{m}=\mathbf{v}^{T}\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}\right)=\mathbf{v}^{T}\left(\frac{1}{n} \sum_{j=1}^{c} n_{j} \mathbf{m}_{j}\right)=\frac{1}{n} \sum_{j=1}^{c} n_{j} \mu_{j}=\mu
$$

Note Note that the simple mean does not have such a geometric interpretation:

$$
\bar{\mu}=\frac{1}{c} \sum_{j=1}^{c} \mu_{j}=\frac{1}{c} \sum_{j=1}^{c} \mathbf{v}^{T} \mathbf{m}_{j}=\mathbf{v}^{T}\left(\frac{1}{c} \sum_{j=1}^{c} \mathbf{m}_{j}\right)
$$

LDA

LDA

Then the between-class scatter in the projection space is:

$$
\begin{aligned}
\sum_{j=1}^{c} n_{j}\left(\mu_{j}-\mu\right)^{2} & =\sum n_{j}\left(\mathbf{v}^{T}\left(\mathbf{m}_{j}-\mathbf{m}\right)\right)^{2} \\
& =\sum n_{j} \mathbf{v}^{T}\left(\mathbf{m}_{j}-\mathbf{m}\right)\left(\mathbf{m}_{j}-\mathbf{m}\right)^{T} \mathbf{v} \\
& =\mathbf{v}^{T}\left(\sum n_{j}\left(\mathbf{m}_{j}-\mathbf{m}\right)\left(\mathbf{m}_{j}-\mathbf{m}\right)^{T}\right) \mathbf{v} \\
& =\mathbf{v}^{T} S_{b} \mathbf{v}
\end{aligned}
$$

LDA

Then the between-class scatter in the projection space is:

$$
\begin{aligned}
\sum_{j=1}^{c} n_{j}\left(\mu_{j}-\mu\right)^{2} & =\sum n_{j}\left(\mathbf{v}^{T}\left(\mathbf{m}_{j}-\mathbf{m}\right)\right)^{2} \\
& =\sum n_{j} \mathbf{v}^{T}\left(\mathbf{m}_{j}-\mathbf{m}\right)\left(\mathbf{m}_{j}-\mathbf{m}\right)^{T} \mathbf{v} \\
& =\mathbf{v}^{T}\left(\sum n_{j}\left(\mathbf{m}_{j}-\mathbf{m}\right)\left(\mathbf{m}_{j}-\mathbf{m}\right)^{T}\right) \mathbf{v} \\
& =\mathbf{v}^{T} S_{b} \mathbf{v}
\end{aligned}
$$

Thus the optimization problem becomes

$$
\max _{\|\mathbf{v}\|=1} \frac{\mathbf{v}^{T} S_{b} \mathbf{v}}{\mathbf{v}^{T} S_{w} \mathbf{v}}
$$

LDA

Observation When $c=2$,

$$
\sum_{j=1}^{2} n_{j}\left(\mu_{j}-\mu\right)^{2}=\frac{n_{1} n_{2}}{n}\left(\mu_{1}-\mu_{2}\right)^{2}, \text { where } \mu=\frac{1}{n}\left(n_{1} \mu_{1}+n_{2} \mu_{2}\right)
$$

and

$$
\sum_{j=1}^{2} n_{j}\left(\mathbf{m}_{j}-\mathbf{m}\right)\left(\mathbf{m}_{j}-\mathbf{m}\right)^{T}=\frac{n_{1} n_{2}}{n}\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right)\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right)^{T}
$$

where $\mathbf{m}=\frac{1}{n}\left(n_{1} \mathbf{m}_{1}+n_{2} \mathbf{m}_{2}\right)$

LDA

Observation When $c=2$,

$$
\sum_{j=1}^{2} n_{j}\left(\mu_{j}-\mu\right)^{2}=\frac{n_{1} n_{2}}{n}\left(\mu_{1}-\mu_{2}\right)^{2}, \text { where } \mu=\frac{1}{n}\left(n_{1} \mu_{1}+n_{2} \mu_{2}\right)
$$

and

$$
\sum_{j=1}^{2} n_{j}\left(\mathbf{m}_{j}-\mathbf{m}\right)\left(\mathbf{m}_{j}-\mathbf{m}\right)^{T}=\frac{n_{1} n_{2}}{n}\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right)\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right)^{T}
$$

where $\mathbf{m}=\frac{1}{n}\left(n_{1} \mathbf{m}_{1}+n_{2} \mathbf{m}_{2}\right)$
Thus multiclass LDA $\sum n_{j}\left(\mu_{j}-\mu\right)^{2} / \sum s_{j}^{2}$ is a generalization of the two-class LDA $\left(\mu_{1}-\mu_{2}\right)^{2} /\left(s_{1}^{2}+s_{2}^{2}\right)$

Finding the optimizer for

$$
\max _{\|\mathbf{v}\|=1} \frac{\mathbf{v}^{\top} S_{b} \mathbf{v}}{\mathbf{v}^{T} S_{w} \mathbf{v}}
$$

can be obtained by finding the generalized eigenvalue problem

$$
S_{b} \mathbf{v}_{1}=\lambda_{1} S_{w} \mathbf{v}_{1}
$$

LDA

Finding the optimizer for

$$
\max _{\|\mathbf{v}\|=1} \frac{\mathbf{v}^{T} S_{b} \mathbf{v}}{\mathbf{v}^{T} S_{w} \mathbf{v}}
$$

can be obtained by finding the generalized eigenvalue problem

$$
S_{b} \mathbf{v}_{1}=\lambda_{1} S_{w} \mathbf{v}_{1}
$$

However if S_{w} is invertible then the directions can be found by solving the eigenvalue-eigenvector problem:

$$
S_{w}^{-1} S_{b} \mathbf{v}=\lambda \mathbf{v}
$$

LDA

Note that

$$
\begin{aligned}
S_{b} & =\sum n_{i}\left(\mathbf{m}_{i}-\mathbf{m}\right)\left(\mathbf{m}_{i}-\mathbf{m}\right)^{T} \\
& =\left[\sqrt{n_{1}}\left(\mathbf{m}_{1}-\mathbf{m}\right) \ldots \sqrt{n_{c}}\left(\mathbf{m}_{c}-\mathbf{m}\right)\right]\left[\begin{array}{c}
\sqrt{n_{1}}\left(\mathbf{m}_{1}-\mathbf{m}\right)^{T} \\
\vdots \\
\sqrt{n_{c}}\left(\mathbf{m}_{c}-\mathbf{m}\right)^{T}
\end{array}\right]
\end{aligned}
$$

LDA

Note that

$$
\begin{aligned}
S_{b} & =\sum n_{i}\left(\mathbf{m}_{i}-\mathbf{m}\right)\left(\mathbf{m}_{i}-\mathbf{m}\right)^{T} \\
& =\left[\sqrt{n_{1}}\left(\mathbf{m}_{1}-\mathbf{m}\right) \ldots \sqrt{n_{c}}\left(\mathbf{m}_{c}-\mathbf{m}\right)\right]\left[\begin{array}{c}
\sqrt{n_{1}}\left(\mathbf{m}_{1}-\mathbf{m}\right)^{T} \\
\vdots \\
\sqrt{n_{c}}\left(\mathbf{m}_{c}-\mathbf{m}\right)^{T}
\end{array}\right]
\end{aligned}
$$

Further

$$
\begin{aligned}
& \sqrt{n_{1}} \cdot \sqrt{n_{1}}\left(\mathbf{m}_{1}-\mathbf{m}\right)+\ldots+\sqrt{n_{c}} \cdot \sqrt{n_{c}}\left(\mathbf{m}_{c}-\mathbf{m}\right) \\
= & \left(n_{1} \mathbf{m}_{1}+\ldots+n_{c} \mathbf{m}_{c}\right)-\left(n_{1}+\ldots+n_{c}\right) \mathbf{m} \\
= & n \mathbf{m}-n \mathbf{m}=0
\end{aligned}
$$

and hence the vectors $\left\{\sqrt{n_{1}}\left(\mathbf{m}_{1}-\mathbf{m}\right), \ldots, \sqrt{n_{c}}\left(\mathbf{m}_{c}-\mathbf{m}\right)\right\}$ is linearly dependent.

LDA

Note that

$$
\begin{aligned}
S_{b} & =\sum n_{i}\left(\mathbf{m}_{i}-\mathbf{m}\right)\left(\mathbf{m}_{i}-\mathbf{m}\right)^{T} \\
& =\left[\sqrt{n_{1}}\left(\mathbf{m}_{1}-\mathbf{m}\right) \ldots \sqrt{n_{c}}\left(\mathbf{m}_{c}-\mathbf{m}\right)\right]\left[\begin{array}{c}
\sqrt{n_{1}}\left(\mathbf{m}_{1}-\mathbf{m}\right)^{T} \\
\vdots \\
\sqrt{n_{c}}\left(\mathbf{m}_{c}-\mathbf{m}\right)^{T}
\end{array}\right]
\end{aligned}
$$

Further

$$
\begin{aligned}
& \sqrt{n_{1}} \cdot \sqrt{n_{1}}\left(\mathbf{m}_{1}-\mathbf{m}\right)+\ldots+\sqrt{n_{c}} \cdot \sqrt{n_{c}}\left(\mathbf{m}_{c}-\mathbf{m}\right) \\
= & \left(n_{1} \mathbf{m}_{1}+\ldots+n_{c} \mathbf{m}_{c}\right)-\left(n_{1}+\ldots+n_{c}\right) \mathbf{m} \\
= & n \mathbf{m}-n \mathbf{m}=0
\end{aligned}
$$

and hence the vectors $\left\{\sqrt{n_{1}}\left(\mathbf{m}_{1}-\mathbf{m}\right), \ldots, \sqrt{n_{c}}\left(\mathbf{m}_{c}-\mathbf{m}\right)\right\}$ is linearly
dependent.
Thus $\operatorname{rank}\left(S_{b}\right) \leq c-1$ and there can be at most $c-1$ discriminatory directions.

LDA

LDA Algorithm Input: the data matrix $X \in \mathbb{R}^{n \times d}$ with c classes Output: At most $c-1$ discriminatory directions and projections of X onto them

1. Compute

$$
S_{w}=\sum_{j=1}^{c} \sum_{\mathbf{x} \in \Pi_{j}}\left(\mathbf{x}-\mathbf{m}_{j}\right)\left(\mathbf{x}-\mathbf{m}_{j}\right)^{T}, S_{b}=\sum_{j=1}^{c} n_{j}\left(\mathbf{m}_{j}-\mathbf{m}\right)\left(\mathbf{m}_{j}-\mathbf{m}\right)^{T}
$$

LDA

LDA Algorithm Input: the data matrix $X \in \mathbb{R}^{n \times d}$ with c classes
Output: At most $c-1$ discriminatory directions and projections of X onto them

1. Compute

$$
S_{w}=\sum_{j=1}^{c} \sum_{\mathbf{x} \in \Pi_{j}}\left(\mathbf{x}-\mathbf{m}_{j}\right)\left(\mathbf{x}-\mathbf{m}_{j}\right)^{T}, S_{b}=\sum_{j=1}^{c} n_{j}\left(\mathbf{m}_{j}-\mathbf{m}\right)\left(\mathbf{m}_{j}-\mathbf{m}\right)^{T}
$$

2. Solve the generalized eigenvalue problem $S-b \mathbf{v}=\lambda S_{w} \mathbf{v}$ to find all eigenvectors $V_{k}=\left[\mathbf{v}_{1} \ldots \mathbf{v}_{k}\right], k \leq c-1$

LDA

LDA Algorithm Input: the data matrix $X \in \mathbb{R}^{n \times d}$ with c classes
Output: At most $c-1$ discriminatory directions and projections of X onto them

1. Compute

$$
S_{w}=\sum_{j=1}^{c} \sum_{\mathbf{x} \in \Pi_{j}}\left(\mathbf{x}-\mathbf{m}_{j}\right)\left(\mathbf{x}-\mathbf{m}_{j}\right)^{T}, S_{b}=\sum_{j=1}^{c} n_{j}\left(\mathbf{m}_{j}-\mathbf{m}\right)\left(\mathbf{m}_{j}-\mathbf{m}\right)^{T}
$$

2. Solve the generalized eigenvalue problem $S-b \mathbf{v}=\lambda S_{w} \mathbf{v}$ to find all eigenvectors $V_{k}=\left[\mathbf{v}_{1} \ldots \mathbf{v}_{k}\right], k \leq c-1$
3. Project the data X onto them $Y=X \cdot V_{k} \in \mathbb{R}^{n \times k}$
