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MDS

— Thus in an MSD processing the input is a similarity matrix and the
out put is a low dimensional space, which is usually 2 or 3 dimensional
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MDS

— Thus in an MSD processing the input is a similarity matrix and the
out put is a low dimensional space, which is usually 2 or 3 dimensional

Classical MDS In this case, we assume that the data set is
X ={x1,....xp},Xxj € R,

and the data matrix is
X =[x1,...,x,] € RI*"

Note that each column represents a data point here.
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MDS

— Thus in an MSD processing the input is a similarity matrix and the
out put is a low dimensional space, which is usually 2 or 3 dimensional

Classical MDS In this case, we assume that the data set is
X ={x1,...,Xn}, Xj € R,

and the data matrix is
X =[x1,...,x,] € RI*"

Note that each column represents a data point here.
The Euclidean distance matrix is D = [djj] = [d2(xi, Xj)] where

> (65— )

j=t

d2(xay) =
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MDS

We define Euclidean square-distance matrix

S = [d3(xi, x;)]
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MDS

We define Euclidean square-distance matrix

S = [d3(xi, x;)]

Then observe that D and S are
A Symmetric
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MDS

We define Euclidean square-distance matrix
S = [d3(xi, x))]

Then observe that D and S are
A Symmetric

/\ invariant under shift and rotation
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MDS

We define Euclidean square-distance matrix
S = [d3(xi, x;)]

Then observe that D and S are
A Symmetric
/\ invariant under shift and rotation

Euclidean distance metric Any symmetric matrix D is called a Euclidean
distance matrix or Euclidean metric if there exists a positive integer k and
aset Z={z1,...,z,} C R¥ such that

D = [d2(zi, zj)]-

In that case Z is called a configuration of D.
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MDS

Question Can a matrix be detected as a Euclidean metric from its
properties without finding the configuration explicitly?
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MDS

Question Can a matrix be detected as a Euclidean metric from its
properties without finding the configuration explicitly?

Gram (Gramian) matrix of a data set Let X = {x1,...,x,} C R?. Then
the Gram matrix of X is defined by

G = [gu] = [X,-TXJ‘] = [(Xiaxj>]
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MDS

Question Can a matrix be detected as a Euclidean metric from its
properties without finding the configuration explicitly?

Gram (Gramian) matrix of a data set Let X = {x1,...,x,} C R?. Then
the Gram matrix of X is defined by

G = lgg] = [x] xj] = [{xi. x;)]

Then G is a positive semi-definite matrix.
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MDS

Question Can a matrix be detected as a Euclidean metric from its
properties without finding the configuration explicitly?

Gram (Gramian) matrix of a data set Let X = {x1,...,x,} C R?. Then
the Gram matrix of X is defined by

G = lgg] = [x] xj] = [{xi. x;)]

Then G is a positive semi-definite matrix. However, every positive
semi-definite matrix G has Cholesky decomposition i.e.

G=R"R

for some R = [r1, ... rp)
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MDS

Question Can a matrix be detected as a Euclidean metric from its
properties without finding the configuration explicitly?

Gram (Gramian) matrix of a data set Let X = {x1,...,x,} C R?. Then
the Gram matrix of X is defined by

G = lgg] = [x] xj] = [{xi. x;)]

Then G is a positive semi-definite matrix. However, every positive
semi-definite matrix G has Cholesky decomposition i.e.

G=R"R

for some R = [r1, ... rp)
Question What is the conclusion?
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MDS

Note that for any x,y € R9,

da(x,y) =/ (x,x) + (y,y) — 2(x, y)

dij = da(xj, xj) = \/&ii + 8jj — 28&i
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MDS

Note that for any x,y € R9,

da(x,y) =/ (x,x) + (y,y) — 2(x, y)

dij = da(xi, Xj) = \/8ii + &j — 28jj

If the given set of data points X = {x1,...,xp}, xj € R lie on a k
dimensional affine subspace (hyperplane) H C RY then the center of

liesin H,and S=H — X = {x—X:x € H} C R? is a d-dimensional
subspace parallel to H
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MDS

Set X = {X1,...,Xn}, X; = x; — X is called the centered data set and the
corresponding data matrix X is called the centered data matrix.
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MDS

Set X = {X1,...,Xn}, X; = x; — X is called the centered data set and the
corresponding data matrix X is called the centered data matrix.
The Gram matrix corresponding to X’ given by

G =[(xT, %) =X"X

is called the centering Gram matrix of X.
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MDS

Set X = {X1,...,Xn}, X; = x; — X is called the centered data set and the
corresponding data matrix X is called the centered data matrix.
The Gram matrix corresponding to X’ given by

G =[(xT, %) =X"X

is called the centering Gram matrix of X. If G¢ = [gf] then

= /55 + & 28]
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MDS

Set X = {X1,...,Xn}, X; = x; — X is called the centered data set and the
corresponding data matrix X is called the centered data matrix.
The Gram matrix corresponding to X’ given by

G =[(xT, %) =X"X

is called the centering Gram matrix of X. If G = [gf] then

dj = \ g5 + & 25

(revisiting) Centering/centralizing matrix Let 1 =[1, 1, ...,1]7 € R". Let
E=117.Then C, = I, — 1E Then
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MDS

Then
— C?=C,
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MDS

Then
— C?=C,
—~17¢c,=¢C,1=0
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MDS

Then
— C?=C,
- 17C,=C1=0
— A data set X = {x1,...,xp} is centered if and only if XC, = X,
where X = [x1,...,x,]

Big Data Analysis Lecture 12 February 3, 2023 7/15

Bibhas Adhikari (Spring 2022-23, IIT Kharag|



MDS

Then

— C?=C,

- 17C,=C1=0

— A data set X = {x1,...,xp} is centered if and only if XC, = X,
where X = [x1,...,x,]

— A positive semi-definite matrix M is a centering Gram matrix if and
only if C;MC, =M
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MDS

Then
— C2=C,
- 17C,=C1=0
— A data set X = {x1,...,xp} is centered if and only if XC, = X,
where X = [x1,...,x,]
— A positive semi-definite matrix M is a centering Gram matrix if and
only if CyMC, =M

Conclusion Let G denote the Gram matrix of a data matrix X. Then the
data matrix corresponding to the centered data set of X is XC,, and the
centering Gram matrix of X is G¢ = C,GC,

Note that the data points are columns of X
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MDS

Theorem Let X’ be a data set. Then
1

c_ _~cc
G = 25

Proof Note that 37, gff = 0.
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MDS
Theorem Let X’ be a data set. Then

1
c_ _~cc
G = 25

Proof Note that 37, gf = 0. Then d; = /&5 + g5 — 2gf implies
n n n n
3= g 3t 3= vt + 3o
i=1 i=1 j=1 j=1
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MDS

Theorem Let X’ be a data set. Then

1
c_ _~cc
G = 25

Proof Note that 37, gf = 0. Then d; = /g5 + g — 2gf implies
n n n n
3= g 3t 3= vt + 3o
i=1 i=1 j=1 j=1

Thus

1 n n 1 n
[S€T5 Dj—— | D di+> di——> d
i=1 j=1

ij=1
_ 2 c c __ c
= dj—gi —gj =28
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MDS

Theorem Let X’ be a data set. Then

1
c_ _~cc
G = 25

Proof Note that 37, gf = 0. Then d; = /g5 + g — 2gf implies
n n n n
3= g 3t 3= vt + 3o
i=1 i=1 j=1 j=1

Thus

[5€T5

1 n n 1 n
- (Sgr -ty g
i=1 j=1 ij=1
= df —gf —gf = 2

Question What does this equality mean when the data points are
normalized?
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MDS

The we have the following consequence: A matrix A is a Euclidean
square-distance matrix if and only if —%AC is a centering positive
semi-definite matrix.
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MDS

The we have the following consequence: A matrix A is a Euclidean
square-distance matrix if and only if —%AC is a centering positive
semi-definite matrix.

Classical multidimensional scaling method Let D = [dj;] be a given
distance matrix for a set of n objects. The we want to find a configuration
X = {x1,...,x,} C R? such that a certain distance matrix associated
with X is as close as possible to D, i.e.

dx(X,',Xj) ~ d,'j

for1 <i,j<n.
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MDS

Lemma Suppose D = [djj] is an n x n Euclidean metric and S = [d,f] is the

corresponding square-distance matrix. Let G¢ = —%SC. If the rank of G¢
is k then there is an k-dimensional centered vector set
X = {x1,...,x,} C RK such that

dQ(X,‘,XJ') = d,'j, 1<i,j<n.
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MDS

Lemma Suppose D = [djj] is an n x n Euclidean metric and S = [d,f] is the
corresponding square-distance matrix. Let G¢ = —%SC. If the rank of G¢
is k then there is an k-dimensional centered vector set

X = {x1,...,x,} C R¥ such that

dQ(X,‘,XJ') = d,'j, 1 < I,j <n.

Proof By above G°€ is a centering gram matrix. If rank of G€ is k then
G¢ = XX for some matrix X = [x1,...,x,] € R¥*" which has the
desired property.
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MDS

Lemma Suppose D = [djj] is an n x n Euclidean metric and S = [d,f] is the

corresponding square-distance matrix. Let G¢ = —%SC. If the rank of G¢
is k then there is an k-dimensional centered vector set
X = {x1,...,x,} C R¥ such that

dQ(X,‘,XJ') = d,'j, 1 < I,_/ <n.

Proof By above G°€ is a centering gram matrix. If rank of G€ is k then
G¢ = XX for some matrix X = [x1,...,x,] € R¥*" which has the
desired property.

Let us call k as the configuration of D and X as the exact configuration of
D. However, note that k can be large to meet the goal that we have
low-dimensional configuration, say d < k.
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MDS

Question Can we take help of the PCA?
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MDS

Question Can we take help of the PCA?

Let Y denote a random desired matrix. Then consider the loss function

n

L) = (df —B(yiy))

ij=1

where ) is obtained by orthogonal projection from R¥ to a d-dimensional
subspace of R¥ and X is the exact configuration of D.

Bibhas Adhikari (Spring 2022-23, IIT Kharag| Big Data Analysis Lecture 12 February 3, 2023 11/15



MDS

Lemma Let Z C R be a given data with Euclidean square-distance matrix
Sz = [sj], where s;j = d3(z;, z;), and let GS be its centering Gram matrix.

Then
62) ~ 2n Z Z i

i=1 j=1
Proof Homework
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MDS

Lemma Let Z C R be a given data with Euclidean square-distance matrix
Sz = [sj], where s;j = d3(z;, z;), and let GS be its centering Gram matrix.

Then
62) ~ 2n Z Z i

i=1 j=1
Proof Homework

Lemma Let Dz = [do(z;, zj)] and Z =[2,...,2n), the centered data
matrix corresponding to Z. Then

= 1
1ZllF = —=IDzllF
V2n
Proof Homework
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MDS

Theorem! Let X C R¥ be the configuration of D such that X is centered
and the SVD of X be given by

X=UL, VT,

where ¥ = diag(o1,...,0k), U = [u1,us,..., ui]. For a given d < k, let
Ug = [u1,uz,...,ug]l and Y = UJX. Then Y is a solution of the above
optimization problem with

k

L) =) ot

i=d+1

Proof Homework

LChapter 6, J. Wang, Geometric Structure of High-Dimensional Data and
Dimensionality Reduction, Springer, 2012
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MDS

The classical MDS algoritm:
Step 1 Let D be the given distance matrix. Set G¢ = —%SC
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MDS

The classical MDS algoritm:

Step 1 Let D be the given distance matrix. Set G¢ = —%SC

Step 2 Suppose rank of G€ is k. Compute the spectral decomposition of
G€ as G° = UNUT, where U = [uy,...,uy], and A = diag(\1, ..., \k)
with A1 > X < ..o < g
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MDS

The classical MDS algoritm:

Step 1 Let D be the given distance matrix. Set G¢ = —%SC

Step 2 Suppose rank of G€ is k. Compute the spectral decomposition of
G€ as G° = UNUT, where U = [uy,...,uy], and A = diag(\1, ..., \k)
with A1 > X < ..o < g

Step 3 Set Uy = [u1,...,uy] and T4 = diag(v/ 1, ...,/ Ag). Then the
configuration is Y = X,U]
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MDS

import numpy as np

from numpy.linalg import eig

D = np.array([[0,4,3,7,8],[4,0,1,6,7],[3,1,0,5,7],[7,6,5,0,1], [8 ,7 ,7 ,1 ,0]])
D2 = np.square(D)

C = np.eye(5) - 0.2*np.ones(5)
M=-05*C@D2@C

LV = eig(M)

s = np.real(np.power(1,0.5))
V2 = V[;,[0,1]]

s2 = np.diag(s[0:2])
Q=V20s2

import matplotlib.pyplot as plt
plt.plot(Q[:,0],Q[:,1],'ro")
plt.show()
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