Big Data Analysis (MA60306)

Bibhas Adhikari

Spring 2022-23, IIT Kharagpur
Lecture 12
February 3, 2023

MDS

\rightarrow Thus in an MSD processing the input is a similarity matrix and the out put is a low dimensional space, which is usually 2 or 3 dimensional

MDS

\rightarrow Thus in an MSD processing the input is a similarity matrix and the out put is a low dimensional space, which is usually 2 or 3 dimensional

Classical MDS In this case, we assume that the data set is

$$
\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\}, x_{j} \in \mathbb{R}^{d}
$$

and the data matrix is

$$
X=\left[x_{1}, \ldots, x_{n}\right] \in \mathbb{R}^{d \times n}
$$

Note that each column represents a data point here.

MDS

\rightarrow Thus in an MSD processing the input is a similarity matrix and the out put is a low dimensional space, which is usually 2 or 3 dimensional

Classical MDS In this case, we assume that the data set is

$$
\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\}, x_{j} \in \mathbb{R}^{d}
$$

and the data matrix is

$$
X=\left[x_{1}, \ldots, x_{n}\right] \in \mathbb{R}^{d \times n}
$$

Note that each column represents a data point here.
The Euclidean distance matrix is $D=\left[d_{i j}\right]=\left[d_{2}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)\right]$ where

$$
d_{2}(\boldsymbol{x}, \boldsymbol{y})=\sqrt{\sum_{j=1}^{n}\left(x_{j}-y_{j}\right)^{2}}
$$

MDS

We define Euclidean square-distance matrix

$$
S=\left[d_{2}^{2}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)\right]
$$

MDS

We define Euclidean square-distance matrix

$$
S=\left[d_{2}^{2}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)\right]
$$

Then observe that D and S are
\triangle Symmetric

MDS

We define Euclidean square-distance matrix

$$
S=\left[d_{2}^{2}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)\right]
$$

Then observe that D and S are
\triangle Symmetric
\triangle invariant under shift and rotation

MDS

We define Euclidean square-distance matrix

$$
S=\left[d_{2}^{2}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)\right]
$$

Then observe that D and S are
\triangle Symmetric
\triangle invariant under shift and rotation
Euclidean distance metric Any symmetric matrix D is called a Euclidean distance matrix or Euclidean metric if there exists a positive integer k and a set $\mathcal{Z}=\left\{\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{n}\right\} \subset \mathbb{R}^{k}$ such that

$$
D=\left[d_{2}\left(\boldsymbol{z}_{i}, \boldsymbol{z}_{j}\right)\right] .
$$

In that case \mathcal{Z} is called a configuration of D.

MDS

Question Can a matrix be detected as a Euclidean metric from its properties without finding the configuration explicitly?

MDS

Question Can a matrix be detected as a Euclidean metric from its properties without finding the configuration explicitly?
Gram (Gramian) matrix of a data set Let $\mathcal{X}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\} \subset \mathbb{R}^{d}$. Then the Gram matrix of \mathcal{X} is defined by

$$
G=\left[g_{i j}\right]=\left[\boldsymbol{x}_{i}^{\top} \boldsymbol{x}_{j}\right]=\left[\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right\rangle\right]
$$

MDS

Question Can a matrix be detected as a Euclidean metric from its properties without finding the configuration explicitly?
Gram (Gramian) matrix of a data set Let $\mathcal{X}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\} \subset \mathbb{R}^{d}$. Then the Gram matrix of \mathcal{X} is defined by

$$
G=\left[g_{i j}\right]=\left[\boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j}\right]=\left[\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right\rangle\right]
$$

Then G is a positive semi-definite matrix.

MDS

Question Can a matrix be detected as a Euclidean metric from its properties without finding the configuration explicitly?
Gram (Gramian) matrix of a data set Let $\mathcal{X}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\} \subset \mathbb{R}^{d}$. Then the Gram matrix of \mathcal{X} is defined by

$$
G=\left[g_{i j}\right]=\left[\boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j}\right]=\left[\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right\rangle\right]
$$

Then G is a positive semi-definite matrix. However, every positive semi-definite matrix G has Cholesky decomposition i.e.

$$
G=R^{T} R
$$

for some $R=\left[\boldsymbol{r}_{1}, \ldots \boldsymbol{r}_{n}\right]$

MDS

Question Can a matrix be detected as a Euclidean metric from its properties without finding the configuration explicitly?
Gram (Gramian) matrix of a data set Let $\mathcal{X}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\} \subset \mathbb{R}^{d}$. Then the Gram matrix of \mathcal{X} is defined by

$$
G=\left[g_{i j}\right]=\left[\boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j}\right]=\left[\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right\rangle\right]
$$

Then G is a positive semi-definite matrix. However, every positive semi-definite matrix G has Cholesky decomposition i.e.

$$
G=R^{T} R
$$

for some $R=\left[\boldsymbol{r}_{1}, \ldots \boldsymbol{r}_{n}\right]$
Question What is the conclusion?

MDS

Note that for any $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{d}$,

$$
d_{2}(\boldsymbol{x}, \boldsymbol{y})=\sqrt{\langle\boldsymbol{x}, \boldsymbol{x}\rangle+\langle\boldsymbol{y}, \boldsymbol{y}\rangle-2\langle\boldsymbol{x}, \boldsymbol{y}\rangle}
$$

i.e.

$$
d_{i j}=d_{2}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)=\sqrt{g_{i i}+g_{j j}-2 g_{i j}}
$$

MDS

Note that for any $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{d}$,

$$
d_{2}(\boldsymbol{x}, \boldsymbol{y})=\sqrt{\langle\boldsymbol{x}, \boldsymbol{x}\rangle+\langle\boldsymbol{y}, \boldsymbol{y}\rangle-2\langle\boldsymbol{x}, \boldsymbol{y}\rangle}
$$

i.e.

$$
d_{i j}=d_{2}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)=\sqrt{g_{i i}+g_{j j}-2 g_{i j}}
$$

If the given set of data points $\mathcal{X}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\}, \boldsymbol{x}_{j} \in \mathbb{R}^{d}$ lie on a k dimensional affine subspace (hyperplane) $H \subset \mathbb{R}^{d}$ then the center of

$$
\overline{\mathbf{x}}=\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i}
$$

lies in H, and $S=H-\overline{\boldsymbol{x}}=\{x-\overline{\boldsymbol{x}}: x \in H\} \subset \mathbb{R}^{d}$ is a d-dimensional subspace parallel to H

MDS

Set $\widehat{\mathcal{X}}=\left\{\widehat{\boldsymbol{x}}_{1}, \ldots, \widehat{\boldsymbol{x}}_{n}\right\}, \widehat{\boldsymbol{x}}_{i}=\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}$ is called the centered data set and the corresponding data matrix \widehat{X} is called the centered data matrix.

MDS

Set $\widehat{\mathcal{X}}=\left\{\widehat{\boldsymbol{x}}_{1}, \ldots, \widehat{\boldsymbol{x}}_{n}\right\}, \widehat{\boldsymbol{x}}_{i}=\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}$ is called the centered data set and the corresponding data matrix \widehat{X} is called the centered data matrix. The Gram matrix corresponding to $\widehat{\mathcal{X}}$ given by

$$
G^{c}=\left[\left\langle\hat{\boldsymbol{x}}^{T}, \widehat{\boldsymbol{x}}_{j}\right\rangle\right]=\widehat{X}^{T} \widehat{X}
$$

is called the centering Gram matrix of \mathcal{X}.

MDS

Set $\widehat{\mathcal{X}}=\left\{\widehat{\boldsymbol{x}}_{1}, \ldots, \widehat{\boldsymbol{x}}_{n}\right\}, \widehat{\boldsymbol{x}}_{i}=\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}$ is called the centered data set and the corresponding data matrix \widehat{X} is called the centered data matrix. The Gram matrix corresponding to $\widehat{\mathcal{X}}$ given by

$$
G^{c}=\left[\left\langle\widehat{\boldsymbol{x}}^{T}, \widehat{\boldsymbol{x}}_{j}\right\rangle\right]=\widehat{X}^{T} \widehat{X}
$$

is called the centering Gram matrix of \mathcal{X}. If $G^{c}=\left[g_{i j}^{c}\right]$ then

$$
d_{i j}=\sqrt{g_{i j}^{c}+g_{j j}^{c}-2 g_{i j}^{c}}
$$

MDS

Set $\widehat{\mathcal{X}}=\left\{\widehat{\boldsymbol{x}}_{1}, \ldots, \widehat{\boldsymbol{x}}_{n}\right\}, \widehat{\boldsymbol{x}}_{i}=\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}$ is called the centered data set and the corresponding data matrix \widehat{X} is called the centered data matrix. The Gram matrix corresponding to $\widehat{\mathcal{X}}$ given by

$$
G^{c}=\left[\left\langle\widehat{\boldsymbol{x}}^{T}, \widehat{\boldsymbol{x}}_{j}\right\rangle\right]=\widehat{X}^{T} \widehat{X}
$$

is called the centering Gram matrix of \mathcal{X}. If $G^{c}=\left[g_{i j}^{c}\right]$ then

$$
d_{i j}=\sqrt{g_{i j}^{c}+g_{j j}^{c}-2 g_{i j}^{c}}
$$

(revisiting) Centering/centralizing matrix Let $\mathbf{1}=[1,1, \ldots, 1]^{T} \in R^{n}$. Let $E=\mathbf{1 1}^{T}$. Then $C_{n}=I_{n}-\frac{1}{n} E$ Then

MDS

Then

$$
\rightarrow C_{n}^{2}=C_{n}
$$

MDS

Then

$$
\begin{aligned}
& \rightarrow C_{n}^{2}=C_{n} \\
& \rightarrow \mathbf{1}^{T} C_{n}=C_{n} \mathbf{1}=0
\end{aligned}
$$

MDS

Then

$$
\rightarrow C_{n}^{2}=C_{n}
$$

$\rightarrow \mathbf{1}^{T} C_{n}=C_{n} \mathbf{1}=0$
\rightarrow A data set $\mathcal{X}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\}$ is centered if and only if $X C_{n}=X$, where $X=\left[x_{1}, \ldots, x_{n}\right]$

MDS

Then
$\rightarrow C_{n}^{2}=C_{n}$
$\rightarrow \mathbf{1}^{T} C_{n}=C_{n} \mathbf{1}=0$
\rightarrow A data set $\mathcal{X}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\}$ is centered if and only if $X C_{n}=X$, where $X=\left[x_{1}, \ldots, x_{n}\right]$
\rightarrow A positive semi-definite matrix M is a centering Gram matrix if and only if $C_{n} M C_{n}=M$

MDS

Then
$\rightarrow C_{n}^{2}=C_{n}$
$\rightarrow \mathbf{1}^{T} C_{n}=C_{n} \mathbf{1}=0$
\rightarrow A data set $\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\}$ is centered if and only if $X C_{n}=X$, where $X=\left[x_{1}, \ldots, x_{n}\right]$
\rightarrow A positive semi-definite matrix M is a centering Gram matrix if and only if $C_{n} M C_{n}=M$

Conclusion Let G denote the Gram matrix of a data matrix X. Then the data matrix corresponding to the centered data set of X is $X C_{n}$, and the centering Gram matrix of X is $G^{c}=C_{n} G C_{n}$
Note that the data points are columns of X

MDS

Theorem Let \mathcal{X} be a data set. Then

$$
G^{c}=-\frac{1}{2} S^{c}
$$

Proof Note that $\sum_{i=1}^{n} g_{i j}^{c}=0$.

MDS

Theorem Let \mathcal{X} be a data set. Then

$$
G^{c}=-\frac{1}{2} S^{c}
$$

Proof Note that $\sum_{i=1}^{n} g_{i j}^{c}=0$. Then $d_{i j}=\sqrt{g_{i j}^{c}+g_{j j}^{c}-2 g_{i j}^{c}}$ implies

$$
\sum_{i=1}^{n} d_{i j}^{2}=n g_{j j}^{c}+\sum_{i=1}^{n} g_{i i}^{c} \text { and } \sum_{j=1}^{n} d_{i j}^{2}=n g_{i i}^{c}+\sum_{j=1}^{n} g_{j j}^{c}
$$

MDS

Theorem Let \mathcal{X} be a data set. Then

$$
G^{c}=-\frac{1}{2} S^{c}
$$

Proof Note that $\sum_{i=1}^{n} g_{i j}^{c}=0$. Then $d_{i j}=\sqrt{g_{i j}^{c}+g_{j j}^{c}-2 g_{i j}^{c}}$ implies

$$
\sum_{i=1}^{n} d_{i j}^{2}=n g_{j j}^{c}+\sum_{i=1}^{n} g_{i i}^{c} \text { and } \sum_{j=1}^{n} d_{i j}^{2}=n g_{i i}^{c}+\sum_{j=1}^{n} g_{j j}^{c}
$$

Thus

$$
\begin{aligned}
{\left[S^{c}\right]_{i j} } & =D_{i j}^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} d_{i j}^{2}+\sum_{j=1}^{n} d_{i j}^{2}-\frac{1}{n} \sum_{i, j=1}^{n} d_{i j}^{2}\right) \\
& =d_{i j}^{2}-g_{i i}^{c}-g_{j j}^{c}=-2 g_{i j}^{c}
\end{aligned}
$$

MDS

Theorem Let \mathcal{X} be a data set. Then

$$
G^{c}=-\frac{1}{2} S^{c}
$$

Proof Note that $\sum_{i=1}^{n} g_{i j}^{c}=0$. Then $d_{i j}=\sqrt{g_{i j}^{c}+g_{j j}^{c}-2 g_{i j}^{c}}$ implies

$$
\sum_{i=1}^{n} d_{i j}^{2}=n g_{j j}^{c}+\sum_{i=1}^{n} g_{i i}^{c} \text { and } \sum_{j=1}^{n} d_{i j}^{2}=n g_{i i}^{c}+\sum_{j=1}^{n} g_{j j}^{c}
$$

Thus

$$
\begin{aligned}
{\left[S^{c}\right]_{i j} } & =D_{i j}^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} d_{i j}^{2}+\sum_{j=1}^{n} d_{i j}^{2}-\frac{1}{n} \sum_{i, j=1}^{n} d_{i j}^{2}\right) \\
& =d_{i j}^{2}-g_{i i}^{c}-g_{j j}^{c}=-2 g_{i j}^{c}
\end{aligned}
$$

Question What does this equality mean when the data points are normalized?

MDS

The we have the following consequence: A matrix A is a Euclidean square-distance matrix if and only if $-\frac{1}{2} A^{c}$ is a centering positive semi-definite matrix.

MDS

The we have the following consequence: A matrix A is a Euclidean square-distance matrix if and only if $-\frac{1}{2} A^{c}$ is a centering positive semi-definite matrix.

Classical multidimensional scaling method Let $D=\left[d_{i j}\right]$ be a given distance matrix for a set of n objects. The we want to find a configuration $\mathcal{X}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\} \subset \mathbb{R}^{d}$ such that a certain distance matrix associated with \mathcal{X} is as close as possible to D, i.e.

$$
d_{X}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right) \approx d_{i j}
$$

for $1 \leq i, j \leq n$.

MDS

Lemma Suppose $D=\left[d_{i j}\right]$ is an $n \times n$ Euclidean metric and $S=\left[d_{i j}^{2}\right]$ is the corresponding square-distance matrix. Let $G^{c}=-\frac{1}{2} S^{c}$. If the rank of G^{c} is k then there is an k-dimensional centered vector set $\mathcal{X}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\} \subset \mathbb{R}^{k}$ such that

$$
d_{2}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)=d_{i j}, 1 \leq i, j \leq n
$$

MDS

Lemma Suppose $D=\left[d_{i j}\right]$ is an $n \times n$ Euclidean metric and $S=\left[d_{i j}^{2}\right]$ is the corresponding square-distance matrix. Let $G^{c}=-\frac{1}{2} S^{c}$. If the rank of G^{c} is k then there is an k-dimensional centered vector set $\mathcal{X}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\} \subset \mathbb{R}^{k}$ such that

$$
d_{2}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)=d_{i j}, 1 \leq i, j \leq n
$$

Proof By above G^{c} is a centering gram matrix. If rank of G^{c} is k then $G^{c}=X^{T} X$ for some matrix $X=\left[x_{1}, \ldots, x_{n}\right] \in \mathbb{R}^{k \times n}$, which has the desired property.

MDS

Lemma Suppose $D=\left[d_{i j}\right]$ is an $n \times n$ Euclidean metric and $S=\left[d_{i j}^{2}\right]$ is the corresponding square-distance matrix. Let $G^{c}=-\frac{1}{2} S^{c}$. If the rank of G^{c} is k then there is an k-dimensional centered vector set $\mathcal{X}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\} \subset \mathbb{R}^{k}$ such that

$$
d_{2}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)=d_{i j}, 1 \leq i, j \leq n
$$

Proof By above G^{c} is a centering gram matrix. If rank of G^{c} is k then $G^{c}=X^{T} X$ for some matrix $X=\left[x_{1}, \ldots, x_{n}\right] \in \mathbb{R}^{k \times n}$, which has the desired property.

Let us call k as the configuration of D and \mathcal{X} as the exact configuration of D. However, note that k can be large to meet the goal that we have low-dimensional configuration, say $d \ll k$.

MDS

Question Can we take help of the PCA?

MDS

Question Can we take help of the PCA?
Let Y denote a random desired matrix. Then consider the loss function

$$
\mathcal{L}(\mathcal{Y})=\sum_{i, j=1}^{n}\left(d_{i j}^{2}-d_{2}^{2}\left(\boldsymbol{y}_{i}, \boldsymbol{y}_{j}\right)\right)
$$

where \mathcal{Y} is obtained by orthogonal projection from \mathbb{R}^{k} to a d-dimensional subspace of \mathbb{R}^{k} and \mathcal{X} is the exact configuration of D.

MDS

Lemma Let $\mathcal{Z} \subset \mathbb{R}^{k}$ be a given data with Euclidean square-distance matrix $S_{Z}=\left[s_{i j}\right]$, where $s_{i j}=d_{2}^{2}\left(\boldsymbol{z}_{i}, \boldsymbol{z}_{j}\right)$, and let G_{Z}^{c} be its centering Gram matrix. Then

$$
\operatorname{tr}\left(G_{Z}^{C}\right)=\frac{1}{2 n} \sum_{i=1}^{n} \sum_{j=1}^{n} s_{i j}
$$

Proof Homework

MDS

Lemma Let $\mathcal{Z} \subset \mathbb{R}^{k}$ be a given data with Euclidean square-distance matrix $S_{Z}=\left[s_{i j}\right]$, where $s_{i j}=d_{2}^{2}\left(\boldsymbol{z}_{i}, \boldsymbol{z}_{j}\right)$, and let G_{Z}^{c} be its centering Gram matrix. Then

$$
\operatorname{tr}\left(G_{Z}^{C}\right)=\frac{1}{2 n} \sum_{i=1}^{n} \sum_{j=1}^{n} s_{i j}
$$

Proof Homework

Lemma Let $D_{Z}=\left[d_{2}\left(\boldsymbol{z}_{i}, \boldsymbol{z}_{j}\right)\right]$ and $\widehat{Z}=\left[\widehat{z}_{1}, \ldots, \widehat{z}_{n}\right]$, the centered data matrix corresponding to \mathcal{Z}. Then

$$
\|\widehat{Z}\|_{F}=\frac{1}{\sqrt{2 n}}\left\|D_{Z}\right\|_{F}
$$

Proof Homework

MDS

Theorem ${ }^{1}$ Let $\mathcal{X} \subset \mathbb{R}^{k}$ be the configuration of D such that \mathcal{X} is centered and the SVD of X be given by

$$
X=U \Sigma_{k} V^{T}
$$

where $\Sigma_{k}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{k}\right), U=\left[\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{k}\right]$. For a given $d \ll k$, let $U_{d}=\left[\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{d}\right]$ and $Y=U_{d}^{\top} X$. Then Y is a solution of the above optimization problem with

$$
\mathcal{L}(\mathcal{Y})=\sum_{i=d+1}^{k} \sigma_{i}^{2}
$$

Proof Homework

[^0]Dimensionality Reduction, Springer, 2012

MDS

The classical MDS algoritm:
Step 1 Let D be the given distance matrix. Set $G^{c}=-\frac{1}{2} S^{c}$

MDS

The classical MDS algoritm:
Step 1 Let D be the given distance matrix. Set $G^{c}=-\frac{1}{2} S^{c}$ Step 2 Suppose rank of G^{c} is k. Compute the spectral decomposition of G^{c} as $G^{c}=U \wedge U^{T}$, where $U=\left[\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{k}\right]$, and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ with $\lambda_{1} \geq \lambda_{2} \leq \ldots \leq \lambda_{k}$.

MDS

The classical MDS algoritm:
Step 1 Let D be the given distance matrix. Set $G^{c}=-\frac{1}{2} S^{c}$ Step 2 Suppose rank of G^{c} is k. Compute the spectral decomposition of G^{c} as $G^{c}=U \wedge U^{T}$, where $U=\left[\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{k}\right]$, and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ with $\lambda_{1} \geq \lambda_{2} \leq \ldots \leq \lambda_{k}$.
Step 3 Set $U_{d}=\left[\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{k}\right]$ and $\Sigma_{d}=\operatorname{diag}\left(\sqrt{\lambda_{1}}, \ldots, \sqrt{\lambda_{d}}\right)$. Then the configuration is $Y=\Sigma_{d} U_{d}^{T}$

MDS

import numpy as np
from numpy.linalg import eig
$\mathrm{D}=\mathrm{np} . \operatorname{array}([[0,4,3,7,8],[4,0,1,6,7],[3,1,0,5,7],[7,6,5,0,1],[8,7,7,1,0]])$
D2 $=$ np.square (D)
$C=$ np.eye(5) $-0.2 *$ np.ones(5)
$M=-0.5^{*} C$ @ D2 @ C
$\mathrm{I}, \mathrm{V}=\operatorname{eig}(\mathrm{M})$
$\mathrm{s}=$ np.real(np.power(l,0.5))
$\mathrm{V} 2=\mathrm{V}[:,[0,1]]$
$\mathrm{s} 2=\mathrm{np} \cdot \operatorname{diag}(\mathrm{s}[0: 2])$
$\mathrm{Q}=\mathrm{V} 2$ @ s2
import matplotlib.pyplot as plt
plt.plot(Q[:,0], Q[:,1],'ro')
plt.show()

[^0]: ${ }^{1}$ Chapter 6, J. Wang, Geometric Structure of High-Dimensional Data and

