Big Data Analysis (MA60306)

Bibhas Adhikari

Spring 2022-23, IIT Kharagpur
Lecture 11
February 2, 2023

Principal component analysis

Observation the best fitting subspace is a subspace!! i.e. it is a plane which passes through origin

Principal component analysis

Observation the best fitting subspace is a subspace!! i.e. it is a plane which passes through origin

Principal component analysis(PCA) - an extension of SVD when the desired subspace V does not pass through origin but it goes through the mean of all the data points! So use SVD after a prepossessing step, called centering to shift the data matrix to its mean at the origin!

PCA
Centering - adjusting the given data matrix $A \in \mathbb{R}^{n \times d}$ such that each column has mean value 0 .

Centering - adjusting the given data matrix $A \in \mathbb{R}^{n \times d}$ such that each column has mean value 0 .
\rightarrow Define $\overline{\mathbf{a}}_{j}=\frac{1}{n} \sum_{i=1}^{n} A_{i j}$. the average of each column

PCA

Centering - adjusting the given data matrix $A \in \mathbb{R}^{n \times d}$ such that each column has mean value 0 .
\rightarrow Define $\overline{\mathbf{a}}_{j}=\frac{1}{n} \sum_{i=1}^{n} A_{i j}$. the average of each column
\rightarrow Define \widetilde{A} with $\widetilde{A}_{i j}=A_{i j}-\overline{\mathbf{a}}_{j}$, the $i j$-th entry of the centered matrix \widetilde{A}

PCA

Centering - adjusting the given data matrix $A \in \mathbb{R}^{n \times d}$ such that each column has mean value 0 .
\rightarrow Define $\overline{\mathbf{a}}_{j}=\frac{1}{n} \sum_{i=1}^{n} A_{i j}$. the average of each column
\rightarrow Define \widetilde{A} with $\widetilde{A}_{i j}=A_{i j}-\overline{\mathbf{a}}_{j}$, the $i j$-th entry of the centered matrix \widetilde{A}
\rightarrow Another way: define the centering matrix $C_{n}=I_{n}-\frac{1}{n} 11^{T}$, where $\mathbf{1}$ is the all-one vector. Then

$$
\widetilde{A}=C_{n} A
$$

PCA

Centering - adjusting the given data matrix $A \in \mathbb{R}^{n \times d}$ such that each column has mean value 0 .
\rightarrow Define $\overline{\mathbf{a}}_{j}=\frac{1}{n} \sum_{i=1}^{n} A_{i j}$. the average of each column
\rightarrow Define \widetilde{A} with $\widetilde{A}_{i j}=A_{i j}-\overline{\mathbf{a}}_{j}$, the $i j$-th entry of the centered matrix \widetilde{A}
\rightarrow Another way: define the centering matrix $C_{n}=I_{n}-\frac{1}{n} 11^{T}$, where $\mathbf{1}$ is the all-one vector. Then

$$
\widetilde{A}=C_{n} A
$$

\rightarrow The matrix C_{n} is a projection matrix!! Where does it project?

PCA

Centering - adjusting the given data matrix $A \in \mathbb{R}^{n \times d}$ such that each column has mean value 0 .
\rightarrow Define $\overline{\mathbf{a}}_{j}=\frac{1}{n} \sum_{i=1}^{n} A_{i j}$. the average of each column
\rightarrow Define \widetilde{A} with $\widetilde{A}_{i j}=A_{i j}-\overline{\mathbf{a}}_{j}$, the $i j$-th entry of the centered matrix \widetilde{A}
\rightarrow Another way: define the centering matrix $C_{n}=I_{n}-\frac{1}{n} 11^{T}$, where $\mathbf{1}$ is the all-one vector. Then

$$
\widetilde{A}=C_{n} A
$$

\rightarrow The matrix C_{n} is a projection matrix!! Where does it project?
\rightarrow Let SVD of $\widetilde{A}=C_{n} A=U \Sigma V^{T}$. Then the singular values of \widetilde{A} are called the principal values, and the k singular vectors corresponding to the k largest singular values are called top- k principal directions/vectors

Let

$$
A=\left[\begin{array}{cc}
1 & 5 \\
2 & 3 \\
3 & 10
\end{array}\right]
$$

Then the center vector is $\bar{a}=[2,6]$
The centered matrix is

$$
\tilde{A}=\left[\begin{array}{cc}
-1 & -1 \\
0 & -3 \\
1 & 4
\end{array}\right]
$$

PCA
Another interpretation of PCA
\rightarrow We introduce a complete orthonormal set of d-dimensional vectors $\boldsymbol{v}_{j}, 1 \leq j \leq d$ that satisfy $\boldsymbol{v}_{i}^{T} \boldsymbol{v}_{j}=\delta_{i, j}$

PCA

Another interpretation of PCA
\rightarrow We introduce a complete orthonormal set of d-dimensional vectors $\boldsymbol{v}_{j}, 1 \leq j \leq d$ that satisfy $\boldsymbol{v}_{i}^{T} \boldsymbol{v}_{j}=\delta_{i, j}$
\rightarrow Then any data point \boldsymbol{x}_{i} can be written as

$$
\boldsymbol{x}_{i}=\sum_{j=1}^{d} \alpha_{i j} \boldsymbol{v}_{j}
$$

i.e. this corresponds to a rotation of the coordinate system to a new system defined by the v_{j}, and the original d components $\left\{x_{i 1}, \ldots, x_{i d}\right\}$ are replaced by an equivalent set $\left\{\alpha_{i 1}, \ldots, \alpha_{i d}\right\}$

PCA

Another interpretation of PCA
\rightarrow We introduce a complete orthonormal set of d-dimensional vectors $\boldsymbol{v}_{j}, 1 \leq j \leq d$ that satisfy $\boldsymbol{v}_{i}^{T} \boldsymbol{v}_{j}=\delta_{i, j}$
\rightarrow Then any data point \boldsymbol{x}_{i} can be written as

$$
\boldsymbol{x}_{i}=\sum_{j=1}^{d} \alpha_{i j} \boldsymbol{v}_{j}
$$

i.e. this corresponds to a rotation of the coordinate system to a new system defined by the v_{j}, and the original d components $\left\{x_{i 1}, \ldots, x_{i d}\right\}$ are replaced by an equivalent set $\left\{\alpha_{i 1}, \ldots, \alpha_{i d}\right\}$
\rightarrow Obviously, $\alpha_{i j}=\boldsymbol{x}_{i}^{T} \boldsymbol{v}_{j}$ and hence

$$
\boldsymbol{x}_{i}=\sum_{j=1}^{d}\left(\boldsymbol{x}_{i}^{T} \boldsymbol{v}_{j}\right) \boldsymbol{v}_{j}
$$

PCA

\rightarrow Goal: to approximate the data points using a representation involving a restricted number $k<d$ of variables corresponding to a projection onto a lower-dimensional subspace

PCA

\rightarrow Goal: to approximate the data points using a representation involving a restricted number $k<d$ of variables corresponding to a projection onto a lower-dimensional subspace
\rightarrow The k-dimensional subspace can be represented WLOG by the first k vectors, and so we approximate each data point \boldsymbol{x}_{i} by

$$
\widetilde{\boldsymbol{x}}_{i}=\sum_{j=1}^{k} z_{i j} \boldsymbol{v}_{j}+\sum_{j=k+1}^{d} \boldsymbol{b}_{j} \boldsymbol{v}_{j}
$$

where $\left\{z_{i j}\right\}$ depend on the particular data point, and $\left\{\boldsymbol{b}_{j}\right\}$ are constants that are the same for all data points
\rightarrow We are free to choose the $\left\{\boldsymbol{v}_{j}\right\},\left\{z_{i j}\right\}$, and $\left\{\boldsymbol{b}_{j}\right\}$ so as to minimize the distortion introduced by the reduction in dimensionality
\rightarrow The distortion measure that we consider is the squared distance between the original data point \boldsymbol{x}_{i}, and its approximation $\widetilde{\boldsymbol{x}}_{i}$, averaged over the data set i.e. to minimize

$$
J=\frac{1}{n} \sum_{i=1}^{n}\left\|\boldsymbol{x}_{i}-\widetilde{\boldsymbol{x}}_{i}\right\|^{2}
$$

PCA

\rightarrow The distortion measure that we consider is the squared distance between the original data point \boldsymbol{x}_{i}, and its approximation $\widetilde{\boldsymbol{x}}_{i}$, averaged over the data set i.e. to minimize

$$
J=\frac{1}{n} \sum_{i=1}^{n}\left\|\boldsymbol{x}_{i}-\widetilde{\boldsymbol{x}}_{i}\right\|^{2}
$$

\rightarrow First, consider this minimization wrt $\left\{z_{i j}\right\}$:
Homework Substituting $\widetilde{\boldsymbol{x}}_{i}$, setting the derivative with respect to $z_{i j}$ to zero, and making use of the orthonormality conditions, one can obtain

$$
z_{i j}=\boldsymbol{x}_{i}^{T} \boldsymbol{v}_{j}, j=1, \ldots, d
$$

PCA

\rightarrow The distortion measure that we consider is the squared distance between the original data point \boldsymbol{x}_{i}, and its approximation $\widetilde{\boldsymbol{x}}_{i}$, averaged over the data set i.e. to minimize

$$
J=\frac{1}{n} \sum_{i=1}^{n}\left\|\boldsymbol{x}_{i}-\widetilde{\boldsymbol{x}}_{i}\right\|^{2}
$$

\rightarrow First, consider this minimization wrt $\left\{z_{i j}\right\}$:
Homework Substituting $\widetilde{\boldsymbol{x}}_{i}$, setting the derivative with respect to $z_{i j}$ to zero, and making use of the orthonormality conditions, one can obtain

$$
z_{i j}=\boldsymbol{x}_{i}^{T} \boldsymbol{v}_{j}, j=1, \ldots, d
$$

Homework Similarly, setting the derivative of J wrt \boldsymbol{b}_{j} to zero gives

$$
\boldsymbol{b}_{j}=\overline{\boldsymbol{x}}^{T} \boldsymbol{v}_{j}, j=k+1, \ldots, d
$$

where $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i}$

PCA

\rightarrow Then we have $x_{i}-\widetilde{x}_{i}=\sum_{j=k+1}^{d}\left\{\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)^{T} \boldsymbol{v}_{j}\right\} \boldsymbol{v}_{j}$
\rightarrow Thus

$$
J=\frac{1}{n} \sum_{i=1}^{n} \sum_{j=k+1}^{d}\left(\boldsymbol{x}_{i}^{T} \boldsymbol{v}_{j}-\overline{\boldsymbol{x}}^{T} \boldsymbol{v}_{j}\right)^{2}=\sum_{j=k+1}^{d} \boldsymbol{v}_{j}^{T} S \boldsymbol{v}_{j}
$$

where S is the covariance matrix defined by

$$
S=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(x_{i}-\overline{\boldsymbol{x}}\right)^{T}
$$

${ }^{1}$ Chapter 12, C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2009

PCA

\rightarrow Then we have $x_{i}-\widetilde{x}_{i}=\sum_{j=k+1}^{d}\left\{\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)^{T} \boldsymbol{v}_{j}\right\} \boldsymbol{v}_{j}$
\rightarrow Thus

$$
J=\frac{1}{n} \sum_{i=1}^{n} \sum_{j=k+1}^{d}\left(\boldsymbol{x}_{i}^{T} \boldsymbol{v}_{j}-\overline{\boldsymbol{x}}^{T} \boldsymbol{v}_{j}\right)^{2}=\sum_{j=k+1}^{d} \boldsymbol{v}_{j}^{T} S \boldsymbol{v}_{j}
$$

where S is the covariance matrix defined by

$$
S=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{T}
$$

Homework Then show that the general solution to the minimization for J for arbitrary d and $k<d$ is obtained by choosing the $\left\{\boldsymbol{v}_{j}\right\}$ as the eigenvectors of the the covariance matrix S^{1}

[^0] 2009

Multidimensional scaling

Multidimensional scaling (MDS) - is a data analysis technique which translates distances and dissimilarities into a visual representation through a 'geometric' picture

Multidimensional scaling

Multidimensional scaling (MDS) - is a data analysis technique which translates distances and dissimilarities into a visual representation through a 'geometric' picture
\rightarrow The input for an MDS algorithm usually is not an object data set but similarities of a set of objects
\rightarrow Here we will use the term 'distance' in a generic sense, meaning it reflects a dissimilarity/similarity between pairs of the objects

Multidimensional scaling

Multidimensional scaling (MDS) - is a data analysis technique which translates distances and dissimilarities into a visual representation through a 'geometric' picture
\rightarrow The input for an MDS algorithm usually is not an object data set but similarities of a set of objects
\rightarrow Here we will use the term 'distance' in a generic sense, meaning it reflects a dissimilarity/similarity between pairs of the objects
\rightarrow Suppose there are n objects in a set and the similarities between all pairs are measured. Then we can define an $n \times n$ distance matrix $D=\left[d_{i j}\right]$, where $d_{i j}$ represents the similarity/distance between the objects i and j

Multidimensional scaling

Multidimensional scaling (MDS) - is a data analysis technique which translates distances and dissimilarities into a visual representation through a 'geometric' picture
\rightarrow The input for an MDS algorithm usually is not an object data set but similarities of a set of objects
\rightarrow Here we will use the term 'distance' in a generic sense, meaning it reflects a dissimilarity/similarity between pairs of the objects
\rightarrow Suppose there are n objects in a set and the similarities between all pairs are measured. Then we can define an $n \times n$ distance matrix $D=\left[d_{i j}\right]$, where $d_{i j}$ represents the similarity/distance between the objects i and j
\rightarrow The objects are configured as virtual points in a low dimensional linear Euclidean space, and this point set is called configuration such that the Euclidean distances between the points have closest relation to the similarities

MDS

Example Similarity ratings for 12 nations (Wish, 1971)

Nation		1	2	3	4	5	6	7	8	9	10	11	12
Brazil	1	-											
Congo	2	4.83	-										
Cuba	3	5.28	4.56	-									
Egypt	4	3.44	5.00	5.17	-								
France	5	4.72	4.00	4.11	4.78	-							
India	6	4.50	4.83	4.00	5.83	3.44	-						
Israel	7	3.83	3.33	3.61	4.67	4.00	4.11	-					
Japan	8	3.50	3.39	2.94	3.83	4.22	4.50	4.83	-				
China	9	2.39	4.00	5.50	4.39	3.67	4.11	3.00	4.17	-			
USSR	10	3.06	3.39	5.44	4.39	5.06	4.50	4.17	4.61	5.72	-		
U.S.A.	11	5.39	2.39	3.17	3.33	5.94	4.28	5.94	6.06	2.56	5.00	-	
Yugoslavia	12	3.17	3.50	5.11	4.28	4.72	4.00	4.44	4.28	5.06	6.67	3.56	-

MDS

Example Similarity ratings for 12 nations (Wish, 1971)

Nation		1	2	3	4	5	6	7	8	9	10	11	12
Brazil	1	-											
Congo	2	4.83	-										
Cuba	3	5.28	4.56	-									
Egypt	4	3.44	5.00	5.17	-								
France	5	4.72	4.00	4.11	4.78	-							
India	6	4.50	4.83	4.00	5.83	3.44	-						
Israel	7	3.83	3.33	3.61	4.67	4.00	4.11	-					
Japan	8	3.50	3.39	2.94	3.83	4.22	4.50	4.83	-				
China	9	2.39	4.00	5.50	4.39	3.67	4.11	3.00	4.17	-			
USSR	10	3.06	3.39	5.44	4.39	5.06	4.50	4.17	4.61	5.72	-		
U.S.A.	11	5.39	2.39	3.17	3.33	5.94	4.28	5.94	6.06	2.56	5.00	-	
Yugoslavia	12	3.17	3.50	5.11	4.28	4.72	4.00	4.44	4.28	5.06	6.67	3.56	-

MDS

Example Distances between ten cities

	1	2	3	4	5	6	7	8	9	10
1	0	569	667	530	141	140	357	396	570	190
2	569	0	1212	1043	617	446	325	423	787	648
3	667	1212	0	201	596	768	923	882	714	714
4	530	1043	201	0	431	608	740	690	516	622
5	141	617	596	431	0	177	340	337	436	320
6	140	446	768	608	177	0	218	272	519	302
7	357	325	923	740	340	218	0	114	472	514
8	396	423	882	690	337	272	114	0	364	573
9	569	787	714	516	436	519	472	364	0	755
10	190	648	714	622	320	302	514	573	755	0

MDS

Example Distances between ten cities

[^0]: ${ }^{1}$ Chapter 12, C. M.Bishop, Pattern Recognition and Machine Learning, Springer,

