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Principal component analysis

Observation the best fitting subspace is a subspace!! i.e. it is a plane
which passes through origin

Principal component analysis(PCA) - an extension of SVD when the
desired subspace V does not pass through origin but it goes through the
mean of all the data points! So use SVD after a prepossessing step, called
centering to shift the data matrix to its mean at the origin!
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PCA

Centering - adjusting the given data matrix A ∈ Rn×d such that each
column has mean value 0.

→ Define aj =
1
n

∑n
i=1 Aij . the average of each column

→ Define Ã with Ãij = Aij − aj , the ij-th entry of the centered matrix Ã

→ Another way: define the centering matrix Cn = In − 1
n11

T , where 1 is
the all-one vector. Then

Ã = CnA

→ The matrix Cn is a projection matrix!! Where does it project?

→ Let SVD of Ã = CnA = UΣV T . Then the singular values of Ã are
called the principal values, and the k singular vectors corresponding
to the k largest singular values are called top-k principal
directions/vectors
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→ Another way: define the centering matrix Cn = In − 1
n11

T , where 1 is
the all-one vector. Then
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PCA

Let

A =

1 5
2 3
3 10

 .

Then the center vector is a = [2, 6]
The centered matrix is

Ã =

−1 −1
0 −3
1 4
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PCA
Another interpretation of PCA

→ We introduce a complete orthonormal set of d-dimensional vectors
v j , 1 ≤ j ≤ d that satisfy vT

i v j = δi ,j

→ Then any data point x i can be written as

x i =
d∑

j=1

αijv j

i.e. this corresponds to a rotation of the coordinate system to a new
system defined by the vj , and the original d components
{xi1, . . . , xid} are replaced by an equivalent set {αi1, . . . , αid}

→ Obviously, αij = xT
i v j and hence

x i =
d∑

j=1

(xT
i v j)v j
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PCA

→ Goal: to approximate the data points using a representation involving
a restricted number k < d of variables corresponding to a projection
onto a lower-dimensional subspace

→ The k-dimensional subspace can be represented WLOG by the first k
vectors, and so we approximate each data point x i by

x̃ i =
k∑

j=1

zijv j +
d∑

j=k+1

bjv j

where {zij} depend on the particular data point, and {bj} are
constants that are the same for all data points

→ We are free to choose the {v j}, {zij}, and {bj} so as to minimize the
distortion introduced by the reduction in dimensionality

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 11 February 2, 2023 6 / 11



PCA

→ Goal: to approximate the data points using a representation involving
a restricted number k < d of variables corresponding to a projection
onto a lower-dimensional subspace

→ The k-dimensional subspace can be represented WLOG by the first k
vectors, and so we approximate each data point x i by

x̃ i =
k∑

j=1

zijv j +
d∑

j=k+1

bjv j

where {zij} depend on the particular data point, and {bj} are
constants that are the same for all data points

→ We are free to choose the {v j}, {zij}, and {bj} so as to minimize the
distortion introduced by the reduction in dimensionality

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 11 February 2, 2023 6 / 11



PCA
→ The distortion measure that we consider is the squared distance

between the original data point x i , and its approximation x̃ i ,
averaged over the data set i.e. to minimize

J =
1

n

n∑
i=1

∥x i − x̃ i∥2

→ First, consider this minimization wrt {zij}:
Homework Substituting x̃ i , setting the derivative with respect to zij to
zero, and making use of the orthonormality conditions, one can obtain

zij = xT
i v j , j = 1, . . . , d

Homework Similarly, setting the derivative of J wrt bj to zero gives

bj = xTv j , j = k + 1, . . . , d

where x = 1
n

∑n
i=1 x i
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PCA

→ Then we have xi − x̃i =
∑d

j=k+1

{
(x i − x)Tv j

}
v j

→ Thus

J =
1

n

n∑
i=1

d∑
j=k+1

(
xT
i v j − xTv j

)2
=

d∑
j=k+1

vT
j Sv j

where S is the covariance matrix defined by

S =
1

n

n∑
i=1

(x i − x)(x i − x)T

Homework Then show that the general solution to the minimization for J
for arbitrary d and k < d is obtained by choosing the {v j} as the
eigenvectors of the the covariance matrix S1

1Chapter 12, C. M.Bishop, Pattern Recognition and Machine Learning, Springer,
2009

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 11 February 2, 2023 8 / 11



PCA

→ Then we have xi − x̃i =
∑d

j=k+1

{
(x i − x)Tv j

}
v j

→ Thus

J =
1

n

n∑
i=1

d∑
j=k+1

(
xT
i v j − xTv j

)2
=

d∑
j=k+1

vT
j Sv j

where S is the covariance matrix defined by

S =
1

n

n∑
i=1

(x i − x)(x i − x)T

Homework Then show that the general solution to the minimization for J
for arbitrary d and k < d is obtained by choosing the {v j} as the
eigenvectors of the the covariance matrix S1

1Chapter 12, C. M.Bishop, Pattern Recognition and Machine Learning, Springer,
2009

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Big Data Analysis Lecture 11 February 2, 2023 8 / 11



Multidimensional scaling

Multidimensional scaling (MDS) - is a data analysis technique which
translates distances and dissimilarities into a visual representation through
a ‘geometric’ picture

→ The input for an MDS algorithm usually is not an object data set but
similarities of a set of objects

→ Here we will use the term ‘distance’ in a generic sense, meaning it
reflects a dissimilarity/similarity between pairs of the objects

→ Suppose there are n objects in a set and the similarities between all
pairs are measured. Then we can define an n × n distance matrix
D = [dij ], where dij represents the similarity/distance between the
objects i and j

→ The objects are configured as virtual points in a low dimensional
linear Euclidean space, and this point set is called configuration such
that the Euclidean distances between the points have closest relation
to the similarities
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MDS
Example Similarity ratings for 12 nations (Wish, 1971)
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MDS

Example Distances between ten cities
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