Big Data Analysis (MA60306)

Bibhas Adhikari

Spring 2022-23, IIT Kharagpur

Lecture 11 February 2, 2023

Bibhas Adhikari (Spring 2022-23, IIT Kharag

Big Data Analysis

Lecture 11 February 2, 2023 1 / 11

3

A D N A B N A B N A B N

Principal component analysis

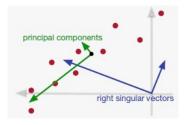
Observation the best fitting subspace is a subspace!! i.e. it is a plane which passes through origin

3

(日) (四) (日) (日) (日)

Principal component analysis

Observation the best fitting subspace is a subspace!! i.e. it is a plane which passes through origin



Principal component analysis(PCA) - an extension of SVD when the desired subspace V does not pass through origin but it goes through the mean of all the data points! So use SVD after a prepossessing step, called centering to shift the data matrix to its mean at the origin!

Centering - adjusting the given data matrix $A \in \mathbb{R}^{n \times d}$ such that each column has mean value 0.

3

Centering - adjusting the given data matrix $A \in \mathbb{R}^{n \times d}$ such that each column has mean value 0.

$$\rightarrow$$
 Define $\overline{a}_j = \frac{1}{n} \sum_{i=1}^n A_{ij}$. the average of each column

3

Centering - adjusting the given data matrix $A \in \mathbb{R}^{n \times d}$ such that each column has mean value 0.

→ Define
$$\overline{a}_j = \frac{1}{n} \sum_{i=1}^n A_{ij}$$
. the average of each column
→ Define \widetilde{A} with $\widetilde{A}_{ij} = A_{ij} - \overline{a}_j$, the *ij*-th entry of the centered matrix \widetilde{A}

3

Centering - adjusting the given data matrix $A \in \mathbb{R}^{n \times d}$ such that each column has mean value 0.

- \rightarrow Define $\overline{a}_{j} = \frac{1}{n} \sum_{i=1}^{n} A_{ij}$. the average of each column
- \rightarrow Define \widetilde{A} with $\widetilde{A}_{ij} = A_{ij} \overline{a}_j$, the *ij*-th entry of the centered matrix \widetilde{A}
- \rightarrow Another way: define the centering matrix $C_n = I_n \frac{1}{n} \mathbf{1} \mathbf{1}^T$, where **1** is the all-one vector. Then

$$\widetilde{A} = C_n A$$

Centering - adjusting the given data matrix $A \in \mathbb{R}^{n \times d}$ such that each column has mean value 0.

- \rightarrow Define $\overline{a}_{j} = \frac{1}{n} \sum_{i=1}^{n} A_{ij}$. the average of each column
- \rightarrow Define \widetilde{A} with $\widetilde{A}_{ij} = A_{ij} \overline{a}_j$, the *ij*-th entry of the centered matrix \widetilde{A}
- \rightarrow Another way: define the centering matrix $C_n = I_n \frac{1}{n} \mathbf{1} \mathbf{1}^T$, where **1** is the all-one vector. Then

$$\widetilde{A} = C_n A$$

 \rightarrow The matrix C_n is a projection matrix!! Where does it project?

Centering - adjusting the given data matrix $A \in \mathbb{R}^{n \times d}$ such that each column has mean value 0.

- \rightarrow Define $\overline{a}_{j} = \frac{1}{n} \sum_{i=1}^{n} A_{ij}$. the average of each column
- \rightarrow Define \widetilde{A} with $\widetilde{A}_{ij} = A_{ij} \overline{a}_j$, the *ij*-th entry of the centered matrix \widetilde{A}
- \rightarrow Another way: define the centering matrix $C_n = I_n \frac{1}{n} \mathbf{1} \mathbf{1}^T$, where **1** is the all-one vector. Then

$$\widetilde{A} = C_n A$$

- \rightarrow The matrix C_n is a projection matrix!! Where does it project?
- → Let SVD of $\widetilde{A} = C_n A = U \Sigma V^T$. Then the singular values of \widetilde{A} are called the *principal values*, and the *k* singular vectors corresponding to the *k* largest singular values are called *top-k principal directions/vectors*

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣

Let

$$A = \begin{bmatrix} 1 & 5 \\ 2 & 3 \\ 3 & 10 \end{bmatrix}.$$

Then the center vector is $\overline{a} = [2, 6]$ The centered matrix is

$$\widetilde{A} = egin{bmatrix} -1 & -1 \ 0 & -3 \ 1 & 4 \end{bmatrix}$$

3

A D N A B N A B N A B N

Another interpretation of PCA

 \rightarrow We introduce a complete orthonormal set of *d*-dimensional vectors $\mathbf{v}_j, 1 \leq j \leq d$ that satisfy $\mathbf{v}_i^T \mathbf{v}_j = \delta_{i,j}$

э

Another interpretation of PCA

- \rightarrow We introduce a complete orthonormal set of *d*-dimensional vectors $\mathbf{v}_j, 1 \leq j \leq d$ that satisfy $\mathbf{v}_i^T \mathbf{v}_j = \delta_{i,j}$
- \rightarrow Then any data point \boldsymbol{x}_i can be written as

$$\mathbf{x}_i = \sum_{j=1}^d lpha_{ij} \mathbf{v}_j$$

i.e. this corresponds to a rotation of the coordinate system to a new system defined by the v_j , and the original d components $\{x_{i1}, \ldots, x_{id}\}$ are replaced by an equivalent set $\{\alpha_{i1}, \ldots, \alpha_{id}\}$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Another interpretation of PCA

- \rightarrow We introduce a complete orthonormal set of *d*-dimensional vectors $\mathbf{v}_j, 1 \leq j \leq d$ that satisfy $\mathbf{v}_i^T \mathbf{v}_j = \delta_{i,j}$
- \rightarrow Then any data point \boldsymbol{x}_i can be written as

$$\mathbf{x}_i = \sum_{j=1}^d lpha_{ij} \mathbf{v}_j$$

i.e. this corresponds to a rotation of the coordinate system to a new system defined by the v_j, and the original d components {x_{i1},..., x_{id}} are replaced by an equivalent set {α_{i1},..., α_{id}}
→ Obviously, α_{ij} = x_i^T v_j and hence

$$oldsymbol{x}_i = \sum_{j=1}^d (oldsymbol{x}_i^Toldsymbol{v}_j)oldsymbol{v}_j$$

< 回 > < 回 > < 回 >

 \rightarrow Goal: to approximate the data points using a representation involving a restricted number k < d of variables corresponding to a projection onto a lower-dimensional subspace

- \rightarrow Goal: to approximate the data points using a representation involving a restricted number k < d of variables corresponding to a projection onto a lower-dimensional subspace
- \rightarrow The *k*-dimensional subspace can be represented WLOG by the first *k* vectors, and so we approximate each data point \mathbf{x}_i by

$$\widetilde{\boldsymbol{x}}_i = \sum_{j=1}^k z_{ij} \boldsymbol{v}_j + \sum_{j=k+1}^d \boldsymbol{b}_j \boldsymbol{v}_j$$

where $\{z_{ij}\}$ depend on the particular data point, and $\{b_j\}$ are constants that are the same for all data points

 \rightarrow We are free to choose the $\{v_j\}$, $\{z_{ij}\}$, and $\{b_j\}$ so as to minimize the distortion introduced by the reduction in dimensionality

 \rightarrow The distortion measure that we consider is the squared distance between the original data point \mathbf{x}_i , and its approximation $\tilde{\mathbf{x}}_i$, averaged over the data set i.e. to minimize

$$J = \frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x}_i - \widetilde{\mathbf{x}}_i\|^2$$

э

★ ∃ ► < ∃ ►</p>

 \rightarrow The distortion measure that we consider is the squared distance between the original data point \mathbf{x}_i , and its approximation $\tilde{\mathbf{x}}_i$, averaged over the data set i.e. to minimize

$$J = \frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x}_i - \widetilde{\mathbf{x}}_i\|^2$$

→ First, consider this minimization wrt $\{z_{ij}\}$: Homework Substituting \tilde{x}_i , setting the derivative with respect to z_{ij} to zero, and making use of the orthonormality conditions, one can obtain

$$z_{ij} = \boldsymbol{x}_i^T \boldsymbol{v}_j, j = 1, \dots, d$$

 \rightarrow The distortion measure that we consider is the squared distance between the original data point \mathbf{x}_i , and its approximation $\tilde{\mathbf{x}}_i$, averaged over the data set i.e. to minimize

$$J = \frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x}_i - \widetilde{\mathbf{x}}_i\|^2$$

→ First, consider this minimization wrt $\{z_{ij}\}$: Homework Substituting \tilde{x}_i , setting the derivative with respect to z_{ij} to zero, and making use of the orthonormality conditions, one can obtain

$$z_{ij} = \boldsymbol{x}_i^T \boldsymbol{v}_j, j = 1, \dots, d$$

Homework Similarly, setting the derivative of J wrt b_j to zero gives

$$\boldsymbol{b}_j = \overline{\boldsymbol{x}}^T \boldsymbol{v}_j, j = k+1, \ldots, d$$

where $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}$

 $\rightarrow \text{ Then we have } x_i - \widetilde{x}_i = \sum_{j=k+1}^d \left\{ (\mathbf{x}_i - \overline{\mathbf{x}})^T \mathbf{v}_j \right\} \mathbf{v}_j$ $\rightarrow \text{ Thus}$

$$J = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=k+1}^{d} \left(\boldsymbol{x}_{i}^{T} \boldsymbol{v}_{j} - \overline{\boldsymbol{x}}^{T} \boldsymbol{v}_{j} \right)^{2} = \sum_{j=k+1}^{d} \boldsymbol{v}_{j}^{T} S \boldsymbol{v}_{j}$$

where S is the covariance matrix defined by

$$S = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i - \overline{\mathbf{x}}) (\mathbf{x}_i - \overline{\mathbf{x}})^{T}$$

¹Chapter 12, C. M.Bishop, Pattern Recognition and Machine Learning, Springer, 2009

Bibhas Adhikari (Spring 2022-23, IIT Kharag

 $\rightarrow \text{ Then we have } x_i - \widetilde{x}_i = \sum_{j=k+1}^d \left\{ (\boldsymbol{x}_i - \overline{\boldsymbol{x}})^T \boldsymbol{v}_j \right\} \boldsymbol{v}_j$ $\rightarrow \text{ Thus}$

$$J = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=k+1}^{d} \left(\boldsymbol{x}_{i}^{T} \boldsymbol{v}_{j} - \overline{\boldsymbol{x}}^{T} \boldsymbol{v}_{j} \right)^{2} = \sum_{j=k+1}^{d} \boldsymbol{v}_{j}^{T} S \boldsymbol{v}_{j}$$

where S is the covariance matrix defined by

$$S = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i - \overline{\mathbf{x}}) (\mathbf{x}_i - \overline{\mathbf{x}})^T$$

Homework Then show that the general solution to the minimization for J for arbitrary d and k < d is obtained by choosing the $\{\mathbf{v}_j\}$ as the eigenvectors of the the covariance matrix S^1

¹Chapter 12, C. M.Bishop, Pattern Recognition and Machine Learning, Springer, 2009

Multidimensional scaling (MDS) - is a data analysis technique which translates distances and dissimilarities into a visual representation through a 'geometric' picture

★ ∃ ► < ∃ ►</p>

Multidimensional scaling (MDS) - is a data analysis technique which translates distances and dissimilarities into a visual representation through a 'geometric' picture

- $\rightarrow\,$ The input for an MDS algorithm usually is not an object data set but similarities of a set of objects
- \rightarrow Here we will use the term 'distance' in a generic sense, meaning it reflects a dissimilarity/similarity between pairs of the objects

A B b A B b

Multidimensional scaling (MDS) - is a data analysis technique which translates distances and dissimilarities into a visual representation through a 'geometric' picture

- $\rightarrow\,$ The input for an MDS algorithm usually is not an object data set but similarities of a set of objects
- $\rightarrow\,$ Here we will use the term 'distance' in a generic sense, meaning it reflects a dissimilarity/similarity between pairs of the objects
- → Suppose there are *n* objects in a set and the similarities between all pairs are measured. Then we can define an $n \times n$ distance matrix $D = [d_{ij}]$, where d_{ij} represents the similarity/distance between the objects *i* and *j*

- 3

< □ > < □ > < □ > < □ > < □ > < □ >

Multidimensional scaling (MDS) - is a data analysis technique which translates distances and dissimilarities into a visual representation through a 'geometric' picture

- $\rightarrow\,$ The input for an MDS algorithm usually is not an object data set but similarities of a set of objects
- $\rightarrow\,$ Here we will use the term 'distance' in a generic sense, meaning it reflects a dissimilarity/similarity between pairs of the objects
- → Suppose there are *n* objects in a set and the similarities between all pairs are measured. Then we can define an $n \times n$ distance matrix $D = [d_{ij}]$, where d_{ij} represents the similarity/distance between the objects *i* and *j*
- \rightarrow The objects are configured as virtual points in a low dimensional linear Euclidean space, and this point set is called *configuration* such that the Euclidean distances between the points have closest relation to the similarities

3

(日)

Example Similarity ratings for 12 nations (Wish, 1971)

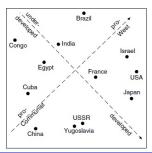
Nation		1	2	3	4	5	6	7	8	9	10	11	12
Brazil	1	82											
Congo	2	4.83											
Cuba	3	5.28	4.56	-									
Egypt	4	3.44	5.00	5.17	-								
France	5	4.72	4.00	4.11	4.78	-							
India	6	4.50	4.83	4.00	5.83	3.44	_						
Israel	7	3.83	3.33	3.61	4.67	4.00	4.11	-					
Japan	8	3.50	3.39	2.94	3.83	4.22	4.50	4.83	-				
China	9	2.39	4.00	5.50	4.39	3.67	4.11	3.00	4.17	-			
USSR	10	3.06	3.39	5.44	4.39	5.06	4.50	4.17	4.61	5.72	-		
U.S.A.	11	5.39	2.39	3.17	3.33	5.94	4.28	5.94	6.06	2.56	5.00	-	
Yugoslavia	12	3.17	3.50	5.11	4.28	4.72	4.00	4.44	4.28	5.06	6.67	3.56	-

イロト イボト イヨト イヨト

- 2

Example Similarity ratings for 12 nations (Wish, 1971)

Nation		1	2	3	4	5	6	7	8	9	10	11	12
Brazil	1												
Congo	2	4.83	_										
Cuba	3	5.28	4.56	-									
Egypt	4	3.44	5.00	5.17	-								
France	5	4.72	4.00	4.11	4.78	-							
India	6	4.50	4.83	4.00	5.83	3.44	-						
Israel	7	3.83	3.33	3.61	4.67	4.00	4.11	-					
Japan	8	3.50	3.39	2.94	3.83	4.22	4.50	4.83	-				
China	9	2.39	4.00	5.50	4.39	3.67	4.11	3.00	4.17	-			
USSR	10	3.06	3.39	5.44	4.39	5.06	4.50	4.17	4.61	5.72	-		
U.S.A.	11	5.39	2.39	3.17	3.33	5.94	4.28	5.94	6.06	2.56	5.00	-	
Yugoslavia	12	3.17	3.50	5.11	4.28	4.72	4.00	4.44	4.28	5.06	6.67	3.56	-



э

Example Distances between ten cities

	1	2	3	4	5	6	7	8	9	10
1	0	569	667	530	141	140	357	396	570	190
2	569	0	1212	1043	617	446	325	423	787	648
3	667	1212	0	201	596	768	923	882	714	714
4	530	1043	201	0	431	608	740	690	516	622
5	141	617	596	431	0	177	340	337	436	320
6	140	446	768	608	177	0	218	272	519	302
7	357	325	923	740	340	218	0	114	472	514
8	396	423	882	690	337	272	114	0	364	573
9	569	787	714	516	436	519	472	364	0	755
10	190	648	714	622	320	302	514	573	755	0

3

イロト イヨト イヨト イヨト

Example Distances between ten cities

1	2	3	4	5	6	7	8	9	10	
0	569	667	530	141	140	357	396	570	190	
569	0	1212	1043	617	446	325	423	787	648	
667	1212	0	201	596	768	923	882	714	714	
530	1043	201	0	431	608	740	690	516	622	
141	617	596	431	0	177	340	337	436	320	
140	446	768	608	177	0	218	272	519	302	
357	325	923	740	340	218	0	114	472	514	
396	423	882	690	337	272	114	0	364	573	
569	787	714	516	436	519	472	364	0	755	
190	648	714	622	320	302	514	573	755	0	
	569 667 530 141 140 357 396 569	$\begin{array}{cccc} 0 & 569 \\ 569 & 0 \\ 667 & 1212 \\ 530 & 1043 \\ 141 & 617 \\ 140 & 446 \\ 357 & 325 \\ 396 & 423 \\ 569 & 787 \end{array}$	$\begin{array}{cccccccc} 0 & 569 & 667 \\ 569 & 0 & 1212 \\ 667 & 1212 & 0 \\ 530 & 1043 & 201 \\ 141 & 617 & 596 \\ 140 & 446 & 768 \\ 357 & 325 & 923 \\ 396 & 423 & 882 \\ 569 & 787 & 714 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						



Bibhas Adhikari (Spring 2022-23, <mark>IIT Kharag</mark>i

э

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

< 47 ▶