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Principal component analysis

Observation the best fitting subspace is a subspace!! i.e. it is a plane
which passes through origin
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Principal component analysis

Observation the best fitting subspace is a subspace!! i.e. it is a plane
which passes through origin

principal components Y

right singular vectors

Principal component analysis(PCA) - an extension of SVD when the
desired subspace V does not pass through origin but it goes through the
mean of all the data points! So use SVD after a prepossessing step, called
centering to shift the data matrix to its mean at the origin!
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PCA

Centering - adjusting the given data matrix A € R"*? such that each
column has mean value 0.
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PCA

Centering - adjusting the given data matrix A € R"*? such that each
column has mean value 0.

— Define @; = 1377 | A;;. the average of each column
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PCA

Centering - adjusting the given data matrix A € R"*? such that each
column has mean value 0.

— Define @; = 1377 | A;;. the average of each column

— Define A with Z,J = Ajj — a;, the jj-th entry of the centered matrix A
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PCA

Centering - adjusting the given data matrix A € R"*? such that each
column has mean value 0.

— Define @; = 1377 | A;;. the average of each column

— Define A with Z,J = Ajj — a;, the jj-th entry of the centered matrix A

— Another way: define the centering matrix C, = I, — %llT, where 1 is

the all-one vector. Then
A=C,A
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PCA

Centering - adjusting the given data matrix A € R"*? such that each
column has mean value 0.

— Define @; = 1377 | A;;. the average of each column

— Define A with Z,J = Ajj — a;, the jj-th entry of the centered matrix A

— Another way: define the centering matrix C, = I, — %117—, where 1 is

the all-one vector. Then
A=C,A

— The matrix C, is a projection matrix!! Where does it project?
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PCA

Centering - adjusting the given data matrix A € R"*9 such that each
column has mean value 0.

— Define @; = 1377 | A;;. the average of each column

— Define A with Z,-J- = Ajj — a;, the jj-th entry of the centered matrix A

— Another way: define the centering matrix C, = I, — %IIT, where 1 is

the all-one vector. Then
A=C,A

The matrix C, is a projection matrix!! Where does it project?

Let SVD of A = C,A= UZVT. Then the singular values of A are
called the principal values, and the k singular vectors corresponding
to the k largest singular values are called top-k principal
directions/vectors

Ll
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PCA

Let

A=

W N
_
5 w o

Then the center vector is 3 = [2, 6]
The centered matrix is

-1 -1
A=|0 -3
1 4
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PCA

Another interpretation of PCA

— We introduce a complete orthonormal set of d-dimensional vectors
vj,1 < j < d that satisfy v,-TvJ- =0jj
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PCA
Another interpretation of PCA

— We introduce a complete orthonormal set of d-dimensional vectors
vj,1 < j < d that satisfy v,-ij =0jj

— Then any data point x; can be written as

d
X = E a,-jvj
j=1

i.e. this corresponds to a rotation of the coordinate system to a new
system defined by the v;, and the original d components
{Xi1,...,Xiq} are replaced by an equivalent set {«j1,..., a4}
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PCA
Another interpretation of PCA

— We introduce a complete orthonormal set of d-dimensional vectors
vj,1 < j < d that satisfy v,-ij =0jj

— Then any data point x; can be written as

d
X = E Oé,‘_,‘V_,'
j=1

i.e. this corresponds to a rotation of the coordinate system to a new
system defined by the v;, and the original d components
{Xi1,...,Xiq} are replaced by an equivalent set {«j1,..., a4}

— Obviously, ajj = x,TvJ- and hence

xi =Y (x{vj)y;
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PCA

— Goal: to approximate the data points using a representation involving
a restricted number k < d of variables corresponding to a projection
onto a lower-dimensional subspace
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PCA

— Goal: to approximate the data points using a representation involving
a restricted number k < d of variables corresponding to a projection
onto a lower-dimensional subspace

— The k-dimensional subspace can be represented WLOG by the first k
vectors, and so we approximate each data point x; by

ZZUVJ + Z bjv;

Jj=k+1

where {z;;} depend on the particular data point, and {b;} are
constants that are the same for all data points

— We are free to choose the {v;}, {z;}, and {b;} so as to minimize the
distortion introduced by the reduction in dimensionality
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PCA

— The distortion measure that we consider is the squared distance
between the original data point x;, and its approximation Xx;,
averaged over the data set i.e. to minimize

1 .
J==3"lxi = x>
n 4
i=1

Bibhas Adhikari (Spring 2022-23, IIT Kharag| Big Data Analysis Lecture 11 February 2, 2023 7/11



PCA

— The distortion measure that we consider is the squared distance
between the original data point x;, and its approximation Xx;,
averaged over the data set i.e. to minimize

1< .
J==3"lxi = x>
n <
i=1

— First, consider this minimization wrt {z;}:
Homework Substituting X;, setting the derivative with respect to z;; to
zero, and making use of the orthonormality conditions, one can obtain

T .
zi=x;vj,j=1,...,d
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PCA

— The distortion measure that we consider is the squared distance
between the original data point x;, and its approximation Xx;,
averaged over the data set i.e. to minimize

1< .
J==3"lxi = x>
n <
i=1

— First, consider this minimization wrt {z;}:
Homework Substituting X;, setting the derivative with respect to z;; to
zero, and making use of the orthonormality conditions, one can obtain

T .
zi=x;vj,j=1,...,d

Homework Similarly, setting the derivative of J wrt b; to zero gives
ijYTVj,j:k—l-l,...,d

- _ 1 n i
where X = - > 1, X;
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PCA

— Then we have x; — X; = Zf:k—f—l {(xi—=%)Tv;}v;
— Thus

1 n d 5 d

J= —Z Z (x,-ij—YTvJ-> = Z vaSVJ-
N3 5 j=k+1
where S is the covariance matrix defined by
1< _ T
S=- Z(x,- —X)(x; — X)

n <
i=1

!Chapter 12, C. M.Bishop, Pattern Recognition and Machine Learning, Springer,
2009
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PCA

— Then we have x; — X; = Z}j:kH {(Xi - Y)TVJ'} Vj

— Thus
1 n d 5 d
T T T
J:EZ,Z (x,- v —X vj> :'Z v Sv;
i=1 j=k+1 Jj=k+1
where S is the covariance matrix defined by
S= L i(x X)(x;i —x)"
- ; [ i— X

i=1

Homework Then show that the general solution to the minimization for J
for arbitrary d and k < d is obtained by choosing the {v;} as the
eigenvectors of the the covariance matrix S*

LChapter 12, C. M.Bishop, Pattern Recognition and Machine Learning, Springer,
2009
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Multidimensional scaling

Multidimensional scaling (MDS) - is a data analysis technique which

translates distances and dissimilarities into a visual representation through
a ‘geometric’ picture
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Multidimensional scaling

Multidimensional scaling (MDS) - is a data analysis technique which
translates distances and dissimilarities into a visual representation through
a ‘geometric’ picture

— The input for an MDS algorithm usually is not an object data set but
similarities of a set of objects

— Here we will use the term ‘distance’ in a generic sense, meaning it
reflects a dissimilarity /similarity between pairs of the objects
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Multidimensional scaling

Multidimensional scaling (MDS) - is a data analysis technique which
translates distances and dissimilarities into a visual representation through
a ‘geometric’ picture
— The input for an MDS algorithm usually is not an object data set but
similarities of a set of objects

— Here we will use the term ‘distance’ in a generic sense, meaning it
reflects a dissimilarity /similarity between pairs of the objects

— Suppose there are n objects in a set and the similarities between all
pairs are measured. Then we can define an n x n distance matrix

D = [djj], where dj; represents the similarity /distance between the
objects i and j
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Multidimensional scaling

Multidimensional scaling (MDS) - is a data analysis technique which
translates distances and dissimilarities into a visual representation through
a ‘geometric’ picture
— The input for an MDS algorithm usually is not an object data set but
similarities of a set of objects

— Here we will use the term ‘distance’ in a generic sense, meaning it
reflects a dissimilarity /similarity between pairs of the objects

— Suppose there are n objects in a set and the similarities between all
pairs are measured. Then we can define an n x n distance matrix
D = [djj], where dj; represents the similarity /distance between the
objects i and j

— The objects are configured as virtual points in a low dimensional
linear Euclidean space, and this point set is called configuration such
that the Euclidean distances between the points have closest relation
to the similarities
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MDS

Example Similarity ratings for 12 nations (Wish, 1971)

Nation 1 2 3 4 5 6 4 8 9 10 11 12

Brazil 1 =

Congo 2 |4.83 -

Cuba 3 | 5.28 4.56 N

Egypt 4344 500 517 -

France 5 14.72 4.00 4.11 4.78 -

India 6 |4.50 4.83 4.00 5.83 3.44 =

Israel 7 13.83 3.33 3.61 4.67 4.00 4.11 -

Japan 8 13.50 3.39 294 3.83 4.22 4.50 4.83 -

China 9 1239 4.00 550 4.39 3.67 4.11 3.00 4.17 -

USSR 10(3.06 3.39 544 4.39 506 4.50 4.17 4.61 572 N

US.A. 11 (5.39 2.39 3.17 3.33 594 428 5.94 6.06 2.56 5.00 -

Yugoslavia | 12| 3.17 3.50 5.11 4.28 4.72 4.00 444 428 506 6.67 3.56 —
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MDS

Example Similarity ratings for 12 nations (Wish, 1971)

Nation 1 2 3 4 5 6 4 9 10 11 12
Brazil 1 -
Congo 2 |4.83 -
Cuba 3 |5.28 4.56 l
Egypt 4344 5.00 5.17 =
France 5472 4.00 4.11 4.78 =
India 6450 4.83 4.00 5.83 3.44 -
Israel 7(3.83 3.33 3.61 4.67 4.00 4.11 -
Japan 8 13.50 3.39 294 3.83 4.22 450 4.83
China 9 239 4.00 550 4.39 3.67 4.11 3.00 4.17 -
USSR 101 3.06 3.39 544 4.39 506 4.50 4.17 4.61 572 .
U.S.A. 11|5.39 2.39 3.17 3.33 5.94 4.28 594 6.06 2.56 5.00 ==
Yugoslavia | 12 3.17 3.50 511 428 472 4.00 4.44 428 506 6.67 3.56 —
% o
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MDS

Example Distances between ten cities

1 2 3 1 5 6 i 8 9 10

1 0 569 66T 530 141 140 357 396 570 190
2| 569 0 1212 1043 617 446 325 423 787 648
3| 667 1212 0 201 596 768 923 882 714 T4
4 | 530 1043 201 0 431 608 740 690 516 622
5 141 617 596 431 0 177 340 337 436 320
6 | 140 446 768 608 177 0 218 272 519 302
7| 357 325 923 740 340 218 0 114 472 514
8 | 396 423 882 690 337 272 114 0 364 573
9 | 569 T8T 714 516 436 519 472 364 0 755
10 | 190 648 714 622 320 302 514 573 755 0
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MDS

Example Distances between ten cities

1 2 3 1 5 6 i 8 9 10

1 0 569 66T 530 141 140 357 396 570 190
2| 569 0 1212 1043 617 446 325 423 787 648
3| 667 1212 0 201 596 768 923 882 714 T4
4 | 530 1043 201 0 431 608 740 690 516 622
5 141 617 596 431 0 177 340 337 436 320
6 | 140 446 768 608 177 0 218 272 519 302
7| 357 325 923 740 340 218 0 114 472 514
8 | 396 423 882 690 337 272 114 0 364 573
9 | 569 T8T 714 516 436 519 472 364 0 755
10 | 190 648 714 622 320 302 514 573 755 0
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