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Singular value decomposition

SVD as transformation
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Eigenvalue decomposition
→ Eigenvalue decomposition is defined only for square matrices

→ Eigenvector and eigenvalue: Mv = λ v , ∥v∥ = 1

→ To avoid complex eigenvalues, we focus only computing eigenvalues
of positive semi-definite matrices.

Let A ∈ Rn×d be a data matrix. Then

MR = ATA ∈ Rd×d and ML = AAT ∈ Rn×n

are positive semi-definite matrices

→ if SVD of A is A = UΣV T then

MRV = ATAV = (VΣUT )(UΣV T )V = VΣ2

→ Then
MRvj = vjσ

2
i

i.e. the jthe right singular vector of A is the jth eigenvector of
MR = ATA corresponding to the eigenvalue λj = σ2

j
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Eigenvalue decomposition

→ Similarly,

MLU = AATU = (UΣV T )(VΣUT )U = UΣ2

i.e. the left singular vectors of A are eigenvectors of ML = AAT and
the eigenvalues are σ2

j

Power method - a simple iterative algorithm for computing the first
eigenvector and eigenvalue

PowerMethod(M = ATA, q)

Initialize u(0) as random unit vector

for i = 1 to q do

u(i) := Mu(i−1)

return v = u(q)/∥u(q)∥
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Eigenvalue decomposition

→ The output of PowerMethod(M = ATA, q) is a unit vector v which is
close to the first eigenvector v1

→ recover λ1 = ∥Mv1∥
→ Define (factor out v1)

A1 := A− Av1v
T
1 (deflation), M1 := A1A

T
1

Then run PowerMethod(M1 = AT
1 A1, q) to recover v2 and λ2

→ then continue the method iteravtively
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Eigenvalue decomposition

Question How does the Power Method work!

Note Eigenvectors v1, . . . , vd of M forms an orthogonal basis of Rd

Then

u(0) =
d∑

j=1

αjvj

Recall: αj = vTj u(0), since it is random, it is possible to claim that with

probability at least 1/2 that for any αj we have |αj | ≥ 1
2
√
n

Now
Mqvj = Mq−1(λjvj) = Mq−2(vjλj)λj = . . . = vjλ

q
j
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Eigenvalue decomposition
Then

v = Mqu(0) =
d∑

j=1

αjλ
q
j√∑d

j=1(αjλ
q
j )

2
vj

Further

|vT1 Mqu(0)| =
α1λ

q
1√∑d

j=1(αjλ
q
j )

2

≥
α1λ

q
1√

α2
1λ

2q
1 + dλ2q

2

≥
α1λ

q
1

α1λ
q
1 +

√
dλq

2

= 1−
λq
2

√
d

α1λ
q
1 +

√
dλq

2

≥ 1− 2d

(
λ2

λ1

)q
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Eigenvalue decomposition

Observation If the ‘gap’
λ1

λ2
between two eigenvalues is large then the

algorithm converges faster

Question Is the Power method backward stable?
Recall

→ Given a data point aj ∈ Rd and a vector v ∈ Rd , the projection of aj

onto v is
πv (aj) = ⟨v , aj⟩v = (aT

j v)v

→ Example: for a data point p ∈ R3 and a a two dimensional subspace
V with basis {v1, v2},

πV (p) = α1(p)v1 + α2(p)v2

where α1(p) = pTv1 and α2(p) = pTv2
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Principal component analysis

→ The goal is to find the best fitting subspace V ∗ such that the sum of
squared errors (SSE)

SSE (A,V ) =
∑
aj∈A

∥aj − πV (aj)∥2

is minimized and the desired k-dimensional subspace is

V ∗ = argmin
V

SSE (A,V )
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Principal component analysis

→ Using SVD: Let A has rank r and v1, . . . , v r are right singular vectors
of A with singular values σ2

j = ∥Av j∥22. Then setting
B = {v1, . . . , vk}, k ≤ r , for any data point a,

∥a − πB(a)∥2 =

∥∥∥∥∥∥
d∑

j=1

(aTv j)vj −
k∑

j=1

(aTv j)vj

∥∥∥∥∥∥
2

=
d∑

j=k+1

(aTv j)
2

So the projection error of the subspace VB , spanned by B is that part
of A in the last (d − k) right singular vectors.
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Principal component analysis
→ Projection error for the given data points:

n∑
i=1

∥ai − πB(ai )∥2 =
n∑

i=1

 d∑
j=k+1

(aT
i v j)

2



=
d∑

j=k+1

(
n∑

i=1

(aT
i v j)

2

)
=

d∑
k+1

∥Av j∥2 =
d∑

j=k+1

σ2
j

= SSE (A,B) =
∑
ai∈A

∥ai − πB(ai )∥2= ∥A− πB(A)∥2F
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