Big Data Analysis (MA60306)

Bibhas Adhikari

Spring 2022-23, IIT Kharagpur
Lecture 10
February 1, 2023

Singular value decomposition

SVD as transformation

Eigenvalue decomposition

\rightarrow Eigenvalue decomposition is defined only for square matrices

Eigenvalue decomposition

\rightarrow Eigenvalue decomposition is defined only for square matrices
\rightarrow Eigenvector and eigenvalue: $M v=\lambda v,\|v\|=1$

Eigenvalue decomposition

\rightarrow Eigenvalue decomposition is defined only for square matrices
\rightarrow Eigenvector and eigenvalue: $M v=\lambda v,\|v\|=1$
\rightarrow To avoid complex eigenvalues, we focus only computing eigenvalues of positive semi-definite matrices.

Eigenvalue decomposition

\rightarrow Eigenvalue decomposition is defined only for square matrices
\rightarrow Eigenvector and eigenvalue: $M v=\lambda v,\|v\|=1$
\rightarrow To avoid complex eigenvalues, we focus only computing eigenvalues of positive semi-definite matrices.
Let $A \in \mathbb{R}^{n \times d}$ be a data matrix. Then

$$
M_{R}=A^{T} A \in \mathbb{R}^{d \times d} \text { and } M_{L}=A A^{T} \in \mathbb{R}^{n \times n}
$$

are positive semi-definite matrices

Eigenvalue decomposition

\rightarrow Eigenvalue decomposition is defined only for square matrices
\rightarrow Eigenvector and eigenvalue: $M v=\lambda v,\|v\|=1$
\rightarrow To avoid complex eigenvalues, we focus only computing eigenvalues of positive semi-definite matrices.
Let $A \in \mathbb{R}^{n \times d}$ be a data matrix. Then

$$
M_{R}=A^{T} A \in \mathbb{R}^{d \times d} \text { and } M_{L}=A A^{T} \in \mathbb{R}^{n \times n}
$$

are positive semi-definite matrices
\rightarrow if SVD of A is $A=U \Sigma V^{T}$ then

$$
M_{R} V=A^{T} A V=\left(V \Sigma U^{T}\right)\left(U \Sigma V^{T}\right) V=V \Sigma^{2}
$$

Eigenvalue decomposition

\rightarrow Eigenvalue decomposition is defined only for square matrices
\rightarrow Eigenvector and eigenvalue: $M v=\lambda v,\|v\|=1$
\rightarrow To avoid complex eigenvalues, we focus only computing eigenvalues of positive semi-definite matrices.
Let $A \in \mathbb{R}^{n \times d}$ be a data matrix. Then

$$
M_{R}=A^{T} A \in \mathbb{R}^{d \times d} \text { and } M_{L}=A A^{T} \in \mathbb{R}^{n \times n}
$$

are positive semi-definite matrices
\rightarrow if SVD of A is $A=U \Sigma V^{T}$ then

$$
M_{R} V=A^{T} A V=\left(V \Sigma U^{T}\right)\left(U \Sigma V^{T}\right) V=V \Sigma^{2}
$$

\rightarrow Then

$$
M_{R} v_{j}=v_{j} \sigma_{i}^{2}
$$

i.e. the j the right singular vector of A is the j th eigenvector of $M_{R}=A^{T} A$ corresponding to the eigenvalue $\lambda_{j}=\sigma_{j}^{2}$

Eigenvalue decomposition

\rightarrow Similarly,

$$
M_{L} U=A A^{T} U=\left(U \Sigma V^{T}\right)\left(V \Sigma U^{T}\right) U=U \Sigma^{2}
$$

i.e. the left singular vectors of A are eigenvectors of $M_{L}=A A^{T}$ and the eigenvalues are σ_{j}^{2}

Eigenvalue decomposition

\rightarrow Similarly,

$$
M_{L} U=A A^{T} U=\left(U \Sigma V^{T}\right)\left(V \Sigma U^{T}\right) U=U \Sigma^{2}
$$

i.e. the left singular vectors of A are eigenvectors of $M_{L}=A A^{T}$ and the eigenvalues are σ_{j}^{2}
Power method - a simple iterative algorithm for computing the first eigenvector and eigenvalue

Eigenvalue decomposition

\rightarrow Similarly,

$$
M_{L} U=A A^{T} U=\left(U \Sigma V^{T}\right)\left(V \Sigma U^{T}\right) U=U \Sigma^{2}
$$

i.e. the left singular vectors of A are eigenvectors of $M_{L}=A A^{T}$ and the eigenvalues are σ_{j}^{2}
Power method - a simple iterative algorithm for computing the first eigenvector and eigenvalue

$$
\text { PowerMethod }\left(M=A^{T} A, q\right)
$$

Initialize $u^{(0)}$ as random unit vector
for $i=1$ to q do

$$
\begin{aligned}
& \quad u^{(i)}:=M u^{(i-1)} \\
& \text { return } v=u^{(q)} /\left\|u^{(q)}\right\|
\end{aligned}
$$

Eigenvalue decomposition

\rightarrow The output of $\operatorname{PowerMethod}\left(M=A^{T} A, q\right)$ is a unit vector v which is close to the first eigenvector v_{1}

Eigenvalue decomposition

\rightarrow The output of $\operatorname{PowerMethod}\left(M=A^{T} A, q\right)$ is a unit vector v which is close to the first eigenvector v_{1}
\rightarrow recover $\lambda_{1}=\left\|M v_{1}\right\|$

Eigenvalue decomposition

\rightarrow The output of $\operatorname{PowerMethod}\left(M=A^{T} A, q\right)$ is a unit vector v which is close to the first eigenvector v_{1}
\rightarrow recover $\lambda_{1}=\left\|M v_{1}\right\|$
\rightarrow Define (factor out v_{1})

$$
A_{1}:=A-A v_{1} v_{1}^{T} \text { (deflation), } M_{1}:=A_{1} A_{1}^{T}
$$

Then run PowerMethod $\left(M_{1}=A_{1}^{T} A_{1}, q\right)$ to recover v_{2} and λ_{2}

Eigenvalue decomposition

\rightarrow The output of $\operatorname{PowerMethod}\left(M=A^{T} A, q\right)$ is a unit vector v which is close to the first eigenvector v_{1}
\rightarrow recover $\lambda_{1}=\left\|M v_{1}\right\|$
\rightarrow Define (factor out v_{1})

$$
A_{1}:=A-A v_{1} v_{1}^{T} \text { (deflation), } M_{1}:=A_{1} A_{1}^{T}
$$

Then run PowerMethod $\left(M_{1}=A_{1}^{T} A_{1}, q\right)$ to recover v_{2} and λ_{2}
\rightarrow then continue the method iteravtively

Eigenvalue decomposition

\rightarrow The output of $\operatorname{PowerMethod}\left(M=A^{T} A, q\right)$ is a unit vector v which is close to the first eigenvector v_{1}
\rightarrow recover $\lambda_{1}=\left\|M v_{1}\right\|$
\rightarrow Define (factor out v_{1})

$$
A_{1}:=A-A v_{1} v_{1}^{T} \text { (deflation), } M_{1}:=A_{1} A_{1}^{T}
$$

Then run PowerMethod $\left(M_{1}=A_{1}^{T} A_{1}, q\right)$ to recover v_{2} and λ_{2}
\rightarrow then continue the method iteravtively

Eigenvalue decomposition

Question How does the Power Method work!

Eigenvalue decomposition

Question How does the Power Method work!
Note Eigenvectors v_{1}, \ldots, v_{d} of M forms an orthogonal basis of \mathbb{R}^{d}

Eigenvalue decomposition

Question How does the Power Method work!
Note Eigenvectors v_{1}, \ldots, v_{d} of M forms an orthogonal basis of \mathbb{R}^{d} Then

$$
u^{(0)}=\sum_{j=1}^{d} \alpha_{j} v_{j}
$$

Eigenvalue decomposition

Question How does the Power Method work!
Note Eigenvectors v_{1}, \ldots, v_{d} of M forms an orthogonal basis of \mathbb{R}^{d} Then

$$
u^{(0)}=\sum_{j=1}^{d} \alpha_{j} v_{j}
$$

Recall: $\alpha_{j}=v_{j}^{T} u^{(0)}$, since it is random, it is possible to claim that with probability at least $1 / 2$ that for any α_{j} we have $\left|\alpha_{j}\right| \geq \frac{1}{2 \sqrt{n}}$

Eigenvalue decomposition

Question How does the Power Method work!
Note Eigenvectors v_{1}, \ldots, v_{d} of M forms an orthogonal basis of \mathbb{R}^{d} Then

$$
u^{(0)}=\sum_{j=1}^{d} \alpha_{j} v_{j}
$$

Recall: $\alpha_{j}=v_{j}^{\top} u^{(0)}$, since it is random, it is possible to claim that with probability at least $1 / 2$ that for any α_{j} we have $\left|\alpha_{j}\right| \geq \frac{1}{2 \sqrt{n}}$ Now

$$
M^{q} v_{j}=M^{q-1}\left(\lambda_{j} v_{j}\right)=M^{q-2}\left(v_{j} \lambda_{j}\right) \lambda_{j}=\ldots=v_{j} \lambda_{j}^{q}
$$

Eigenvalue decomposition

Then

$$
v=M^{q} u^{(0)}=\sum_{j=1}^{d} \frac{\alpha_{j} \lambda_{j}^{q}}{\sqrt{\sum_{j=1}^{d}\left(\alpha_{j} \lambda_{j}^{q}\right)^{2}}} v_{j}
$$

Eigenvalue decomposition

Then

$$
v=M^{q} u^{(0)}=\sum_{j=1}^{d} \frac{\alpha_{j} \lambda_{j}^{q}}{\sqrt{\sum_{j=1}^{d}\left(\alpha_{j} \lambda_{j}^{q}\right)^{2}}} v_{j}
$$

Further

$$
\begin{aligned}
\left|v_{1}^{T} M^{q} u^{(0)}\right| & =\frac{\alpha_{1} \lambda_{1}^{q}}{\sqrt{\sum_{j=1}^{d}\left(\alpha_{j} \lambda_{j}^{q}\right)^{2}}} \\
& \geq \frac{\alpha_{1} \lambda_{1}^{q}}{\sqrt{\alpha_{1}^{2} \lambda_{1}^{2 q}+d \lambda_{2}^{2 q}}} \\
& \geq \frac{\alpha_{1} \lambda_{1}^{q}}{\alpha_{1} \lambda_{1}^{q}+\sqrt{d} \lambda_{2}^{q}}=1-\frac{\lambda_{2}^{q} \sqrt{d}}{\alpha_{1} \lambda_{1}^{q}+\sqrt{d} \lambda_{2}^{q}} \\
& \geq 1-2 d\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{q}
\end{aligned}
$$

Eigenvalue decomposition

Observation If the 'gap' $\frac{\lambda_{1}}{\lambda_{2}}$ between two eigenvalues is large then the algorithm converges faster

Eigenvalue decomposition

Observation If the 'gap' $\frac{\lambda_{1}}{\lambda_{2}}$ between two eigenvalues is large then the algorithm converges faster
Question Is the Power method backward stable?

Eigenvalue decomposition

Observation If the 'gap' $\frac{\lambda_{1}}{\lambda_{2}}$ between two eigenvalues is large then the algorithm converges faster
Question Is the Power method backward stable? Recall
\rightarrow Given a data point $\boldsymbol{a}_{j} \in \mathbb{R}^{d}$ and a vector $\boldsymbol{v} \in \mathbb{R}^{d}$, the projection of \boldsymbol{a}_{j} onto \boldsymbol{v} is

$$
\pi_{\boldsymbol{v}}\left(\boldsymbol{a}_{j}\right)=\left\langle\boldsymbol{v}, \boldsymbol{a}_{j}\right\rangle \boldsymbol{v}=\left(\boldsymbol{a}_{j}^{T} \boldsymbol{v}\right) \boldsymbol{v}
$$

Eigenvalue decomposition

Observation If the 'gap' $\frac{\lambda_{1}}{\lambda_{2}}$ between two eigenvalues is large then the algorithm converges faster
Question Is the Power method backward stable? Recall
\rightarrow Given a data point $\boldsymbol{a}_{j} \in \mathbb{R}^{d}$ and a vector $\boldsymbol{v} \in \mathbb{R}^{d}$, the projection of \boldsymbol{a}_{j} onto \boldsymbol{v} is

$$
\pi_{\boldsymbol{v}}\left(\boldsymbol{a}_{j}\right)=\left\langle\boldsymbol{v}, \boldsymbol{a}_{j}\right\rangle \boldsymbol{v}=\left(\boldsymbol{a}_{j}^{T} \boldsymbol{v}\right) \boldsymbol{v}
$$

\rightarrow Example: for a data point $\boldsymbol{p} \in \mathbb{R}^{3}$ and a a two dimensional subspace V with basis $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$,

$$
\pi_{V}(\boldsymbol{p})=\alpha_{1}(\boldsymbol{p}) \boldsymbol{v}_{1}+\alpha_{2}(\boldsymbol{p}) \boldsymbol{v}_{2}
$$

where $\alpha_{1}(\boldsymbol{p})=\boldsymbol{p}^{T} \boldsymbol{v}_{1}$ and $\alpha_{2}(\boldsymbol{p})=\boldsymbol{p}^{T} \boldsymbol{v}_{2}$

Principal component analysis

Principal component analysis

\rightarrow The goal is to find the best fitting subspace V^{*} such that the sum of squared errors (SSE)

$$
\operatorname{SSE}(A, V)=\sum_{\mathbf{a}_{j} \in A}\left\|\boldsymbol{a}_{j}-\pi_{V}\left(\mathbf{a}_{j}\right)\right\|^{2}
$$

is minimized and the desired k-dimensional subspace is

$$
V^{*}=\arg \min _{V} \operatorname{SSE}(A, V)
$$

Principal component analysis

\rightarrow Using SVD: Let A has rank r and $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{r}$ are right singular vectors of A with singular values $\sigma_{j}^{2}=\left\|A \boldsymbol{v}_{j}\right\|_{2}^{2}$. Then setting $B=\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}\right\}, k \leq r$, for any data point \boldsymbol{a},

$$
\left\|\boldsymbol{a}-\pi_{B}(\boldsymbol{a})\right\|^{2}=\left\|\sum_{j=1}^{d}\left(\boldsymbol{a}^{T} \boldsymbol{v}_{j}\right) v_{j}-\sum_{j=1}^{k}\left(\boldsymbol{a}^{T} \boldsymbol{v}_{j}\right) v_{j}\right\|^{2}=\sum_{j=k+1}^{d}\left(\boldsymbol{a}^{T} \boldsymbol{v}_{j}\right)^{2}
$$

So the projection error of the subspace V_{B}, spanned by B is that part of A in the last $(d-k)$ right singular vectors.

Principal component analysis

\rightarrow Projection error for the given data points:

$$
\sum_{i=1}^{n}\left\|\boldsymbol{a}_{i}-\pi_{B}\left(\boldsymbol{a}_{i}\right)\right\|^{2}=\sum_{i=1}^{n}\left(\sum_{j=k+1}^{d}\left(\boldsymbol{a}_{i}^{T} \boldsymbol{v}_{j}\right)^{2}\right)
$$

Principal component analysis

\rightarrow Projection error for the given data points:

$$
\begin{aligned}
& \sum_{i=1}^{n}\left\|\boldsymbol{a}_{i}-\pi_{B}\left(\boldsymbol{a}_{i}\right)\right\|^{2}=\sum_{i=1}^{n}\left(\sum_{j=k+1}^{d}\left(\boldsymbol{a}_{i}^{T} \boldsymbol{v}_{j}\right)^{2}\right) \\
& =\sum_{j=k+1}^{d}\left(\sum_{i=1}^{n}\left(\boldsymbol{a}_{i}^{T} \mathbf{v}_{j}\right)^{2}\right)=\sum_{k+1}^{d}\left\|A \boldsymbol{v}_{j}\right\|^{2}=\sum_{j=k+1}^{d} \sigma_{j}^{2} \\
& =\operatorname{SSE}(A, B)=\sum_{a_{i} \in A}\left\|\mathbf{a}_{i}-\pi_{B}\left(\boldsymbol{a}_{i}\right)\right\|^{2}=\left\|A-\pi_{B}(A)\right\|_{F}^{2}
\end{aligned}
$$

