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What is computing

▷ Digital Representation of numbers/texts/audio/video... almost
everything!!

▷ Physics of this representation!!

▷ Devising a method of measurement!!

▷ Communication - reproducing at one point either exactly or
approximately a message selected at another point (Shannon)

Models of communication
Storage and Transmission
Message = information (??)
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Models of computation

▷ Turing machine - it formalizes the intuitive notion of an algorithm

Stimulated by a profound question (David Hilbert) - Whether an
algorithm exists that has the potential to solve all mathematical
problems, in theory!!

▷ Circuit model of computation - equivalent to the Turing machine and
close to real computers

information is carried by wires
a small set of elementary logical operations (gate) facilitates
complex computation
Resources: computer memory, time and energy
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Turing machine
▷ Introduced by the mathematician Alan Turing in 1930

Main elements of a Turing machine M:

1. (scratch pad) k tapes: each is infinite and divided into cells, each cell
holds one letter a ∈ Γ = {0, 1,□, ▷}, called the alphabet of M. Each
tape is quipped with a head that can read or write letters to the tape
one cell at a time. The first tape is read-only, the input tape and the
k − 1 tapes are read-write, called the work tapes. The last one is the
output tape, on which it writes the final answer

2. A control unit/register: a finite number of possible states
Q = {qs , q1, . . . , ql , qh}, qs and qh are the start state and the halting
state, respectively. The state determines its action at the next
computational step:

(i) real the letters
(ii) for the k − 1 read-write tapes, replace each letter with a new

letter
(iii) change its register to contain another state from Q
(iv) move each head one cell to left or right or stay at the same place
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Working of a Turing machine

Program: a finite set of instructions for each tape

1. the transition of the control unit from a state qi to qj

2. the transition of the cell is addressed by the read/write head from a
letter ak to a letter al

3. the displacement of the read/write head one cell left or right or stay

Three functions

qj = fq(qi , ak) (1)

al = fa(qi , ak) (2)

d = fd(qi , ak), (3)

d denotes the displacement: left or right or stay
Transition function δ : Q × Γk → Q × Γk−1 × {L,S ,R}k , k ≥ 2
Question Does a TM halt at every input in a finite number of steps?
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Turing machine

Thus the working of a Turing machine at each tape is described by

(qi , ak) 7→ (qj , al , d)

Question Does it have any resemblance in mordern day computers?

Question Which computational tasks/functions are computable?

Computing a function and running time1 Let f : {0, 1}∗ → {0, 1}∗ and let
T : N → N be some function, and let M be a Turing machine. We say
that M computes f if for every x ∈ {0, 1}∗, whenever M is initialized to
the start configuration on input x , then it halts with f (x) written on its
output tape. We say M computes f in T (n)-time if its computation on
every input x requires at most T (|x |) steps.

1Arora, S. and Barak, B., 2009. Computational complexity: a modern approach.
Cambridge University Press.
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Turing machine

The Church-Turing thesis: (which problems TMs are capable of
solving?)

The class of all functions computable by a Turing machine is
equivalent to the class of functions comutable by means of an algorithm.

Note The thesis is formulated in 1936 and has never been disproved as we
we are not aware of any algorithm that computes a function not
computable by a TM.

The universal Turing machine

The probabilistic Turing machine

The halting problem (undecidable!!)
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Circuit model of computation
▷ Bit - the elementary unit of classical information

▷ Bit is a binary variable, takes the values 0 and 1

▷ Circuit - made of wires and gates, each wire carries one bit of
information, and gates perform logic operations on these bits

▷ Classical computer - a digital device, the input and output are
sequences of 0′s and 1′s

For instance: a positive integer N < 2n can be written as

N =
n−1∑
k=0

ak 2
k

and hence equivalently
N = an−1 . . . a1a0

The binary codes for non-integer numbers:

5.5 = 101.1, 5.25 = 101.01, 5.125 = 101.001
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Circuit model of computation

▷ The advantage of binary numbers is that they can be stored in
electrical devices with two possible values - such as high and low
voltages or switches with only two positions on and off can be used to
load one bit of information

Elementary logic gates Logical function with n-bit input and m-bit output:

f : {0, 1}n → {0, 1}m

Universal gates: Any function f : {0, 1}n → {0, 1}m can be constructuted
from the elementary gates AND, OR, NOT, and COPY. Thus these gates
constitute a universal model of computation.
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Computational complexity

Resources to execute an algorithm in a computer: space, time and energy

Computational complexity- find the minimum resources to solve a problem
with the best possible algorithm

Notation Given two functions f (n) and g(n), we write f = O(g) if

c1 ≤ |f (n)/g(n)| ≤ c2,

with 0 ≤ c1 ≤ c2 <∞.
Question What is the complexity of multiplying two n-digit numbers on a
Turing machine?
An answer In 1971 Schonhage and Strassen discovered an algorithm that
requires O(n log n log log n)
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Computational complexity

Assuming n as the input size, the number of bits required to specify the
input, the solvable problems into two classes:

▷ Efficient/tractable/feasible: problems that can be solved using
resources that are bounded by a polynomial in n - called the
polynomial class

▷ Difficult/intractable/unfeasible: problems that are superpolynomial
i.e. it grows faster than any polynomial in n

Example

1. The best known algorithm for the factorization of an integer N
requires exp(O(n1/3(log n)2/3)) operations, where n = logN. Thus
the factorization of a number 250 digits long would take 10 million
years on a 200-MIPS computer

2. However, a polynomial algorithm scaling as nα, α≫ 1, like α = 103

can hardly be regarded be easy
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Computational complexity

Does the complexity depend on the model?

The strong Church-Turing thesis A probabilistic Turing machine can
simulate any model of computation with at most a polynomial increase in
the number of elementary operations required.

Question What does this mean?

Observation Shor’s quantum algorithm with polynomial resource can solve
the factorization problem, however if such a classical algorithm does not
exist then only we will be able to say that quantum model of computation
is powerful than classical!!
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Computational complexity

Limits of computation In a logical system defined by a set of axioms and
rules, there is a fundamental question regarding whether all conceivable
propositions can, in principle, be proven as either true or false.

In 1930, Kurt Godel proved a theorem that there always exists a
proposition in any logical system that is undecidable i.e. it can neither be
proved nor disproved using the axioms and rules in the logical system -
thus any logical system is incomplete and this is the limit of computation,
not ALL arithmetical questions cannot be answered !!

Complexity class - is a set of (Boolean) functions that can be computed
within given resource bounds.

Language - L ⊆ {0, 1}∗ and a machine decides a language L if it computes
the function f : {0, 1}∗ → {0, 1}, where fL(x) = 1 if and only if x ∈ L
Question Boolean functions and languages are equivalent!!
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Complexity classes

▷ P - a problem in this class can be solved in polynomial time i.e. in a
polynomial of input size number of steps

Example Graph connectivity problem (depth-first-search)
Question Does the “integer multiplication” belong to P?
Note The class P contains only the decision problems!!
Question What is the decision version of the “integer multiplication”?

▷ NP - class of problems whose solution can be verified in polynomial
time
Example Finding maximum independent set in a given graph

▷ NPC - a problem in NP is called NP-complete if any problem in NP
is polynomially reducible to it

Example Travelling salesman problem

Question Under what condition P = NP or P ̸= NP
Note The factorization problem and graph isomorphism problem are not
known to be in P nor NPC
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Computational complexity

Reduction, NP-hardness and NP-completeness A language L is
polynomial-time reducible to a language L′, denoted as L ≤p L′, if there is
a polynomial-time computable function such that for every input x , x ∈ L
if and only if f (x) ∈ L′. Then we say

L′ is NP-hard if L ≤p L′ for every L ∈ NP.

L′ is NP complete if L′ is NP-hard and L′ ∈ NP

Question Can you explain NP-hard languages in one line?

Question Why is the notion of NPC significant?

Bibhas Adhikari (Department of Mathematics IIT Kharagpur)Computing: from classical to quantum July 25, 2023 15 / 96



Computational complexity

Reduction, NP-hardness and NP-completeness A language L is
polynomial-time reducible to a language L′, denoted as L ≤p L′, if there is
a polynomial-time computable function such that for every input x , x ∈ L
if and only if f (x) ∈ L′. Then we say

L′ is NP-hard if L ≤p L′ for every L ∈ NP.

L′ is NP complete if L′ is NP-hard and L′ ∈ NP

Question Can you explain NP-hard languages in one line?

Question Why is the notion of NPC significant?

Bibhas Adhikari (Department of Mathematics IIT Kharagpur)Computing: from classical to quantum July 25, 2023 15 / 96



Computational complexity

Reduction, NP-hardness and NP-completeness A language L is
polynomial-time reducible to a language L′, denoted as L ≤p L′, if there is
a polynomial-time computable function such that for every input x , x ∈ L
if and only if f (x) ∈ L′. Then we say

L′ is NP-hard if L ≤p L′ for every L ∈ NP.

L′ is NP complete if L′ is NP-hard and L′ ∈ NP

Question Can you explain NP-hard languages in one line?

Question Why is the notion of NPC significant?

Bibhas Adhikari (Department of Mathematics IIT Kharagpur)Computing: from classical to quantum July 25, 2023 15 / 96



Space complexity

▷ PSPACE - class of problems which can be solved by means of space
resources that are polynomial in the input size, independently of the
computation time

Conjecture P ̸= PSPACE

Question P ⊆ NP ⊆ PSPACE

▷ BPP - a decision problem is in in this class if there exists a
polynomial-time algorithm (in a probabilistic Turing machine) such
that the probability of getting the right answer is larger than 1

2 + δ for
every possible input and δ > 0

▷ BQP - a decision problem is in this class if there is a polynomial-time
quantum algorithm that gives the right answer with probability larger
than 1

2 + δ, δ > 0.
Example Shor’s algorithm belongs to this class with
O(n2 log n log log n log(1/ϵ)), ϵ is the probability of error.
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Complexity classes

Question P ⊆ BPP ⊆ BQP ⊆ PSPACE

Question Can we say that a quantum computer would be better than a
classical computer?
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Boolean circuits

For every n ∈ N, an n-input, single-output Boolean circuit is a directed
acyclic graph with m resources (vertices with no incoming edges) and one
sink (vertex with no outgoing edges).

▷ All nonsource vertices are called gates labelled with one of ∧,∨,¬
▷ The vertices labelled with ∧,∨ have number of incoming edges equal
to 2

▷ The vertices labelled with ¬ have one incoming edge

▷ The size of a circuit is the number of vertices in it

Note x XORy = (x ∧ (¬y)) ∨ ((¬x) ∧ y)

Note The circuits in silicon chips used in modern computers are not acyclic
and use cycles to implement memory. However, any computation that runs
on a silicon chip with g gates and finishes in time t, can also be performed
by a Boolean circuit of size O(gt)
Homework Uniform vs non-uniform models
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Boolean circuits

A T (n)-size circuit family is a sequence {Cn}n∈N of Boolean circuits,
where Cn has n inputs and single output, and its size ≤ T (n) for every n.

A language L is in SIZE(T (n)) if there exists a T (n)-size circuit family
{Cn} such that for every x ∈ {0, 1}n, x ∈ L if and only if Cn(x) = 1

P/poly - the class of languages decidable by polynomial-sized circuit
families, i.e. P/poly = ∪cSIZE(nc)
Results

1. Every function f : {0, 1}n → {0, 1} can be computed by a Boolean
circuit of size O(2n/n)

2. P ⊆ P/poly

3. (Hard functions) For every n > 1, there exists a function
f : {0, 1}n → {0, 1} that cannot be computed by a circuit of size
2n/(10n) (Shannon)

Homework Depth complexity of a Boolean function
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Quantum computation

Question TM and Circuit models are equivalent!!

Recall The Shor’s polynomial-time quantum algorithm for factorizing
integers pose a serious challenge to the strong Church-Turing thesis since
no polynomial time algorithm is known for deterministic or probabilistic
Turing machines. Thus if quantum computers are physically realizable
then the strong Church-Turing thesis is wrong.

Note2 TM fails to capture all physically realizable computing devices for a
fundamental reason: the TM is based on a classical physics model of the
universe, whereas current physical theory asserts that the universe is
quantum physical.

2Bernstein, E. and Vazirani, U., 1993, June. Quantum complexity theory. In
Proceedings of the twenty-fifth annual ACM symposium on Theory of computing (pp.
11-20).
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Quantum computation models

▷ Configuration of a TM - complete description of the contents of the
tape, the location of the tape head, and the state q ∈ Q of the control

▷ At any time only a finite number of tape cells may contain nonblank
symbols

▷ Probabilistic TM - can be described as infinite dimensional stochastic
matrix with rows and columns are indexed by configurations

▷ Consequently, if a probability distribution is represented as |v⟩ then
the distribution at the next step is M |v⟩

▷ M is refereed to as 1time evolution operator’

Quantum Turing machine3

3Deutsch, D., 1985. Quantum theory, the Church–Turing principle and the universal
quantum computer. Proceedings of the Royal Society of London. A. Mathematical and
Physical Sciences, 400(1818), pp.97-117.
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Quantum Turing machine (QTM)
Let C̃ denote the set of complex numbers α such that there is a
deterministic algorithm that computes the real and imaginary parts of α to
within 2−n in time polynomial in n.

Then a QTM4 (single tape) is a triplet (Γ,Q, d) with the quantum
transition function

δ : Q × Γ → C̃Γ×Q×{L,R}

Let S be the inner product space of finite linear combinations of
configurations with the Euclidean norm. Then QTM M defines a linear
operator UM : S → S : if M starts in configuration c with current state p
and scanned symbol σ, then after one step M will be in superposition of
configurations ψ =

∑
i αi ci , where αi corresponds to the transition

δ(p, ....), and ci is the new configuration that results from applying this
transition c . Extending this map to the entire space S through linearity
gives the liner time evolution operator UM

4Vazirani, U., 2002. A survey of quantum complexity theory. In Proceedings of
Symposia in Applied Mathematics (Vol. 58, pp. 193-220).
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Quantum circuit model
Quantum computation process:

▷ prepare - initial state |ψi ⟩

▷ manipulate - unitary transformation

▷ measurement - wrt a basis or observable

▷ A quantum circuit on n qubits implements a unitary transformation
on the Hilbert space (C2)⊗n

▷ Some elementary quantum gates:

R =

[
cos θ − sin θ
sin θ cos θ

]
, H =

1√
2

[
1 1
1 −1

]
,R(δ) =

[
1 0
0 e iδ

]

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Note CNOT (α |0⟩+ β |1⟩) |0⟩ = α |00⟩+ β |11⟩ , which is not
separable when α, β ̸= 0.
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Quantum gates
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Quantum gates

Toffolli gate: V =

[
1 0
0 i

]

C 2-U gate: V 2 = U
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Quantum circuit model

Universal quantum gates

▷ A generic unitary operator on n-qubit systems can be decomposed by
means of C k -U gates,

▷ any C k -U gate (k > 2) can be decomposed using Toffoli gate and
controlled-U gates,

▷ the Toffoli gate can be implemented using CNOT, controlled-U, and
Hadamard gates

▷ any single-qubit rotation U, the controlled-U can be decomposed into
single-qubit and CNOT gates

Equivalence A k tape QTM running for T steps can be simulated by a
quantum circuit with accuracy ϵ, and size O(T 2 logO(1) ϵ).
Homework Circuit complexity, Query complexity
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Challenge for NISQ computers?

▷ limited connectivity between qubits: the coupling constraints
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Challenge for NISQ computers?

▷ timespace coordinates

Bibhas Adhikari (Department of Mathematics IIT Kharagpur)Computing: from classical to quantum July 25, 2023 28 / 96



Information

What is information?

▷ Informal way of thinking about information - listen to a song

▷ Think of a fax machine - the font size of the words

▷ Physics of information - how to store and process?

▽ Claude E Shannon (1916 - 2001) - father of information theory
▽ A Mathematical Theory of Communication
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Content of the course

Shannon’s theory/model

▷ Information is uncertainty - information source is modeled as a
random variable/process

▷ Information should be digital - ASCII

Shannon’s theorems

▷ Source coding theorem - entropy as a fundamental measure of
information

▷ Channel coding theorem - the capacity of a channel - reliable
information with unreliable channel

Quantum entropy existed before classical entropy!!
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Model of a digital communication system

Example Let S = {a1, . . . , ak} denote the source i.e. a random variable X
with sample space S and pmf p.

The encoding paradigm: Here
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Entropy

Shannon’s assumptions - Let X = {a1, . . . , an} with pmf p(ai ), 1 ≤ i ≤ n.
Denote the entropy by H

▷ H must be a continuous function of pi s

▷ H must be an increasing function of n when p(ai ) = 1/n, 1 ≤ i ≤ n

▷ Bundling/bucketing property

Question How much information is revealed when we know outcome of a
random experiment? How surprised are we?

Question How much surprised you are if India wins in a football match
against Argentina?
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against Argentina?
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Entropy
Entropy Suppose X is a rv distributed over X = {a1, . . . , an} such that
each value x ∈ X occurs with probability p(x). Then the entropy of X is

H(X ) =
∑
x∈X

p(x) · log2
(

1

p(x)

)
︸ ︷︷ ︸

surprise

= −
∑
x∈X

p(x) · log2(p(x)) bits

Example Consider the entropy of coin toss with p as probability of head.
What happens if pi = 1/n?

Proposition 0 ≤ H(X ) ≤ log(|X |)
Proof Let Y be a rv which takes the value 1/p(x) with probability p(x).
Then

∑
x∈X

p(x) · log
(

1

p(x)

)
= E[log(Y )] ≤ log(E[Y ]) = log

(∑
x∈X

p(x) · 1

p(x)

)
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Entropy

Source coding - How many bits are required to describe n = 2k outcomes
of an experiment?

Question What is the operational meaning of entropy?
Answer the rv X takes H(X ) bits to describe on average - is the
fundamental limit for the compression rate in the iid setting

Code A code for a set X over an alphabet Σ is a map C : X → Σ∗ which
maps each element of X to a finite string of elements of Σ. C (x) is called
the codeword of x

Prefix-free code A code is prefix-free if for any x , y ∈ X such that
x ̸= y ,C (x) is not a prefix of C (y) i.e. C (y) ̸= C (x) ◦ σ for any σ ∈ Σ∗

Example Σ = {0, 1}. Let X = {a, b, c , d} with p(a) = 1/2, p(b) = 1/4,
p(c) = 1/8 and p(d) = 1/8. How do we design a code for X such that
expected length of the code is minimized?
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Entropy

Source coding
Question What is the advantage of have a prefix-free code?

Question Does a prefix-free code always exist for a given source, pmf and
alphabet ? If exists, how do we decide the length of the codewords?

Proposition (Kraft’s inequality) Let |X | = n. Then there exists a prefix-free
code for X over Σ = {0, 1} with codeword lengths l1, . . . , ln if and only if

n∑
i=1

1

2li
≤ 1.

For any alphabet Σ, replace 2li by |Σ|li .
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Entropy
Source coding
Proposition Let X be a random variable taking values in X , and let
C : X → {0, 1}. Then the expected number of bits used by C to
communicate the value of X is at least H(X ).

Proof the expected number of bits is
∑

x∈X p(x) · |C (x)|. Then

H(X )−
∑
x∈X

p(x) · |C (x)| =
∑
x∈X

p(x) ·
(
log

(
1

p(x)

)
− |C (x)|

)
=

∑
x∈X

p(x) · log
(

1

p(x) · 2|C(x)|

)
(4)

Now let Y be the rv which takes the value 1
p(x)·2|C(x)| with probability p(x).

Then

E[log(Y )] ≤ log(E[Y ]) = log

(∑
x∈X

p(x) · 1

p(x) · 2|C(x)|

)
= log

(∑
x∈X

1

2|C(x)|

)
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Entropy
Question revisited - Σ = {0, 1}. Let X = {a, b, c , d} with p(a) = 1/2,
p(b) = 1/4, p(c) = 1/8 and p(d) = 1/8. How do we design a code for X
such that expected length of the code is minimized?

Answer a = 0, b = 10, c = 110, d = 111

The Shannon code A prefix-free code for a rv X with at most H(X ) + 1
bits on average can be constructed, known as Shannon code.
For an element x ∈ X , which occurs with probability p(x), use a codeword
of length ⌈log(1/p(x))⌉. By Kraft’s inequality, such a prefix-free code since∑

x∈X

1

2|C(x)| =
∑
x∈X

1

2⌈log(1/p(x))⌉
≤
∑
x∈X

1

2log(1/p(x))
=
∑
x∈X

p(x) = 1

the expected number of bits used is∑
x∈X

p(x) · ⌈log(1/p(x))⌉ ≤
∑
x∈X

p(x) · (log(1/p(x)) + 1) = H(X ) + 1.
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Entropy
Communication Suppose we have a source rv X and at the receiver end an
output rv Y . The source letters are being transmitted through the
channel. What do we expect?

What is a channel?

Joint entropy Let Z = (X ,Y ) be a pair of random variables with joint
distribution p(x , y). Then

H(Z ) = H(X ,Y ) =
∑
x ,y

p(x , y) log(1/p(x , y))

=
∑
x ,y

p(x)p(y |x) log 1

p(x)
+
∑
x ,y

p(x)p(y |x) log 1

p(y |x)

=
∑
x

p(x) log
1

p(x)

∑
y

p(y |x) +
∑
x ,y

p(x)p(y |x) log 1

p(y |x)

= H(X ) +
∑
x

p(x)H(Y |X = x)

= H(X ) + Ex [H(Y |X = x)]
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Entropy

Chain rule of entropy
Set H(Y |X ) = Ex [H(Y |X = x)]. Then we have

H(X ,Y ) = H(X ) + H(Y |X )

Similarly, we can obtain

H(X ,Y ) = H(Y ) + H(X |Y )

Homework Let (X ,Y ) be a joint random variable with X ∨ Y = 1,
X ∈ {0, 1} and Y ∈ {0, 1} such that p(0, 1) = p(1, 0) = p(1, 1) = 1/3.
Then calculate H(X ), H(Y ), H(Y |X = 0), H(Y |X = 1), H(Y |X ),
H(X ,Y )
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Entropy

Proposition H(Y ) ≥ H(Y |X )

Proof

H(Y |X )− H(Y ) =
∑
x

p(x)
∑
y

p(y |x) log 1

p(y |x)
−
∑
y

p(y) log
1

p(y)

=
∑
x

p(x)
∑
y

p(y |x) log 1

p(y |x)

−
∑
y

p(y) log
1

p(y)

∑
x

p(x |y)

=
∑
x ,y

p(x , y)

(
log

1

p(y |x)
− log

1

p(y)

)
=

∑
x ,y

p(x , y)

(
log

p(x)p(y)

p(x , y)

)
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Entropy

Now let W be a rv that takes the value p(x)p(y)
p(x ,y) with probability p(x , y).

Then using jensen’s inequality

∑
x ,y

p(x , y)

(
log

p(x)p(y)

p(x , y)

)
≤ log

(∑
x ,y

p(x)p(y)

p(x , y)
p(x , y)

)
= log(1) = 0

Question What do you conclude ?

Conditioning reduces entropy on average!!
Homework H(Y ) = H(Y |X ) if and only if X and Y are independent

Homework H(Y |X ,Z ) ≤ H(Y |Z )

Bibhas Adhikari (Department of Mathematics IIT Kharagpur)Computing: from classical to quantum July 25, 2023 41 / 96



Entropy

Now let W be a rv that takes the value p(x)p(y)
p(x ,y) with probability p(x , y).

Then using jensen’s inequality

∑
x ,y

p(x , y)

(
log

p(x)p(y)

p(x , y)

)
≤ log

(∑
x ,y

p(x)p(y)

p(x , y)
p(x , y)

)
= log(1) = 0

Question What do you conclude ?

Conditioning reduces entropy on average!!
Homework H(Y ) = H(Y |X ) if and only if X and Y are independent

Homework H(Y |X ,Z ) ≤ H(Y |Z )

Bibhas Adhikari (Department of Mathematics IIT Kharagpur)Computing: from classical to quantum July 25, 2023 41 / 96



Entropy

Now let W be a rv that takes the value p(x)p(y)
p(x ,y) with probability p(x , y).

Then using jensen’s inequality

∑
x ,y

p(x , y)

(
log

p(x)p(y)

p(x , y)

)
≤ log

(∑
x ,y

p(x)p(y)

p(x , y)
p(x , y)

)
= log(1) = 0

Question What do you conclude ?

Conditioning reduces entropy on average!!

Homework H(Y ) = H(Y |X ) if and only if X and Y are independent

Homework H(Y |X ,Z ) ≤ H(Y |Z )

Bibhas Adhikari (Department of Mathematics IIT Kharagpur)Computing: from classical to quantum July 25, 2023 41 / 96



Entropy

Now let W be a rv that takes the value p(x)p(y)
p(x ,y) with probability p(x , y).

Then using jensen’s inequality

∑
x ,y

p(x , y)

(
log

p(x)p(y)

p(x , y)

)
≤ log

(∑
x ,y

p(x)p(y)

p(x , y)
p(x , y)

)
= log(1) = 0

Question What do you conclude ?

Conditioning reduces entropy on average!!
Homework H(Y ) = H(Y |X ) if and only if X and Y are independent

Homework H(Y |X ,Z ) ≤ H(Y |Z )

Bibhas Adhikari (Department of Mathematics IIT Kharagpur)Computing: from classical to quantum July 25, 2023 41 / 96



Entropy

Now let W be a rv that takes the value p(x)p(y)
p(x ,y) with probability p(x , y).

Then using jensen’s inequality

∑
x ,y

p(x , y)

(
log

p(x)p(y)

p(x , y)

)
≤ log

(∑
x ,y

p(x)p(y)

p(x , y)
p(x , y)

)
= log(1) = 0

Question What do you conclude ?

Conditioning reduces entropy on average!!
Homework H(Y ) = H(Y |X ) if and only if X and Y are independent

Homework H(Y |X ,Z ) ≤ H(Y |Z )

Bibhas Adhikari (Department of Mathematics IIT Kharagpur)Computing: from classical to quantum July 25, 2023 41 / 96



Entropy

General case Suppose X = (X1,X2, . . . ,Xm).

Homework Show (by induction) that

H(X1, . . . ,Xm) = H(X1) + H(X2|X1) + H(X3|X1,X2) + . . .

+H(Xm|X1, . . . ,Xm−1)

Sub-additive property of entropy

H(X1, . . . ,Xm) ≤ H(X1) + H(X2) + . . .+ H(Xm)

Question Can the upper bound for expected code length of H(X ) + 1 be
improved?
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Question Can the upper bound for expected code length of H(X ) + 1 be
improved?
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Entropy

Recall

▷ Let X be a rv with range set {a1, . . . , an} and p(ai ) = pi

▷ We want to encode ai s with expected code length small i.e. expected
number of bits needed is small

▷ If l1, l2, . . . , ln are the codeword lengths for a1, . . . , an respectively then

n∑
i=1

2li ≤ 1

▷ We proved that the expected length is bounded below by H(X ) and
bounded above by H(X ) + 1 (Shannon code)

Question Can we improve the upper bound?
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Entropy
The idea - Source Coding Theorem

▷ Consider m copies of the rv X , X1, . . . ,Xm and a code
C : Xm → {0, 1}∗

▷ Let |X |m = N

▷ We know that (Homework)

E[|C (X1, . . . ,Xm)|] ≤
N∑
i=1

pi⌈log
1

pi
⌉ ≤ H(X1, . . . ,Xm) + 1

▷ Assume that m copies of X are iid

▷ Then

H(X1, . . . ,Xm) = H(X1) + H(X2|X1) + . . .+ H(Xm|X1, . . . ,Xm−1)

= H(X1) + H(X2) + . . .+ H(Xm)

= m · H(X )
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Entropy

Thus we have
E[|C (X1, . . . ,Xm)|] ≤ m · H(X ) + 1

Thus we conclude that we can use H(X ) + 1
m bits on average per copy of

X

Theorem (Fundamental Source Coding Theorem (Shannon)). For any
ϵ > 0 there exists a n0 such that for all n ≥ n0 and given n copies of X ,
X1, . . . ,Xn sampled i.i.d., it is possible to communicate (X1, . . . ,Xn) using
at most H(X ) + ϵ bits per copy on average.
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Mutual information
The mutual information (MI) between two random variables X and Y is
defined as

I (X ;Y ) = H(X )− H(X |Y )

Question What is the difference between correlation and MI?
Example X represents the roll of a fair 6-sided die, and Y represents
whether the roll is even (0 if even, 1 if odd)

I (X ;Y ) = H(X )−H(X |Y ) = H(Y )−H(Y |X ) = H(X )+H(Y )−H(X ,Y )

Then (expanding the formula of entropy)

→ I (X ;Y ) ≥ 0

→ I (X ;Y ) = I (Y ;X )

Homework Let X ,Y be two variables with X ∨ Y = 1, X ∈ {0, 1},
Y ∈ {0, 1} such that (X ,Y ) = (1, 0), (X ,Y ) = (0, 1) and (X ,Y ) = (1, 1)
with probabilities 1/3. Then calculate I (X ;Y )
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Mutual information

Conditional mutual information

I (X ;Y |Z ) = EZ [I (X |Z = z ;Y |Z = z)]

= EZ [H(X |Z = z)− H(X |Y ,Z = z)]

= H(X |Z )− H(X |Y ,Z )

Example Let (X ,Y ,Z ) be a random variable with Z = X ⊕Y , X ∈ {0, 1},
Y ∈ {0, 1} such that (X ,Y ,Z ) = (x , y , z) are equally likely. Then check
that I (X ;Y ) = 0 and

I (X ;Y |Z ) = EZ [I (X |Z = z);Y |Z = z ]

=
1

2
I (X |Z = 0;Y |Z = 0) +

1

2
I (X |Z = 1;Y |Z = 1)

=
1

2
log 2 +

1

2
log 2 = 1
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Mutual information

Question What is the conclusion from the above example?

Chain rule of MI: I ((X1, . . . ,Xm);Y ) =
∑m

i=1 I (Xi ;Y |X1, . . . ,Xi−1)

Proof

I ((X1, . . . ,Xm);Y )

= H(X1, . . . ,Xm)− H(X1, . . . ,Xm|Y )

=
m∑
i=1

H(Xi |X1, . . . ,Xi−1)−
m∑
i=1

H(Xi |Y ,X1, . . . ,Xi−1)

=
m∑
i=1

[H(Xi |X1, . . . ,Xi−1)− H(Xi |Y ,X1, . . . ,Xi−1)]

=
m∑
i=1

I (Xi ;Y |X1, . . . ,Xi−1)
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Mutual information
Markov chain (a memoryless process) An ordered tuple of random
variables (X ,Y ,Z ) is said to form a Markov chain if X and Z are
independent conditioned on Y . In that case we write as X → Y → Z .

Question If X → Y → Z then Z → Y → X?

Lemma Data Processing Inequality: Let X → Y → Z be a Markov chain.
Then I (X ;Y ) ≥ I (X ;Z ).

Proof Let Z = g(Y ) for some g then obviously X → Y → g(Y ).

I (X ;Y ) = H(X )− H(X |Y ) = H(X )− H(X |Y , g(Y ))

≥ H(X )− H(X |g(Y )) = I (X ; g(Y ))

From the first line, I (X ;Y ) = I (X ; (Y , g(Y ))) = I (X ; (Y ,Z )) However, in
general,

I (X ; (Y ,Z )) = I (X ;Y ) + I (X ;Z |Y ) = I (X ;Y )

Thus,

I (X ;Y ) = I (X ; (Y ,Z )) = H(X )−H(X |Y ,Z ) ≥ H(X )−H(X |Z ) = I (X ;Z )
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Kullback Leibler (KL) divergence

Also known as relative entropy is a measure of how different two
distributions are.

Definition Let P and and Q be be two distributions on a sample space X .
The KL-divergence between P and Q is defined as:

D(P∥Q) =
∑
x∈X

p(x) log

(
p(x)

q(x)

)

Example Suppose X = {a, b, c} with p(x) = 1
3 , x ∈ X and q(a) = 1

2 ,
q(b) = 1

2 , q(c) = 0. Then

D(P∥Q) =
2

3
log

2

3
+∞ = ∞

D(Q∥P) = log
3

2
+ 0 = log

3

2
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KL divergence
→ D(P∥Q) and D(Q∥P) are not necessarily equal

→ D(P∥Q) may be infinite
→ Let Supp(P) = {x : p(x) > 0}. Then we must have

Supp(P) ⊆ Supp(Q) if D(P∥Q) <∞
Even though the KL-divergence is not symmetric, it is often used as a
measure of “dissimilarity” between two distributions

Lemma Let P and Q be distributions on a finite space X . Then
D(P∥Q) ≥ 0 with equality if and only if P = Q.

D(P∥Q) =
∑
x

p(x) log
p(x)

q(x)
=

∑
x∈Supp(P)

p(x) log
p(x)

q(x)

≥ − log

 ∑
x∈Supp(P)

p(x) · q(x)
p(x)


= − log

 ∑
x∈Supp(P)

q(x)

 ≥ − log 1 = 0
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Kl divergence

Interpretation of KL divergence in terms of source coding

D(P∥Q) =
∑
x

p(x) log
p(x)

q(x)
=
∑
x

p(x) log
1

q(x)
−
∑
x

p(x) log
1

p(x)

→ This can be interpreted as the number of extra bits we use (on
average) if we designed a code according to the distribution P, but
used it to communicate outcomes of a random variable X distributed
according to Q

→ The first term in the RHS, which corresponds to the average number
of bits used by the “wrong” encoding, is also referred to as cross
entropy
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Code

Nonsingular code - if every element of X maps into a different string of
the alphabet set i.e. x ̸= y ⇒ c(x) ̸= c(y)

Extension of a code The extension C ∗ of a code C is the mapping from
the finite strings of X to finite strings of the alphabet set i.e.

C (x1x2 . . . xn)︸ ︷︷ ︸
discrete memoryless source

= C (x1)C (x2) . . .C (xn)︸ ︷︷ ︸
concatenation

Uniquely decodable code A code is uniquely decodable if its extension is
nonsingular i.e. any encoded string is a uniquely decodable code has only
one possible source string
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Code

Note

▷ Prefix free code is uniquely decodable

▷ Using the Shannon’s idea the expected codeword length is H(X ) + 1

Question Can we construct a uniquely decobale code with expected
codeword length H(X )? - optimal codeword length (Huffman code)
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Channel capacity

(x1, x2, . . . , xn)︸ ︷︷ ︸
input

→ (y1, y2, . . . , yn)︸ ︷︷ ︸
output

memoryless: yj depends only on xj

X
p(yj |xk )−−−−−→
Channel

Y


p(x1)
p(x2)
...

p(xK )

→


p(y1)
p(y2)
...

p(yJ)

 , p(yj) =
K∑

k=1

p(yj |xk)p(xk)
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Channel capacity


p(y1)
p(y2)
...

p(yJ)

 =

p(y1|x1) p(y1|x2) . . . p(y1|xK )
...

... . . .
...

p(yJ |x1) p(yJ |x2) . . . p(yJ |xK )


J×K︸ ︷︷ ︸

Channel matrix


p(x1)
p(x2)
...

p(xK )



Observation

1. the channel matrix is nonnegative

2. sum of entries in each column is 1

p(yj |xk) are called transition probabilities
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Channel capacity

Memoryless channel if each output letter in the output sequence depends
only on the corresponding in put i.e.

pN(y |x) = pN((y1 . . . yN)|(x1 . . . xN)) =
N∏

n=1

p(yn|xn)

for all n,N, x , y

Example Binary symmetric channel
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Channel capacity

Alternative interpretation of mutual information Suppose

I (x ; y) = log
p(x |y)
p(x)

= log
p(y |x)
p(y)

= log
p(x , y)

p(x)p(y)
= I (y ; x)

Set

I (X ;Y ) =
∑
x ,y

p(x , y)I (x ; y) =
∑
x ,y

p(x , y) log
p(x , y)

p(x)p(y)
,

the ‘average’ mutual information

Homework I (X ;Y ) = H(X )− H(X |Y )!!
Question Does it have any connection with the KL-divergence?
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Channel capacity

The largest ‘average’ mutual information that can be obtained over the
channel

C = max
p(X )

I (X ;Y )

i.e.

max I (X ;Y ) wrt
K∑

k=1

pk = 1, pk ≥ 0

Question Does it exist?
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Channel capacity

Theorem (DMC) Let X
N
,Y

N
denote the random variables corresponding

to the sequences of N-length input and output sequences respectively:

X
N
= (X1, . . . ,XN), Y

N
= (Y1, . . . ,YN),

where Xi ,Yi are iid. Then

I (X
N
;Y

N
) ≤

N∑
n=1

I (Xn;Yn)

and
I (X

N
;Y

N
) ≤ NC .

Question What is the conclusion of this theorem?

Bibhas Adhikari (Department of Mathematics IIT Kharagpur)Computing: from classical to quantum July 25, 2023 60 / 96



Channel capacity

Theorem (DMC) Let X
N
,Y

N
denote the random variables corresponding

to the sequences of N-length input and output sequences respectively:

X
N
= (X1, . . . ,XN), Y

N
= (Y1, . . . ,YN),

where Xi ,Yi are iid. Then

I (X
N
;Y

N
) ≤

N∑
n=1

I (Xn;Yn)

and
I (X

N
;Y

N
) ≤ NC .

Question What is the conclusion of this theorem?

Bibhas Adhikari (Department of Mathematics IIT Kharagpur)Computing: from classical to quantum July 25, 2023 60 / 96



Review

→ Shannon demonstrated that with a proper encoding of the
information, the errors induced by a noisy channel or storage medium
can be reduced to any desired level as long as the information rate is
less than the capacity of the channel

→ The source encoder transform the source output into a string of bits,
called the information sequence

△ The number of bits per unit time required to represent the
source output is minimized

△ The source output can be perfectly reconstructed from the
information sequence u = (u0, u1, . . . , uk−1)

→ The channel encoder transforms the information sequence u into a
string of bits v = (v0, v1, . . . , vn−1) called a codeword
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Review

→ The modulator transforms each output symbol of the channel encoder
into a waveform of duration, say T seconds which is suitable for
transmission

△ This waveform enters the channel and get corrupted by noise

△ Examples of transmission channels - telephone lines, mobile
cellular technology, high-frequency (HF) radio, microwave and
satellite links, optical fiber cables

△ Examples of storage media - semiconductor memories, magnetic
tapes, compact discs

△ Examples of noise - On a telephone line, disturbances may come
from: switching impulse noise, crosstalk from other lines. On
compact discs: dust particles

→ The demodulator processes each received waveform of duration T
and produces either a discrete or continuous output

→ The sequence of demodulator outputs corresponding to the encoded
sequence v, called the received sequence r
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Review

→ The channel decoder transforms the received sequence r into a binary
sequence û, called the estimated information sequence

△ The decoding strategy is based on the rules of channel encoding
and the noise characteristics of the channel or the storage
medium

△ Ideally, û = u, although noise may cause decoding errors

The big picture
u → v → r → û

Problem Design and implementation of encoder/decoder pair such that -
information can be transmitted in noisy environment, and the information
can be reliably reproduced at the output of the channel decoder
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Codes
Observation

→ The k-tuple u = (u0, u1, . . . , uk−1), called a message (sometimes u is
used to denote a k-bit message rather than the entire information
sequence)

→ There are 2k different possible messages

→ The encoder transform each message u into an n-tuple
v = (v0, v1, . . . , vn−1), called a codeword (sometimes v is used to
denote an n-symbol block rather than the entire encoded sequence)

→ Therefore, corresponding to 2k different possible messages, there are
2k different possible codewords at the endoder output

→ This set of 2k codewords of length n is called an (n, k) block code

→ The ratio R = k/n is called the code rate, and it can be interpreted
as the number of information bits entering the encoder per
transmitted symbol

→ Each message is encoded independently, so the encoder is memoryless
and can be implemented with a combinatorial logic circuit
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Linear block codes

Definition A block code of length n and 2k codewords is called a linear
(n, k)-code if and only if its 2k codewords form a k-dimensional subspace
of the vector space of all n-tuples over the field GF (2), the Galois Field of
order 2

Conclusion

△ A binary block code is linear if and only if the modulo-2 sum of two
codewords is also a codeword

△ Since (n, k) linear block code C is a k-dimension subspace of Vn, the
vector space of all binary n-tuples, it is possible to find k linearly
independent codewords g0, g1, . . . , gk−1 in C such that any codeword
v in C can be written as

v = u0g0 + u1g1 + . . . uk−1gk−1

where ui ∈ {0, 1}, 0 ≤ i ≤ k − 1
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Linear block codes

Write

G =


g0
g1
...

gk−1

 =


g00 g01 . . . g0,n−1

g10 g11 . . . g1,n−1
...

...
...

...
gk−1,0 gk−1,1 . . . gk−1,n−1


k×n

where
gi = (gi0, gi1, . . . , gi ,n−1), 0 ≤ i ≤ k − 1.

Then

v = u · G
= u0g0 + u1g1 + . . .+ . . . , uk−1gk−1
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Linear block codes

Since G generate the (n, k) linear code C , the matrix G is called a
generator matrix for C .

Example

G =


g0
g1
g2
g3

 =


1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1


generates a (7, 4) linear code

Question Verify that v = (0 0 0 1 1 0 1) is a codeword for the above
generator matrix
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Linear block codes

Systematic format of a codeword A codeword is divided into two parts -
the message part and the redundant checking part

The message part consists of k unaltered information digits, and the
redundant checking part consists of n − k parity-check digits

A linear block with this structure is referred to as linear systematic block
code
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Linear block code
Thus a linear systematic (n, k) code is completely described by a k × n
matrix G of the following form

G =
[
P Ik

]
, P = [pij ] ∈ {0, 1}k×(n−k)

Let u = (u0, u1, . . . , uk−1) be the message to be encoded. Then the
corresponding codeword is

v = u · G

which gives two equations

vn−k+i = ui , 0 ≤ i ≤ k − 1 (5)

vj = u0p0j + u1p1j + . . .+ uk−1pk−1,j , 0 ≤ j ≤ n − k − 1. (6)

The (n − k) equations given by equation (6) are called parity-check
equations.
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Linear block code

Parity-check matrix

△ The generator matrix G has k linearly independent rows from {0, 1}n

△ Then there can be n − k linearly independent rows from {0, 1}n, say
h0,h1, . . . ,hn−k such that any vector in the row space of G is
orthogonal to hj , 0 ≤ j ≤ n − 1

△ Define

H =


h0
h1
...

hn−k


Then an n-tuple v is a codeword in the code C generated by G if and only
if v ·HT = 0
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Linear block code

Then the code C is just the null-space of H, which is called a parity-check
matrix of the code.

Note The rows of H also generate a (n, n − k) linear code Cd , which is
called the dual code of C .

Problem The code Cd is the null space G.

If the generator matrix of an (n, k) linear code is in the systematic form
then the parity-check matrix can be in the following form:

H =
[
In−k PT

]
.

Then see that
G ·HT = 0.
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Linear block code

Syndrome decoding Consider an (n, k) linear code corresponding to
generator matrix G and parity-check matrix H. Let r = (r0, r1, . . . , rn−1)
be the received vector at the output of a noisy channel corresponding to a
codeword v = (v0, v1, . . . , vn−1).

Then
r = v + e ⇒ e = r + v = (e0, e1, . . . , en−1)

is the error vector , where ei = 1 for ri ̸= vi , and ei = 0 for ri = vi .
Thus the 1’s in e are the transmission errors caused by the channel noise.

Note The receiver does not know both v and e

Question How does the receiver detect, locate and correct the error?
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Linear block code

On receiving r, the decoder must first determine whether r contains
transmission errors. Thus the decoder computes

s = r ·HT = (s0, s1, . . . , sn−k−1)

which is called the syndrome of r.

Then s = 0 if and only if r is a codeword, and s ̸= 0 if and only if r is not
a codeword. Thus when s = 0, r is a codeword, and the receiver accepts r
as the transmitted codeword.

Caution It is possible that the errors in certain error vectors are not
detectable. For instance, if e is identical to a nonzero codeword. This kind
of error patterns are called undetectable error patterns. There are 2k − 1
undetectable errors (Homework)
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Linear block code

However, note that

s = r ·HT = (v + e) ·HT = v ·HT + e ·HT = e ·HT

Thus the syndrome bits give information about error bits.

Question Can we solve the linear system and obtain e?

Note that there are n − k linear equations and the system does not have a
unique solution but can have 2k solutions!!
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Linear block code

Minimum distance of a block code Let v = (v0, v1, . . . , vn−1) be an
n-tuple. Then the Hamming weight of v, denotes as w(v) is the number
of nonzero entries of v.

The Hamming distance between two vectors v and w, denotes as dh(v,w)
is the number of places where v and w differ.

Question Show that Hamming distance is a metric.

The minimum distance of a code C is defined by

dmin = min{dh(v,w) : v,w ∈ C , v ̸= w}
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Question Show that Hamming distance is a metric.

The minimum distance of a code C is defined by

dmin = min{dh(v,w) : v,w ∈ C , v ̸= w}
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Linear block code

Note that

dmin = min{w(v +w) : v,w ∈ C , v ̸= w}
= min{w(x) : x ∈ C , x ̸= 0}

Thus minimum distance of a linear code is the minimum weight of the
code.
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Linear block code

Theorem Let C be an (n, k) linear code with parity-check matrix H. Then
for each codeword of Hamming weight l , there exists l columns of H such
that the sum of these l columns is equal to the zero vector. Conversely, if
there exist l columns of H whose sum is the zero vector then there exists a
codeword of Hamming weight l in C .

Corollary Let C be a linear block code with parity-check matrix H. Then

(a) If no d − 1 or fewer columns of H add to 0, the code has minimum
weight at least d

(b) The minimum distance of C is equal to the smallest number of
columns of H that sum to 0.
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Linear block code

Error detection and error correction Suppose a codeword v is transmitted
over a noisy channel. Then a block code with minimum distance dmin is
capable of detecting all the error patterns of dmin − 1 or fewer errors:

→ If there are l errors in the corresponding received vector r, then
d(v, r) = l

→ If the minimum distance of a block code C is dmin, then any two
distinct codewords in C differ at least in dmin places

→ Then for this code, no error pattern of dmin − 1 or fewer errors can
change one codeword into another, hence any error pattern of
dmin − 1 or few errors will result in a received vector r that is not a
codeword in C

Question Can it detect all the error patterns of dmin errors?
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Linear block code

Observation (n, k) linear block code can detect 2n − 2k error patterns of
length n

→ The number of nonzero error patterns is equal to 2n − 1, among
which 2k − 1 error patterns are the 2k − 1 nonzero codewords.

→ If any of these 2k − 1 error patterns occurs, it alters v into another
codeword w, and its syndrome is zero. Thus the decoder performs an
incorrect decoding. Therefore there are 2k − 1 undetectable error
patterns

→ Note that there are exactly 2n − 2k error patterns that are not
identical to the codewords of the (n, k) block code, which are
detectable

→ For large n, 2k − 1 ≪ 2n in general, hence only a small fraction of
error patterns pass through the decoder without being detected
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Linear block code

Maximum-Likelihood (ML) decoding

→ A decoder must determine w to minimize

P(E | r) = P(w ̸= v| r)

→ The probability of error is

P(E ) =
∑
r

P(E | r)P(r)

→ Memoryless channel: ML decoder

△ Maximize P(r| v) =
∏

j P(rj | vj)
△ Alternatively, choose v to maximize logP(r| v) =

∑
j logP(rj | vj)

△ The ML decoder is optimal if and only if all v are equally likely
as input vectors, otherwise P(r| v) must be weighted by the
codeword probabilities P(v)
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Linear block code

ML decoding on the BSC Suppose the noisy channel is BSC with bit-flip
probability ϵ. Then

→ P(rj | vj) = 1− ϵ if rj = vj and ϵ otherwise

→

logP(r| v) =
∑
j

logP(rj | vj)

= d(r, v) log ϵ+ (n − d(r, v)) log(1− ϵ)

= d(r, v) log
ϵ

1− ϵ
+ n log(1− ϵ)

→ log ϵ
1−ϵ < 0 for ϵ < 0.5, so an ML decoder for a BSC must choose v

to minimize d(r, v)
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Linear block code

Then for a linear block code, an ML decoder takes n received bits as input
and returns the most likely k-bit message among the 2k possible messages.

Implementing ML decoder

→ Enumerate all 2k valid codewords, each n bit in length

→ Compare the received word r to each of these valid codewords and
find the one with smallest Hamming distance to r

→ However, it has exponential time complexity. What we would like is
something a lot faster. Note that this comparing to all valid
codewords method does not take advantage of the linearity of the
code.
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Linear block code

Correction of error Let C be an (n, k) linear code with minimum distance
dmin. Then

2t + 1 ≤ dmin ≤ 2t + 2

for some positive integer t.

Claim C is capable of correcting all the error patterns of t or fewer errors.

→ Let v and r denote the transmitted codeword and the received vector
respectively.

→ Let w be any other codeword of C . Then

d(v,w) ≤ d(v, r) + d(w, r)

→ Suppose an error pattern of t ′ errors occurs i.e. d(v, r) = t ′

→ Obviously, d(v,w) ≥ dmin ≥ 2t + 1, and hence d(w, r) ≥ 2t + 1− t ′
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Linear block code

→ If t ′ < t then d(w, r) > t

→ Thus if an error pattern of t or fewer errors occurs, the received
vector r is closer in Hamming distance to the transmitted codeword v
than any other codeword w in C

→ According to ML decoding scheme, it is a correct transmitted
codeword, thus the errors are corrected.
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Quantum information theory

▷ Classical information is carried by systems with a definite state, and it
can be replicated and measured without being altered

▷ Quantum information is encoded as a property of quantum systems
(e.g., photon polarization or particle spin) and has special properties
such as superposition and entanglement with no classical counterpart;
quantum information cannot be cloned, and it is altered as a result of
a measurement

transmission of classical information over quantum channels
transmission of quantum information over quantum channels
effect of quantum entanglement on information transmission
informational aspect of the quantum measurement process, the
trade offs between the disturbance of the quantum state and the
accuracy of the measurement
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von Neumann entropy

For a density matrix ρ, of an n-qubit system

S(ρ) = −tr [ρ log ρ]

Setting, ρ =
∑2n

j=1 pi |ej⟩ ⟨ej | , (spectral decomposition)

log ρ =
2n∑
j=1

(log pj) |ej⟩ ⟨ej |

and hence

S(ρ) = −tr

 2n∑
j=1

pj |ej⟩ ⟨ej |
2n∑
i=1

log pi |ei ⟩ ⟨ei |

 = −
2n∑
j=1

pj log pj = H(p1, . . . , p2n)

Question What does this mean?
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von Neumann entropy

Observations

▷ If ρ = |ψ⟩ ⟨ψ| , is a pure state then it has only one eigenvalue 1, hence
trace is 1 and S(ρ) = 0

▷ Consider an ensemble of pure states |ej⟩ , 1 ≤ j ≤ N, and prepare a
mixed state with |ej⟩ probability pj

▷ We can safely say that von Neumann entropy is the least amount of
information to be used to create ρ, and equivalently we can say that
it is the minimum amount of classical information that we can access
from ρ

▷ Consider evolution of a system described by ρ : ρ(t) = e−iHtρe iH(t),
then S(ρ(t)) = S(ρ) - second law of thermodynamics, the entropy of
a closed system never decreases
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von Neumann entropy

Let ρAB denote a ‘joint’ density matrix corresponding to a
bipartite/composite system. Then

ρA = trB(ρAB), ρB = trA(ρAB)

are partial traces of ρAB

joint von Neumann entropy: S(A,B) = S(ρAB)

conditional von Neumann entropy of system, A, conditioned by system, B:

S(A|B) = S(ρAB)− S(ρB)

Note Conditioning cannot increase entropy
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von Neumann entropy

mutual information: for a pair of systems A,B

I (A;B) = S(ρA) + S(ρB)− S(ρAB) = S(ρA)− S(A|B)

relative entropy: S(ρ1∥ ρ2) = tr(ρ1(log ρ1)− log ρ2)

S ′(ρ1∥ ρ2) = tr(ρ1 log{ρ1/21 ρ−1
2 ρ

1/2
1 })

Question Are these generalizations of classical relative entropy? Which one
to choose?
Justification:

S(ρ1∥ ρ2) = lim
ϵ→0

S(ρ1∥ρ2 + ϵI )
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Quantum information processing

von Neumann entropy - is it related to the fundamental limit of
compression?

▷ A simple model of quantum information source5 is an ensemble of
quantum states {pX (x), |ψx⟩} - the source outputs the state |ψx⟩
with probability pX (x)

▷ The states {|ψx⟩} do not necessarily have to form an ONB

An obvious strategy - ignoring the quantum input and treating x as the
corresponding classical input

Question How can we use a quantum channel? What is a noiseless
quantum channel?

5Wilde, M.M., 2013. Quantum information theory. Cambridge university press
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Quantum information processing
Alice’s State preparation the information source outputs a sequence
|ψxn⟩An of quantum states according to the ensemble {pX (x), |ψx⟩}, where

|ψxn⟩An = |ψx1⟩A1
⊗ . . .⊗ |ψxn⟩An

The density operator is ρ⊗n where

ρ =
∑
x

pX (x) |ψx⟩ ⟨ψx |

Alice can think about purification of the density operator as

|ϕρ⟩RA =
∑
x

√
pX (x) |x⟩R |ψx⟩A ,

where R is the lebel for the inaccessible reference system, hence the
resulting iid state is |ψρ⟩⊗n

RA
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Quantum information processing

Encoding Alice encodes the systems An according to a compression
channel EAn→W , where W is a quantum system of dimension 2nR , where
R is the rate of the compression

Note

R =
1

n
log dim(HW )

Transmission Alice transmits the system W to Bob using nR noiseless
qubit channels

Decoding Bob sends the system W through a decompression channel
D

W→Ân
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Quantum information processing

The protocol has ϵ-error if

1

2

∥∥(|ϕρ⟩RA)⊗n − (D
W→Ân ◦ EAn→W )(|ϕρ⟩)⊗n

RA

∥∥
1
≤ ϵ

▷ a quantum compression rate is achivable is there exists an
(n,R + δ, ϵ) quantum compression code for all δ > 0, ϵ ∈ (0, 1), for
sufficiently large n

▷ The quantum data compression limit of ρ is equal to the infimum of
all achievable quantum compression rates
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Schumacher compression

Data compression theorem Suppose ρ is the density matrix corresponding
to a quantum information source. then the von Neumann entropy is equal
to the quantum data compression limit of ρ

Quantum channel A quantum channel is a completely positive map
Positive map A linear map M : L(HA) → L(HB) is positive if M(XA) is
positive semi-definite for all positive semi-definite XA ∈ L(HA)
Complete positivity A linear map M : L(HA) → L(HB) is completely
positive if IDm ⊗M is a positive map
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Quantum channel

Example Unitary evolution is a special kind of quantum channel. Under
the action of a unitary channel U , the state evolves as

U(ρ) = UρU†

▷ Classical-to-classical channels

▷ Classical-to-quantum-channels

▷ Quantum-to-classical channels (measurement channels)

The Holevo bound an upper bound of the accessible information in a
quantum measurement
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Thanks for your attention!!

For questions or comments: bibhas.adhikari AT gmail DOT com

Bibhas Adhikari (Department of Mathematics IIT Kharagpur)Computing: from classical to quantum July 25, 2023 96 / 96


