IIT Kharagpur TS70006: Quantum Mechanics and Quantum Computing Quantum Computing Assignment - 5

Instructor : Bibhas Adhikari

1. Consider the following generalized CNOT gates

	1	0	0	0		0	1	0	0		1	0	0	0		0	0	1	0	
4	0	1	0	0	D	1	0	0	0	a	0	0	0	1		0	1	0	0	
$A \equiv$	0	0	0	1	, B =	0	0	0	1	, C =	0	0	1	0	, D =	1	0	0	0	
	0	0	1	0		0	0	1	0		0	1	0	0		0	0	0	1	1

Show that all four generalized CNOT gates can be constructed using the standard CNOT gate and single qubit gates. Implement the corresponding quantum circuits using Qiskit.

- 2. Shaw that the SWAP gate can be constructed using generalized CNOT gates. Implement the corresponding quantum circuits using Qiskit.
- 3. Construct a CNOT gate using one CZ gate and two Haramard gates.
- 4. The CMINUS gate is defined by $\text{CMINUS} = \text{CPHASE}(\pi)$. Prove that CMINUS gate can be constructed by CNOT and H gates. Implement the corresponding quantum circuits using Qiskit. How can we construct a CNOT gate in terms of a CMINUS and H gates?
- 5. Construct a C-U gate for $U = R_x(\theta)$ and $U = R_y(\theta)$ using only CNOT and single qubit gates.
- 6. Using CNOT and quantum Toffoli gates construct a quantum circuit to perform this transformation

[1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1
0	1	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	0	0	1	0	0	0
0	0	0	0	0	1	0	0
0	0	0	0	0	0	1	0

Also implement the corresponding quantum circuit in Qiskit.

7. Consider the transformation $U_f: \mathbb{C}^{2^{n+1}} \to \mathbb{C}^{2^{n+1}}$ given by

 $U_f | x_{n-1}, x_{n-2}, \dots, x_0 \rangle | y \rangle = | x_{n-1}, x_{n-2}, \dots, x_0 \rangle | y \oplus f(x_{n-1}, x_{n-2}, \dots, x_0) \rangle$

where $f : \{0,1\}^n \to \{0,1\}$ is any map. Then show that U_f is a unitrary map. Any idea about the matrix representation of this map?

8. Design a quantum circuit which implements the function $f(x) = x^3$ when $x \in \{0, 1\}^2$. Can you give a "tight" lower bound on the minimum number of universal gates which are required to design the circuit? Any idea about generalizing it for the function $f(x) = x^n$, $x \in \{0, 1\}^2$, where n is any positive integer.