IIT Kharagpur TS70006: Quantum Mechanics and Quantum Computing Quantum Computing Assignment - 4

Instructor : Bibhas Adhikari

March 11, 2020

- 1. The NOT operator takes $|0\rangle \rightarrow |1\rangle$ and $|1\rangle \rightarrow |0\rangle$. Find its matrix representation with respect to the basis $\{|+\rangle, |-\rangle\}$, where $|+\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix}$ and $|-\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\-1 \end{bmatrix}$.
- 2. Let $R(\alpha, \beta, \gamma; \theta) = \cos \frac{\theta}{2}I + i \sin \frac{\theta}{2}(\alpha \sigma_x + \beta \sigma_y + \gamma \sigma_z)$ where $\alpha, \beta, \gamma, \theta$ are real numbers with $\alpha^2 + \beta^2 + \gamma^2 = 1$.
 - (a) Let $x = (x_1, x_2 x_3)$ be a point on the unit sphere. Explain where does $R(\alpha, \beta, \gamma; \theta)x$ lie on the unit sphere.
 - (b) Prove that any unitary matrix U of order 2×2 can be written as $U = \exp(i\eta)R(\alpha, \beta, \gamma; \theta)$ for some real numbers $\alpha, \beta, \gamma, \theta, \eta$.
 - (c) Determine the values of $\alpha, \beta, \gamma, \theta, \eta$ when U = H, the Hadamard gate.
- 3. A rotation matrix by an angle γ is given by $R(\gamma) = \begin{bmatrix} \cos(\gamma) & \sin(\gamma) \\ -\sin(\gamma) & \cos(\gamma) \end{bmatrix}$. Describe the action of this operator on a qubit $|\psi\rangle = \cos\theta |0\rangle + \sin\theta |1\rangle$.
- 4. Describe the action of the phase shift gate when considering the Bloch sphere representation of a qubit.
- 5. A Hadamard gate is applied to the qubit $|\psi\rangle = \cos\theta |0\rangle + e^{i\phi}\sin\theta |1\rangle$, and subsequently a measurement is made. What is the probability that this measurement finds the system in the state $|1\rangle$?
- 6. Prove that if an operator U is unitary and Hermitian, then $\exp(i\theta U) = \cos\theta I i\sin\theta U$.
- 7. Using Dirac notation write down the outer product representation of the following operators

$$CNOT = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, CH = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}, CZ = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}.$$

- 8. Using Dirac notation, find the action of the controlled NOT gate when the control bit is $|1\rangle$ and the target qubit is given by $|0\rangle$, $|1\rangle$ and $\alpha |0\rangle + \beta |1\rangle$.
- 9. Construct a quantum circuit to add two-bit numbers x and y modulo 4. Thus the circuit performs $|x, y\rangle \mapsto |x, x + y \mod 4\rangle$.
- 10. Describe a quantum circuit generating the two qubit cluster state $|00\rangle + |01\rangle + |10\rangle |11\rangle$. Also, prove that the cluster state is entangled.
- 11. Construct a quantum circuit using CNOT and signle qubit gates that implements the following unitary matrix.

$$\frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{bmatrix}$$

12. (Award question) Suppose U is a single qubit unitary operation. Find a circuit containing $O(n^2)$ Toffoli, CNOT and single qubit gates which implements $C^n(U)$ gate, n > 3, using no work qubits.