IIT Kharagpur TS70006: Quantum Mechanics and Quantum Computing Quantum Computing Assignment - 3

Instructor : Dr. Bibhas Adhikari

February 16, 2020

- 1. Let $|\psi\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}$. Explicitly calculate $|\psi\rangle^{\otimes 2}$ and $|\psi\rangle^{\otimes 3}$.
- 2. Compute the tensor product $\sigma_x \otimes \sigma_x$ and $\sigma_x \otimes I$.
- 3. A qubit is in the state $|\psi\rangle = \frac{\sqrt{3}}{2}|0\rangle \frac{1}{2}|1\rangle$. A measurement with respect to σ_y is made. Given that the eigenvalues of the σ_y matrix are ± 1 , determine the probability that the measurement result is +1 and the probability that the measurement result is -1.
- 4. A system is in the state $|\psi\rangle = \frac{1}{\sqrt{6}} |0\rangle + \frac{\sqrt{5}}{\sqrt{6}} |1\rangle$. A measurement is made with respect to the observable σ_x . What is the expectation or average value?
- 5. Describe the action of the operators $P_0 \otimes I$ and $I \otimes P_1$ on the state $|\psi\rangle = \frac{|01\rangle |10\rangle}{\sqrt{2}}$, where $P_0 = |0\rangle \langle 0|$ and $P_1 = |1\rangle \langle 1|$, respectively.
- 6. A system is in the state $|\psi\rangle = \frac{1}{\sqrt{8}} |00\rangle + \frac{\sqrt{3}}{\sqrt{8}} |01\rangle + \frac{1}{2} |10\rangle + \frac{1}{2} |11\rangle$.
 - (a) What is the probability that measurement finds the system in the state $|\phi\rangle = |01\rangle$?
 - (b) What is the probability that measurement finds the first qubit in the state $|0\rangle$? What is the state of the system after measurement?
- 7. A three-qubit system is in the state $|\psi\rangle = \frac{\sqrt{2}+i}{\sqrt{20}} |000\rangle + \frac{1}{\sqrt{2}} |001\rangle + \frac{1}{\sqrt{10}} |011\rangle + \frac{i}{2} |111\rangle.$
 - (a) What is the probability that the system is found in the state $|000\rangle$ if all 3 qubits are measured?
 - (b) What is the probability that a measurement on the first qubit only gives $|0\rangle$? What is the post-measurement state of the system?
- 8. A qubit is in the state $|\psi\rangle = |1\rangle$. A measurement of σ_x is made. What are the matrix representations of the projection operators corresponding to measurement results ± 1 ? What are the probability of finding measurement results ± 1 ?
- 9. A system is in the state $|\psi\rangle = \frac{1}{\sqrt{100}} |00\rangle + \frac{\sqrt{99}}{\sqrt{100}} |11\rangle$. What is the probability that measurement finds the system in the state $|\phi\rangle = |01\rangle$?
- 10. Prove the following.
 - (a) $|\psi\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}} \neq |\psi_1\rangle \otimes |\psi_2\rangle$ for some quantum states $|\psi_1\rangle$ and $|\psi_2\rangle$.
 - (b) tensor product of two unitary matrices is unitary.
 - (c) tensor product of two Hermitian matrices is Hermitian.
 - (d) tensor product of two positive semi-definite matrices is positive semi-definite.
 - (e) tensor product of two projectors is a projector.
- 11. Verify the commutator relations $[\sigma_x, \sigma_y] = 2i\sigma_z, [\sigma_y, \sigma_z] = 2i\sigma_x, [\sigma_z, \sigma_x] = 2i\sigma_y$.
- 12. Let P_1 and P_2 be two projection operators. Show that, if their commutator $[P_1, P_2] = 0$, then their product P_1P_2 is also a projection operator.

- 13. Assume that the observable σ_x and σ_y are measured within a system in the state $|0\rangle$, which is the eigenstate of σ_z with respect to the eigenvalue 1. Prove that the uncertainty principle indicates $\Delta \sigma_x \Delta \sigma_y \ge 1$.
- 14. (Award question) Write the computer programs for the following in your favorite programming language (use of any library made for quantum computing is strictly restricted)
 - (a) Given an orthonormal basis, say $\{|0\rangle, |1\rangle\}$ of \mathbb{C}^2 , the program generates the (prduct) basis vectors of $(\mathbb{C}^2)^{\otimes n}$, call it $|u_1\rangle, \ldots, |u_{2^n}\rangle$ for a given *n*. Then the program generates a random unit vector $c = [c_1, c_2, \ldots, c_{2^n}] \in (\mathbb{C}^2)^{\otimes n}$, and finally the program produces the state vector $\sum c_i |u_i\rangle$.
 - (b) Write a computer program which accepts a quantum state and a measurement operator as an input as well as returns the measurement value and post measurement state as an output.