INTERFACIAL AND MECHANICAL STUDIES ON AMINE FUNCTIONALIZED CARBON NANOTUBES IN EPOXY COMPOSITE THROUGH AB-INITIO AND MOLECULAR DYNAMICS SIMULATIONS

Project report submitted to

Indian Institute of Technology, Kharagpur

In partial fulfilment for the award of the degree

0f

Bachelor of Technology (Hons)

In Manufacturing Science and Engineering

By

Bikash Sankar Kanungo

09MF1004

Under the guidance of

Prof. Baidurya Bhattacharya

MECHANICAL ENGINEERING DEPARTMENT

INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR

APRIL 2013

ABSTRACT

CNT-epoxy nanocomposites owing to their superior thermo-mechanical properties have attained a great deal of attention since the end of last decade. Modelling such nanocomposites with realistic desnities remains a non-trivial issue in Molecular Dynamics (MD) because of their inherently irregular cross-linked networks. In this report a new approach for modelling functionalized-CNT reinforced epoxy polymer network is presented. A coarse-grained melt of discrete DGEBA monomers, ethylene diamine (curing agent) and amide functionalized CNTs is made to form C-N cross-links under pressure. The resulting network is reverse mapped onto its fine-grained structure and relaxed by use of cyclic NPT/NVT runs. Increased diffusional motion and reduced steric hindrance offered by the coarse-grained model avoids atomic overlaps and facilitates swift relaxation of the instabilities introduced due to cross-linking.

The next portion of the report deals with mechanical and fracture properties of the CNT-epoxy nanocomposite. Fracture study on polymer networks also pose a challenge in MD owing to the availability of only approximate MD potentials for organic molecules which are incapable of capturing bond failure/creation. In this work a modification to the existing pcff potential is made by incorporating failure bond lengths data from ab-initio (DFTB) calculations thereby enabling it to update the bond topology of the fine grained network at large displacements. The failure bond lengths are obtained by subjecting a small representative unit of the CNT-epoxy nanocomposite to an iterative straining scheme so as to identify the critical interfaces and their failure bond lengths. Elastic constants and fracture strength of the fine-grained CNT epoxy network are determined from MD/MM based straining experiments. A ~75% improvement in stiffness and ~33% increment in fracture strength is observed for the functionalized CNT-epoxy nanocomposite when compared to that of pure epoxy.

Keywords: ab initio, molecular dynamics, epoxy polymer, carbon nanotubes, functionalized, cross linking, coarse grained, fine graining, interfacial properties, strength, stiffness