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Estimation of low failure probabilities in high dimensional structural reliability problems generally
involves a trade-off between computational effort and accuracy of the estimate, whether efficient sam-
pling techniques have been employed or not. While a substantial effort continues to be made by the com-
munity to develop and benchmark new and efficient sampling schemes, the limits of performance of a
given algorithm, e.g., what is the best attainable accuracy of the method for a fixed computational effort
and if that is good enough, have not received comparable attention. However, such insights could prove
valuable in making the right choice in solving a computationally demanding reliability problem. In a
multi-objective stochastic optimization formulation, these questions yield the so-called Pareto front or
the set of non-dominated solutions: solutions that cannot be further improved without worsening at
least one objective. Posteriori user defined preferences can then be applied to rank members of the Pareto
set and obtain the best strategy. We take up two classes of variance-reducing algorithms – importance
sampling (IS) and subset simulations (SS) – and apply them to a range of benchmarked reliability prob-
lems of various size and complexity to bring out the issue of optimality and trade-off between accuracy
and effort. The design variables are variously of categorical, discrete as well as continuous types and the
stochastic multi-objective optimization without recourse is solved using Genetic Algorithms. In each
case, we ascertain the best possible accuracies that a given method can achieve and identify the
corresponding design variables. We find that the proposal pdf does have an effect on the efficiency of
SS, the FORM design point is not always the best sampling location in IS and setting the sensitivity param-
eter associated with Adaptive Importance Sampling at 0.5 does not guarantee optimal performance. In
addition to this the benefits of using SS for high dimensional problems are reinforced. We also show that
the Pareto fronts corresponding to different methods can intersect indicating that more is not always bet-
ter and different solution techniques for the same problem may be required in different computational
regimes.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

For a distributed structure with several potential critical loca-
tions and failure modes (such as shear and flexure), subject to time
dependent loads and possessing time- and space-dependent mate-
rial properties, the reliability function estimates the probability
that the capacity, C, exceeds the demand, D, in each failure mode,
at all locations and at all times that the structure is in service:

RelðtÞ¼1�Pf ðtÞ¼ P½Cjðx;sÞP Djðx;sÞ; j6 J;8s2 ð0;tÞ;8x2X� ð1Þ

where X is the set of critical locations of the structure, J is the total
number of failure modes at each critical location, and t is total time
horizon. Both capacity and demand of the structure are generally
functions of space and time and constitute a multidimensional sto-
chastic process.

The structural reliability problem in its most general formula-
tion is thus infinite dimensional both in time and space which of
course makes it computationally intractable; hence various levels
of simplification are adopted. If there is only one critical location
with only one failure mode, and demand and capacity are time
invariant as well, we have the most basic formulation: a time-inde-
pendent element level reliability problem which typically is
described by a few basic variables and can be solved by elegant
geometric techniques such as FORM and SORM. Monte Carlo sim-
ulation based techniques can also be adopted with ease. Time
invariant problems with more than one failure mode and/or
location can be modeled as a system reliability problem with
appropriate unions and intersection of element level limit states
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and can still be tackled with FORM/SORM although with increasing
approximation. For such problems, simulation based techniques,
especially with some efficient sampling scheme, may appear more
desirable.

When the time dependent nature of C and/or D of the critical
element cannot be neglected, the next level of complexity in reli-
ability problems involves condensing the time dimension to a
finite number of discrete points by modeling the load as a station-
ary pulse process and the capacity as a non-random function of
time. A higher level of complexity occurs when stationarity can
no longer be assumed due either to non-stationary excitation or
to stochastic degradation: the first passage into failure by the pro-
cess C–D at the critical location may need to be solved by direct
simulations in the time domain.

In addition to modeling temporal randomness, spatial random-
ness may need to taken into account for distributed problems. Ran-
dom fields describing the spatially varying quantities are
discretized according to the set of critical locations and the discret-
ization scheme adopted to solve the problem as using a finite ele-
ment formulation, and can involve local averaging, series
approximations, interpolation etc. [1]. Spatial randomness thus
increases the dimensionality of the reliability problem; it also
affects the statistical dependence between safety margins at differ-
ent locations both at the same instant and at different instants of
time.

For most real life structures one thus finds a high dimensional
reliability problem [2]. In addition to this, very low failure proba-
bilities are typically associated with structures owing to the high
level of safety that society has come to expect of structures. A brief
discussion on acceptable failure probabilities of different types of
structures can be found in Bhattacharya et al. [3].

When the number of random variables become large, an impor-
tant issue is how much one can trust the reliability index obtained
from analytical approximate methods like FORM. In general the
optimization procedure associated with FORM becomes unman-
ageable in high dimensions and it is advisable that simulation
techniques be used [4]. The computation time increases with the
number of random variables and if gradient computations are done
numerically, the number of limit state function calls is propor-
tional to the number of random variables [5]. Adhikari [6] esti-
mated the failure probability using asymptotic distributions and
derived a modified beta (actual beta estimate does not give correct
values) for such cases. Schueller et al. [7] suggested that for dimen-
sions greater than 30 FORM yields inaccurate solutions.

Simulation based approaches to structural reliability computa-
tion offer a far greater flexibility and can address many of the
shortcomings of analytical based methods. At the same time, sim-
ulations have their limitations in terms of speed, size and accuracy.
After all, simulation based algorithms are basically numerical sta-
tistical sampling schemes, and can never be free of sampling errors.
All pseudo random number generators (as opposed to true random
bit generators that are accurate but very slow [8]) suffer from finite
periods (although the Mersenne Twister algorithm has one of the
longest periods [9]). The gap therefore, at any given point of time,
between computational need and computational resource, i.e.,
between the grand problem that the community would like to
solve and the problem it is able to tackle due to hardware and/or
algorithmic limitations, has always existed. Naturally, then, contin-
ual efforts have been made by the community to invent clever and
efficient simulation schemes [7,10–15].

While substantial effort continues to be made to develop and
benchmark new and efficient sampling schemes, the limits of per-
formance of a given algorithm, e.g., what is the best attainable
accuracy of the method for a fixed computational effort and if that
is good enough, have not received comparable attention. We
believe that such inquiries could prove valuable in making the
right choice in solving a computationally demanding reliability
problem. We investigate, from a multi-objective stochastic optimi-
zation viewpoint, two classes of variance-reducing algorithms –
importance sampling and subset simulations – in order to bring
out the issue of optimality and trade-off between accuracy and
effort.

Even though comparative studies have been undertaken in the
past, no author has tried to formulate it as a multi-objective opti-
mization problem to the best of our knowledge. Previous compar-
ative studies have only looked at superiority of one method over
the other [7,12,15]. In addition to a comparative study the present
work gives us an idea about the optimal combination of parame-
ters to be used for a given levels of computational resources. Pos-
teriori preferences of the user can be used to select the optimum
method along with the optimum design parameters for best per-
formance but is outside the scope of this paper.

We determine for a set of benchmark problems in structural
reliability the best accuracy that a method can achieve given a
fixed computational effort. We find that some conventional wis-
doms, such as IS should be centered on the FORM design point
and SS is not affected by the choice of proposal pdf, may not have
much merit. We also demonstrate that the Pareto fronts corre-
sponding to different methods can intersect indicating that more
is not always better and different solution techniques for the same
problem may be required at different regimes.

The structure of the paper is as follows. The next two sections
give a brief overview of variance reduction techniques in structural
reliability and multi-objective stochastic optimization problems in
engineering. We then demonstrate the concepts of design vari-
ables, random objectives, solutions of various ranks, and the Pareto
front through a simple one dimensional reliability problem. Fol-
lowing this, six benchmark reliability problems, in order of increas-
ing complexity, are taken up in detail.

2. Variance reduction techniques in estimating reliability

If the reliability problem given in Eq. (1) can be expressed in
terms of a finite number of basic variables, X, whose membership
in the failure region F can be verified by a finite number of binary
checks summarized by the indicator function IF, the failure proba-
bility is:

Pf ¼ PðX 2 FÞ ¼
Z

IFðxÞf XðxÞdx ¼ E½IFðXÞ� ð2Þ

There are a number of ways of solving the above integral as we have
discussed above. The most robust simulation based technique for
estimating Pf in Eq. (2) is the basic Monte Carlo Simulation (MCS)
[16]. However, while MCS gives an unbiased estimate of Pf, the coef-
ficient of variation (c.o.v.) of the MCS estimator is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� Pf Þ=ðPf NÞ

p
which clearly shows the unfavourable relation between accuracy
and effort involved in basic MCS.

2.1. Importance sampling and its variants

In order to overcome the problem of low efficiency associated
with basic Monte Carlo techniques, a number of variance reduction
techniques have been proposed over the years [17,18], the most
widely used being Importance Sampling (IS) [16] whose basic idea
is to carry out the simulations in a region which is considerably
closer to the limit state:

Pf ¼ PðX 2 FÞ ¼
Z

IFðxÞ½f XðxÞ=hvðxÞ�hvðxÞdx ¼ E IFðvÞ
f XðvÞ
hvðvÞ

� �
ð3Þ

where hvð:Þ is the importance sampling density function which one
would ideally like to centre on the point of maximum likelihood. If
hvð:Þ is suitably chosen, one may generate a relatively large number
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of samples in the failure region and hence estimate low probabili-
ties of failure with relatively small effort. Theoretically, the variance
of the estimated failure probability can be reduced to 0 if the IS den-
sity is chosen appropriately, which however, requires the knowl-
edge of the true probability of failure for the given problem and is
not practicable. Hence the major issue involving this method is
the choice of the IS density.

In Adaptive Importance Sampling (AIS) the selection of sam-
pling density is made adaptive [19]. A rough estimate of the failure
probability (found using basic MCS) is used to construct a kernel
density. However, when dealing with very low failure probabilities
finding an initial estimate of the failure probability using Monte
Carlo methods becomes inefficient. Au and Beck [20] proposed an
improved Adaptive Importance Sampling technique (henceforth
denoted as AIS:MCMC) where they used Markov chains (generated
using the Metropolis Hastings algorithm) to populate the variable
space and get the kernel sampling density which asymptotically
yields the optimal sampling density. For both these adaptive meth-
ods the number of samples used to construct the kernel density,
the number of samples generated from the kernel sampling density
and the choice of the sensitivity parameter for window width fac-
tor computation (window width factors are used to construct the
kernel sampling density) are the important design parameters.
For the AIS:MCMC variant the standard deviation of the proposal
probability density function for generation of Markov chains
becomes crucial too. In addition to this the initial sample chosen
(which must lie in the failure region) for MCMC simulation can
affect the algorithm’s efficiency.

Importance sampling is best used when the limit state does not
yield multiple points of maximum likelihood. The implementation
becomes quite complicated if multiple limit states are involved as
in cases of dynamic systems. Such cases have been solved using
partial sampling at different points of maximum likelihood and
then adding the total number of failures obtained from each such
partial sampling. This naturally removes the simplicity associated
with basic MCS by introducing several analytical steps. At the same
time, versatility and accuracy are compromised. For applying IS to
problems in high dimensions one has to ensure that the problem is
not degenerate. The conditions under which IS can be applied in
high dimensions have been discussed by Au and Beck [21]. The
solution provided by the authors is essentially taking the IS esti-
mate nearer and nearer to the basic MCS estimate (which again
takes one back to the issue of inefficiency). To overcome the issues
pertaining to IS Au and Beck [22] proposed Subset Simulation to
solve reliability problems in high dimensions and having low fail-
ure probability which is discussed next.

2.2. Subset simulation and its variants

The basic principle in subset simulation is the expression of the
probability of any given event as a product of a number of condi-
tional probabilities of nested events [22–26]:

PðXnÞ ¼ PðX1ÞPðX2jX1Þ . . . PðXnjXn�1Þ ð4Þ

where, fX1;X2; . . . ;Xng is a given set of nested events and Xi is
necessarily a subset of Xj if i < j. Values of PðX1Þ, PðX2jX1Þ etc. are
typically large compared to PðXnÞ, and their product accurately
yields the desired probability. If we now define Xi as the event of
exceeding the ith limit state, then the reliability problem gets for-
mulated as one of evaluating (n � 1) conditional limit state proba-
bilities. The product of these n probabilities, each of which can be
designed to be adequately high by an appropriate selection of the
intermediate limit states, gives us the probability of exceeding the
original limit state.

The probability of exceeding the first limit state, PðF1Þ, can be
directly computed using basic MCS. For populating the intermediate
failure levels Markov Chain Monte Carlo simulation (also referred to
as MCMC ‘‘moves’’ in the following) is used. A modified Metropolis
Hastings algorithm is used for the MCMC simulation. The main
design issues of subset simulation are the spread of the proposal
pdf, the conditional probability and the number of samples
generated at an intermediate failure level. The proposal pdf of the
modified MH algorithm decides the transition probability matrix
of the Markov chain that is generated. If the variance is too low then
the failure space will not be spanned adequately, whereas if the
variance is too high a large number of samples will fall into the
rejection space. If there are too many rejections the Markov chain
produced will not span the variable space properly. Both conditions
may lead to a situation where the failure state is never reached.
Hence the variance of the proposal pdf should be judiciously chosen
as it decides the efficiency of the algorithm. Recently Zuev and
Katafygiotis [27] have proposed a modification for the
Metropolis Hastings algorithm to reduce the rejections in the algo-
rithm. However this comes at the cost of a higher computational
effort.

For ease of implementation the conditional probability,
pc ¼ P½Fiþ1jFi�; ði < n� 1Þ, is selected a priori. The intermediate fail-
ure levels are then set adaptively depending on the problem. This
conditional probability that is selected also affects the efficiency
of the algorithm. A low pc will require a lower number of interme-
diate failure levels, however the number of samples required at
each intermediate level will go up. Higher number of samples at
each intermediate failure level clearly will increase the accuracy
of the results at a disproportionately higher computational effort.
Samples generated using the MH algorithm are not independent
of each other and is partly the reason for the high c.o.v. that is
typically observed in Subset Simulation with MCMC. The number
of samples generated from each seed may not be enough to
ensure burn-in so that the target distribution is reached. A discus-
sion on the issues related to the modified Metropolis Hastings
algorithm used by Au and Beck can be found in Katafygiotis and
Zuev [28].

There are two variants of Subset Simulation that are useful
when dealing with dynamics problems. They are Subset Simulation
with Splitting [23] and Hybrid Subset Simulation [24]. Both these
methods apply the concept of splitting of stochastic processes for
computation of conditional failure probabilities. This helps in
avoiding repeated generation of the whole time history of the sys-
tem. It has been observed that Hybrid SS performs better than both
SS:MCMC and SS Splitting for dynamics problems [25]. However SS
Splitting outperforms SS:MCMC only for certain specific problems
[25]. The present study is limited to SS:MCMC as it is the most gen-
eral and the oldest among the above mentioned variants.

3. Tradeoff between computational effort and accuracy

For structural reliability computations, one would want to min-
imize computational effort as well as the error in the failure prob-
ability estimate. Of course these two objectives are conflicting in
nature i.e., low error requires high computational effort and vice
versa. Further, effort and error are random in nature due to the
very presence of random sampling at the core of any Monte Carlo
simulation based algorithm. The idea of a trade-off is clear here
and the problem at hand can be formalized as a Multi-Objective
Stochastic Optimization (MOSO) problem with two objectives –
expected computational effort and expected error in estimate.
Due to random sampling involved in each of the algorithms the
objectives themselves will be random in nature. To account for this
randomness a multi-objective stochastic optimization framework
is necessary.

We adopt the following formulation of the multi-objective
stochastic optimization problem without recourse:
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Find x ¼ ½x1; x2; . . . ; xn�T

to minimize : FðxÞ ¼ ½E½F1ðx;xÞ�; E½F2ðx;xÞ�; . . . ; E½Fkðx;xÞ��T

subject to : x 2 D

ð5Þ

where n is the number of design variables, k is the number of objec-
tive functions, x is the vector of scalar design variables (of size n)
and D is the feasible set. F(x) is the expected vector of objective
functions (of size k). Each objective function Fi is a function of the
design variables as well as the random event x whose sample space
is defined by the simulation scheme adopted for the problem. For
our purpose, given any set of design variables, the expectation of
each objective function is estimated by repeating the reliability
analysis a fixed number of times, r. Since the design variables (in
our examples as described later) are chosen before the simulation
starts and are not altered/selected midway, there is no scope of
recourse here; although adaptive sampling schemes that alter the
design variables during simulation can be cast as an MOSO problem
with recourse. The optimum solution vector of design variables is x⁄

and can be depicted both in the feasible design space D as well as
the feasible criterion space Z ¼ fFðxÞjx 2 Dg. The feasible design
space could be given simply by enumeration, membership rules
or by m inequality constraints and e equality constraints:
gjðxÞ 6 0; j ¼ 1;2; . . . ;m and hlðxÞ ¼ 0; l ¼ 1;2; . . . ; e. Linderoth et al.
[29] has discussed about the convergence of results of sample aver-
age approximation of (5). They have also discussed about optimality
conditions including first order Karush–Kuhn–Tucker (KKT) condi-
tions, which are the necessary conditions for optimality (convexity
of objective functions and constraints makes it the sufficient condi-
tion as well).

Since a single optimum point does not occur in general when
dealing with MOO problems, a Pareto optimal set of solutions
results [30]. A Pareto optimal point is such that further improve-
ment in any objective will necessarily result in the deterioration
of at least one of the remaining objective functions and hence
result in moving away from the Pareto optimal set:

x� 2X is Pareto optimal iff there does not exist another point
x2X;such thatFðxÞ6 Fðx�Þ;andFiðxÞ< Fiðx�Þfor at leastone i

ð6Þ
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The equivalent representation in the objective space is that of non-
domination:

F� 2 Z is non-dominated iff there does not exist another F 2 Z
such that F 6 F�with at least oneFiðxÞ < Fiðx�Þ

ð7Þ

Of course, a user defined preference function can be used to rank
order members of the Pareto set as an aid to decision making, but
is beyond the scope of this work. In this paper, Pareto Optimal sets
are found for SS:MCMC and IS (and its variants) solutions to a set of
benchmark structural reliability problems.

Detailed discussions on various methods for solving MOO prob-
lems can be found in [30,31]. If the objective functions and con-
straints are convex and the feasible set is a convex set, many
methods are available that can be used [32]. However when con-
vexity cannot be demonstrated, the most robust technique for solv-
ing MOO problems is through evolutionary algorithms, among
which Genetic Algorithms (GA) are the most popular choice. In
addition, GA can also handle problems involving categorical and
discrete variables. Evolutionary algorithms that are used for the
optimization purpose need to be modified accordingly for
the purpose of zeroing in on the Pareto optimal set. Due to the nat-
ure of GA it is possible that Pareto optimal points are lost during the
simulation. Various strategies have been proposed to remove this
problem. GA also does not involve checking whether the solutions
obtained satisfy KKT conditions or not. A recent study by Tulshyan
et al. [32] has incorporated a KKT based termination criterion in GA.

In this paper the NSGA II algorithm (Deb et al. [33]) is used for
all the MOO problems. NSGA stands for Non-dominated Sorting
Genetic Algorithm. NSGA II reduced the computational complexity
associated with earlier non-dominated sorting algorithms. It uses
an elitist strategy for ensuring non-dominated results. The source
code available on the website of KanGAL (Kanpur Genetic Algo-
rithms Laboratory) has been used in this work.

An Elitist strategy means that for all iterations of the GA subse-
quent to the first iteration the current populations are compared
with the best non-dominated solution set found from the all previ-
ous iterations. It ensures faster convergence without losing the
diversity of the non-dominated solution set. The concept of
non-domination rank, or simply rank, is introduced to identify
103 104 105

utational Effort
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ions from IS for Problem 1.



Table 1
Details of points marked in Fig. 1.

Rank Number of samples Sampling density type Standard deviation of sampling density Mean of sampling density Average error Computational effort

1 3401 Triangular 1.12 5.98 0.000204 3401
3 3460 Triangular 1.12 5.92 0.000743 3460
3 16215 Uniform 1.13 4.14 0.000194 16215

Table 2
Problem definitions.

Problem Limit state Variable
definitions

Description Failure
probability

Failure
probability
obtained by

Design point
from FORM

1 g ¼ 5� x1 x1 � Nð0;1Þ Linear LS 2.86e-7 Numerical
integration of
normal CDF

5

2 g ¼ 0:1ðx1 � x2Þ2 � ðx1þx2Þffiffi
2
p þ 2:5 x1; x2 � Nð0;1Þ Quadratic LS

with mixed
term, convex LS

0.0042 MCS with 107

samples
(1.7678,
1.7678)

3 g ¼ �0:5ðx1 � x2Þ2 � ðx1þx2Þffiffi
2
p þ 3 x1; x2 � Nð0;1Þ Concave LS 0.1046 MCS with 105

samples
(�0.815,
1.445) and
(1.445,
�0.815)

4 g ¼ 3� x2 þ ð4x1Þ4 x1; x2 � Nð0;1Þ Highly nonlinear
LS

1.8e-4 MCS with 108

samples
(0, 3)

5 g ¼ 2þ 0:015
P9

i¼1x2
i � x10 x1...10 � Nð0;1Þ Quadratic LS

with 10 random
variables

0.0165 MCS with 106

samples
(0, 0, 0, 0, 0,0,
0, 0, 0, 2)

6 g ¼ xðtÞ � 1:75
x(t) is the response of the SDOF system

€xðtÞ þ 2fx _xðtÞ þx2xðtÞ ¼WðtÞ with damping ratio f ¼ 2%, natural
frequency x ¼ 7:85 rad=s and spectral intensity S ¼ 1 for the zero
mean Gaussian white noise WðtÞ

Xi � Nð0;1Þ
i 2 ½1;1500�
Used to define
random
excitation

Dynamic
problem with
high dimensions

1.3e-3 MCS with 107

samples
NA

Table 3
Design variables.

Algorithm Design variable Nature of design variable Range

SS:MCMC Conditional probability Discrete values 0.05, 0.1, 0.2
Number of intermediate samples Discrete values 100, 200, 300,. . ., 5000
Type of proposal pdf Categorical Normal, Uniform, Triangular
Standard deviation of proposal pdf Continuous 0.5–1.5

IS Number of Samples Integer values 10–100,000
Type of ISD Categorical Normal, Uniform, Lognormal, Gamma, Triangular
Standard deviation of ISD Continuous 0.5–1.5
Mean of ISD Continuous Range varies from problem to problem

AIS Number of initial failed samples Integer values 1–100
Number of samples generated from Kernel density Integer values 10–10,000
Sensitivity parameter Continuous 0.45–0.55

AIS:MCMC Number of initial samples Integer values 1–100
Number of samples generated from Kernel density Integer values 10–1000
Sensitivity parameter Continuous 0.45–0.55
Type of distribution of proposal pdf Categorical Normal, Uniform, Triangular
Standard deviation of proposal pdf Continuous 0.5–1.5
Initial sample in failure zone Continuous Range varies from problem to problem. Ranges

ensure that sample generated always lies in failure zone
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non-dominated solutions in a given population. Lower the rank
better the solution with 1 being the best rank possible, i.e., mem-
bers of the Pareto optimal set. The concept of crowding distance
is introduced in NSGA II to improve diversity in solution. This
has reduced the computational complexity of the algorithm with
respect to its predecessors [33].

The two objective functions of expected error and expected
computational effort are computed from five samples (i.e., five esti-
mates of the same reliability) in each call from NSGA II. The size is
restricted to five mainly due to resource constraints; however, the
scatter in the estimated means has been checked to be within
acceptable limits in representative cases.
4. Numerical studies

4.1. A one-dimensional problem

Let us start with a one variable reliability problem whose solu-
tion is known. This problem is designated as Problem 1 in the suit
of problems studied later. The limit state is linear in the standard
normal variable:

g ¼ 5� X; X � Nð0;1Þ ð8Þ

The true failure probability is 2.86 � 10�7, a rather small number. If
we were to use basic Monte Carlo simulations to estimate this



Table 4
Summary of conclusions drawn from MOSO framework.

Problem
no.

Type of limit state Best method based on location of
Pareto Set in objective function
space

Claims in available literature

FORM design point
should be used as mean
of ISD

Choice of proposal pdf does
not affect efficiency of
SS:MCMC

Sensitivity parameter of AIS
should be 0.5 for optimal
performance

1 Linear LS in 1 RV IS No No. It does affect Yes
2 Quadratic LS in 2 RVs

with mixed term,
convex LS

IS and AIS:MCMC are comparable No No. It does affect No

3 Concave LS in 2 RVs SS:MCMC for higher error, AIS for
lower error

No Not relevant No

4 Highly nonlinear LS in 2
RVs

All of equal merit No No. It does affect No

5 Quadratic LS with 10
RVs

SS:MCMC No No. It does affect No

6 Dynamic problem
(1500 RVs)

SS:MCMC – No. It does affect –
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number, the trade-off between effort and error would be the well-
known inverse relation: c:o:v:ðbPf Þ ¼ 1=

ffiffiffiffiffiffiffiffi
Pf N

p
where Pf is the true

failure probability, bPf is the estimate, and N is the number of simu-
lations. We will take this cue in the following, and define ‘‘average
error’’ in all cases as the variance of the estimated failure probabil-
ity, normalized by the square of the true Pf:

Average error ¼ E½bPf � Pf �
2

P2
f

ð9Þ

which in the case of basic MCS boils down to the square of the c.o.v.
of the estimate.

The other objective – average computational effort – is the num-
ber of times the vector of basic variables is generated, which for
basic MCS and IS are nonrandom and user defined, but for adaptive
techniques like AIS, AIS:MCMC and SS:MCMC are random in nature.
As stated above, the average error and average computational effort
are computed by repeating the reliability analysis r = 5 times for
each call from NSGA II.

Let us look at the trade-off between effort and accuracy when
Importance Sampling is employed to solve the reliability problem
in Eq. (8). The design variables are: type, mean and variance of
the sampling density and the number of trials (which is also the
second objective).

Fig. 1 shows the rank 1 (i.e., Pareto) and rank 3 (i.e., inferior)
solutions obtained from NSGA II for IS when applied to problem
1. Clearly rank 1 solutions are better in every respect than rank 3
solutions as can be seen by their respective positions in the objec-
tive function space. We now draw one horizontal and one vertical
line through the Pareto point (3402, 0.0002) designated by the
green square in the figure. This point was produced by a triangular
importance sampling density centred on 5.98 and having a
standard deviation of 1.12. If the mean is reduced to 5.92 keeping
the other two design variables unchanged, one obtains a rank 3
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solution that has a much larger average error. If instead, the sam-
pling density is changed to Uniform with a smaller mean, one again
obtains a rank 3 solution that has a much smaller error but now
requires a much larger effort. The two rank 3 solutions are marked
by green circles in the figure. The values of the design and objective
variables at the three points are listed in Table 1.

Fig. 1 also gives the sort of insight that is typically not found in
variance reduction studies and one that is central to the theme of
this paper. Suppose we wanted to solve the reliability problem in
Eq. (8) with an effort limited to about 3400 samples. Subject to
the admissible range of design variables (i.e., the feasible set D),
the lowest average error attainable would be about 0.0002 and
no less. Further, the triangular distribution would outperform the
others considered here (uniform, lognormal, normal and gamma)
as the sampling density, and the mean of sampling density must
not be centered at 5 which is the point of maximum likelihood,
but should be closer to 6. These insights will become more relevant
when we have more than one algorithm to choose from (e.g., adap-
tive IS, SS:MCMC etc. in addition to IS) as discussed in the next sec-
tion. The position of the Pareto sets in the objective function space
will enable us to comment on the efficacy of a specific method for
solving different types of reliability problems. In addition to this,
choice of optimal design variables can also be made on objective
criteria.

4.2. A suit of benchmark problems

Table 2 lists the six different reliability problems of increasing
complexity that have been selected for the present study. Problem
1 has already been defined. Problems 2–5 are adopted from
Grooteman [34]. Problem 6 involving a linear SDOF has been
adapted from Au and Beck [22]. The failure probabilities have not
been directly taken from the sources, rather, a very large number
of basic Monte Carlo Simulations (numbers given in Table 2) were
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performed to estimate the ‘‘exact’’ failure probabilities. These fail-
ure probabilities were then used for the average error estimation
using Eq. (9).

In this study we look at Subset Simulation incorporating MCMC
moves and Importance Sampling and its two variants: Adaptive
Importance Sampling with MCS (i.e., AIS) and Adaptive Importance
Sampling with MCMC moves (i.e., AIS:MCMC). As discussed earlier
the other variants of Subset Simulation have not been looked at
because the SS:MCMC is the most general purpose of them all.

Table 3 lists the design variables for each algorithm. These
design variables are the parameters that govern the performance
of the given algorithm and their feasible domain has been based
on existing literature. Parameters that have been claimed by some
researchers to not affect the performance of an algorithm have also
been modeled as design variables in order to check the accuracy of
such claims. For IS the mean of the sampling density is a design
variable here and is not pre-evaluated by FORM.
4.3. Results and discussions

The six problems are now discussed in detail, including the
behavior of the Pareto sets produced by the competing algorithms,
and the role of the optimal decision variables. In the figures that
follow, the Pareto sets for SS:MCMC, IS, AIS, and AIS:MCMC have
been shown. In addition to this, MCS estimates have also been
shown for each of the problems (for a better interpretation of the
Pareto fronts). These MCS points are not obtained from any optimi-
zation process. These are the errors associated with MCS for each
problem for various sample sizes (values are averages of five runs).
The points in the Pareto plots have been marked with numbers.
These numbers correspond to the design variables associated with
each point from the Tables in the Appendix.
4.3.1. Problem 1: The 1-D Gaussian limit state
We again look at Problem 1, this time in greater detail. Recall

that it is a one dimensional problem with a very low failure prob-
ability. The Pareto fronts produced by the four algorithms along
with the error–effort curve of MCS are shown in Fig. 2. It is clear
that IS outperforms all the other methods taken into consideration.
Even though AIS can achieve a lower error (point 10) the corre-
sponding computational effort is much higher than that of IS. It
is also clear from Fig. 2 as expected that all variance reduction
schemes outperform MCS.

From Table A1 in the Appendix one can observe that for IS the
optimal sampling density follows a pattern. For computational
effort below 1000 a normal distribution should be preferred. For
mid-range computational efforts (greater than 1000 but less than
30,000) a triangular distribution is preferred. For very high compu-
tational effort region a lognormal distribution will lead to Pareto
optimal performance. Thus if resources are not an issue the lognor-
mal should be the preferred importance sampling density for this
problem. Inferences about the standard deviation of the sampling
density can also be drawn based on Fig. 3. It is clear that for Normal
distribution a higher standard deviation is required compared to
lognormal and triangular distributions. Fig. 4 shows the variation
of the mean of the sampling density with error and distribution
type. The FORM design point for this problem is x1 = 5. It is clear
that the sampling density centered away from the design point
of FORM is desirable for this problem. For normal distribution a
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value lower than 5 is preferred whereas for lognormal and triangu-
lar distributions it is higher than 5. In fact for uniform distribution
the mean of the sampling density is near 6. These results comple-
ment those shown in Fig. 3. Since the mean of sampling density for
a normal distribution is in the ‘‘safe region’’ for the problem, the
standard deviation is higher so that more points can be generated
in the failure region (that is the whole idea of IS in the first place).
This combination gives a higher error but computational effort is
reduced. In case of lognormal and uniform since the mean is
already in the ‘‘failed region’’ of the problem, a lower standard
deviation of the sampling density suffices.

For SS:MCMC it is clear, from Table A2 of the Appendix, that an
assumed conditional probability of 0.05 and a uniform proposal
pdf is required for Pareto optimal performance. This is not in accor-
dance with the assertion, made by Au and Beck [22], that the
choice of proposal pdf does not affect the performance of the
algorithm. To reinforce the idea, Fig. 5 shows the types of proposal
pdf for each element of the final solution set. This solution set con-
tains both the rank 1 solutions as well as all other inferior solu-
tions. Clearly choice of proposal pdf affects the performance as a
normal or triangular proposal pdf gives inferior results.

The Pareto set of AIS located in a region of very high expected
computational effort in the objective function space (Fig. 2). This
is due to the very low failure probability to be estimated. Hence
a very high effort is necessary to generate the required number
of failed samples for construction of the kernel density. From
Table A3 in the Appendix it is clear that the sensitivity parameter
associated with AIS should be near 0.5 for optimal performance.
This is concurrent with the claims of Ang et al. [19].

AIS:MCMC on the other hand is not a very good choice when
solving one dimensional reliability problem with low failure prob-
ability compared to IS. Even though the expected computational
effort is very low, lower errors than that of AIS:MCMC can be
achieved by IS in the same computational regime. For this problem
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the proposal pdf for generation of Markov Chains should be normal
with a standard deviation approximately equal to 1.1 (from
Table A4 of Appendix). Another conclusion that can be drawn is
about the initial point of the Markov chain that needs to be gener-
ated for construction of the kernel sampling density. If lower num-
ber of samples are used for the construction of the kernel density,
then the initial point of the Markov Chain is further inside the fail-
ure region of the problem (approximately x = 6.85). Whereas, for
higher number of samples the initial point is approximately at
x = 6.3.

4.3.2. Problem 2: Quadratic convex LS in two basic variables with
mixed term

We now move up to a two dimensional reliability problem with
a convex limit state. From Fig. 6 it is clear that in lower computa-
tional regime IS and AIS:MCMC are comparable and IS outperforms
all the other methods in higher computational regimes. One can
also observe an intersection of the Pareto fronts of SS:MCMC and
AIS, from which it can be inferred that the former is better for
lower computational efforts but is outperformed by the latter for
high computational efforts.

For IS, for low computational effort the importance sampling
density should be chosen to be triangular with a standard devia-
tion of approximately 0.9. However, for high computational effort
a gamma distribution should be used as the importance sampling
density with a slightly lower standard deviation.

From Fig. 7 it becomes clear as to why for the triangular type of
importance sampling density a higher standard deviation, com-
pared to gamma distribution, is necessary. The mean of the sam-
pling density for triangular distribution is in the safe region and
hence to generate more samples in the failed region a higher stan-
dard deviation is required. The other inference that can be drawn
from Fig. 8 is that the mean of the importance sapling density func-
tion is not at the design point as estimated by FORM.



Table A1
Values of design variables and objective functions of IS.

Problem number Point number Number of samples Type of ISD Mean of ISD Standard deviation of ISD Error Effort

1 1 9 Normal 4.6456786 1.2537272 0.18970524 9
2 10 Normal 4.6927389 1.2511459 0.064083938 10
3 21 Normal 4.6775616 1.2514264 0.055460927 21
4 44 Normal 5.4832239 1.2389811 0.033057768 44
5 58 Normal 4.6599081 1.2413545 0.024365254 58
6 77 Normal 4.6441141 1.2710286 0.023355392 77
7 113 Normal 4.6486585 1.2474446 0.010773327 113
8 191 Normal 4.6822359 1.2591364 0.010347374 191
9 267 Normal 4.6601529 1.2583869 0.004158454 267

10 438 Normal 4.6916038 1.2466791 0.001219458 438
11 3282 Triangular 6.0713915 1.1235418 0.000673895 3282
12 3401 Triangular 5.9834577 1.1224101 0.000203926 3401
13 3803 Triangular 6.006806 1.1261828 0.000111012 3803
14 13931 Gamma 4.2574656 1.3625637 7.73419E�05 13931
15 17280 Uniform 3.9781445 1.1301125 3.20637E�05 17280
16 34178 Lognormal 5.2459457 1.0712961 3.16418E�05 34178
17 34713 Lognormal 5.1850385 1.073328 1.79278E�05 34713
18 35096 Lognormal 5.1903744 1.0748782 1.25258E�05 35096
19 39834 Lognormal 4.1760517 1.0455826 7.01319E�06 39834

2 1 9 Triangular (1.35, 1.3) 0.908681 0.138485 9
2 34 Triangular (1.34, 1.30) 0.90482 0.125986 34
3 55 Triangular (1.35, 1.32) 0.907854 0.080181 55
4 85 Triangular (1.38, 1.29) 0.910672 0.01412 85
5 95 Triangular (1.33, 1.32) 0.910268 0.007631 95
6 598 Triangular (1.36, 1.25) 0.894342 0.0038 598
7 1142 Triangular (1.33, 1.29) 0.902072 0.001425 1142
8 1181 Triangular (1.33, 1.35) 0.903119 0.001034 1181
9 1450 Triangular (1.34, 1.29) 0.907434 0.000478 1450

10 1593 Triangular (1.38, 1.24) 0.907298 0.000462 1593
11 2884 Gamma (1.79, 2.30) 0.8315 0.000102 2884
12 5535 Gamma (1.86, 2.33) 0.874592 5.02E�05 5535
13 5644 Gamma (1.85, 2.33) 0.884117 1.17E�05 5644
14 81216 Gamma (2.72, 1.71) 0.857228 1.08E�05 81216
15 84559 Gamma (2.74, 1.85) 0.843898 3.05E�06 84559

3 1 9 Uniform (1.22, 0.79) 0.979972 0.263109 9
2 28 Triangular (1.17, 0.72) 0.922326 0.126804 28
3 534 Triangular (1.17, 0.72) 0.916747 0.122151 534
4 541 Triangular (1.17, 0.73) 0.916748 0.108624 541
5 671 Triangular (1.12, 0.65) 0.910628 0.07439 671
6 1096 Triangular (1.11, 0.64) 1.024677 0.0704 1096
7 1536 triangular (1.06, 0.76) 0.987619 0.053449 1536
8 13215 Triangular (�1.11, 2.52) 1.464675 0.048125 13215
9 15155 Normal (0.26, 1.55) 0.877722 0.040284 15155

10 18621 Normal (0.37, 1.63) 1.02147 0.006896 18621
11 18928 Normal (0.39, 1.61) 1.017129 0.004264 18928
12 19538 Normal (�0.00, 1.13) 0.991619 0.003753 19538
13 19718 Normal (0.05, 1.16) 0.991728 0.003086 19718
14 19799 Normal (0.01, 1.15) 0.992367 0.00073 19799
15 21078 Normal (0.06, 1.13) 0.993092 0.00015 21078

4 1 9 Triangular (�1.48, 4.76) 0.766507 0.76329 9
2 41 Triangular (�1.75, 4.76) 0.754183 0.627085 41
3 143 Triangular (�1.59, 4.77) 0.76777 0.333053 143
4 225 Normal (1.09, 4.36) 1.268906 0.249878 225
5 491 Normal (0.97, 4.35) 1.259412 0.037963 491
6 2069 Normal (0.89, 4.38) 1.32898 0.032188 2069
7 2299 Normal (0.88, 4.21) 1.311438 0.017871 2299
8 2388 Normal (0.84, 4.42) 1.337383 0.015178 2388
9 2725 Normal (0.88, 4.39) 1.331923 0.009515 2725

10 6208 Triangular (1.60, 2.84) 1.270958 0.008938 6208
11 6311 Triangular (1.53, 2.83) 1.282006 0.008073 6311
12 6570 Triangular (1.53, 2.85) 1.272277 0.004361 6570
13 6850 Triangular (1.53, 2.84) 1.269378 0.003549 6850
14 7080 Triangular (1.58, 2.83) 1.279914 0.002374 7080
15 13103 Normal (�1.01, 3.09) 0.656273 0.00237 13103
16 15160 Uniform (0.49, 3.27) 0.78861 0.000406 15160
17 17102 Uniform (0.45, 2.94) 1.024334 0.000232 17102
18 17277 Uniform (0.49, 3.21) 0.698592 0.000139 17277
19 71640 Normal (�0.62, 2.98) 0.985998 3.88E�05 71640

5 1 9 Triangular (0.27,�0.7, 1.00, �0.36, �2.33,
�0.59, �2.00, �2.65, �0.42, 0.52)

1.4661 0.67434 9

2 105 Triangular (�0.04, �0.61, 1.14,-0.52, �2.33,
�0.61, �1.83, �2.36, �0.34, 0.48)

1.407515 0.534269 105
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Table A1 (continued)

Problem number Point number Number of samples Type of ISD Mean of ISD Standard deviation of ISD Error Effort

3 256 Triangular (�0.08, �0.7, 1.07,-0.39, �2.33,
�0.66, �1.71, �2.39, �0.36, 0.39)

1.466095 0.512324 256

4 262 Triangular (�0.03, �0.71, 0.99,-0.45, �2.33,
�0.69, �1.67, �2.44, �0.31, 0.48)

1.434387 0.341659 262

5 583 Triangular (0.03, �0.71, 1.01,-0.44, �2.33,
�0.72, �1.86,�2.53, �0.41, 0.53)

1.465006 0.273517 583

6 1476 Triangular (�0.08, �0.68, 1.19,-0.46, �2.3,
�0.68, �1.83, �2.38, �0.31, 0.41)

1.468804 0.256581 1476

7 2052 Triangular (�0.02, �0.61, 1.05,-0.42, �2.25,
�0.72, �1.86, �2.46, �0.46, 0.67)

1.464632 0.188725 2052

8 78826 Triangular (2.89, �2.07, 0.32, �0.22, 2.06, 1.01,
1.76, 0.58, 1.24, 0.24)

1.39512 0.177728 78826

9 82367 Triangular (2.95, �2.08, 0.30, �0.22, 2.05, 0.91,
1.94, 0.61, 1.22, 0.23)

1.397727 0.144961 82367
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From the values of the design variables of SS:MCMC it is clear
again that the type of proposal pdf does affect the performance
of the algorithm. For very high computational effort a triangular
distribution should be preferred. For other computational effort
regimes a normal or uniform distribution suffices, with appropriate
choice of standard deviation and conditional probability. Another
observation that can be made from the Table A2 in Appendix is that
for higher conditional probabilities the standard deviations are
lower. This is true because higher conditional probabilities make
the length of intermediate Markov Chains shorter. Hence, to reduce
repetition in the Markov chain, to ensure effective spanning of the
variable space, the standard deviation of the proposal pdf is lower.

4.3.3. Problem 3: Quadratic concave LS in two basic variables with
mixed term

In contrast to Problem 2, Problem 3 is a two dimensional con-
cave reliability problem with a high failure probability. From
Fig. 8 it is clear that at low computational effort SS:MCMC outper-
forms all other methods. Since there is an intersection of the Pareto
fronts of AIS and SS:MCMC, the former outperforms the latter
when the computational effort is high. Another conclusion that
we can draw is that AIS performs best when solving concave limit
states out of all the variants of Importance Sampling. IS performs
significantly poorly in Problem 3, the reason being the presence
of two equidistant design points on the limit state on two different
sides of the origin (Fig. 9).

Since the failure probability is very high for this Problem the
results of SS:MCMC are same as that of MCS i.e. reliability esti-
mates were found in the first step of the SS:MCMC algorithm.
Hence the values of the design parameters, pertaining to the pro-
posal pdf, obtained have no significance as they are never actually
used. Also the results of MCS almost overlaps the Pareto set of
SS:MCMC. For AIS again the sensitivity parameter need not be
0.5 for optimal performance as can be seen from Table A3.

4.3.4. Problem 4: Highly nonlinear LS in two basic variables
Problem 4 is a highly nonlinear reliability problem in 2 dimen-

sions with a low failure probability compared to all the previous
problems except for the first. There are a lot of intersections
between the Pareto fronts of the methods (Fig. 10) suggesting that
for this problem all methods are of nearly equal merit. Since the
failure probability is low in this case, the position of the MCS result
demonstrates the already known advantages of variance reduction
schemes. Another interesting observation that can be made is that
even though the failure probability is low AIS is not completely
outperformed by the other algorithms as was the case in Problem 1.

From Fig. 11, we again observe that the design point obtained
from FORM does not guarantee efficiency for IS. For SS:MCMC, in
case of low computational efforts the conditional failure probabil-
ity should be taken to be 0.05. For higher computational efforts it
should be taken as 0.2. The standard deviation of the proposal
pdf should also be low for lower number of intermediate samples
used. For higher number of intermediate samples a higher stan-
dard deviation of the proposal pdf is preferred. This can be
explained on the basis that when the number of intermediate sam-
ples is low the Markov Chains that are generated are also shorter.
Hence in such a short sample if one wants to effectively span the
variable space, one needs to reduce repetition in a Markov Chain
(which can be achieved by reducing rejection rate; standard devi-
ation of the proposal pdf affects the rejection rate [22]).
4.3.5. Problem 5: Quadratic LS with 10 basic variables
Problem 5 is a nonlinear reliability problem in ten dimensions

with a higher failure probability compared to Problems 1 and 4
and we now start seeing the benefit of SS:MCMC. From Fig. 12 it
is clear that SS:MCMC outperforms all the other techniques. The
problem of high dimensionality seems to affect IS more than its
variants as can be seen from the relative positions of the corre-
sponding Pareto sets (the error associated with IS is very high com-
pared to its variants). This is because AIS and AIS:MCMC overcome
the issue of dimensionality to an extent (i.e., for not very high
dimensional problems) by combining an initial MCS based esti-
mate with estimate from kernel sampling density and by using
MCMC simulations for constructing a better kernel sampling den-
sity. Also due to the high dimensional nature of the problem the
variance reduction techniques do not necessarily perform better
than MCS as can be seen from Fig. 12.

From Table A1 of the Appendix it is clear that for this problem
the type of sampling density for IS should be triangular. The stan-
dard deviation can afford to be low when the computational effort
is high such the vector space is amply covered near the limit state.
As in the earlier problems, the mean of the sampling density is not
equal to the FORM design point (Table 2).

For SS:MCMC the first two points happen to be MCS solutions
(i.e., no intermediate failure level was necessary). The proposal
pdf changes from normal to triangular as we move from lower to
higher computational regime. At low computational effort the con-
ditional probability is high along with a low standard deviation of
the proposal pdf. This may lead to poor results due to shorter
Markov Chains with a high rejection rate. However for this
problem these drawbacks do not affect the performance as the
failure probability is high.

From Table A3 of the Appendix, the sensitivity parameter
associated with AIS takes values slightly higher than 0.5 for lower
computational effort regimes. However for higher computational
effort the sensitivity parameters take values close to 0.5 as



Table A2
Values of design variables and objective functions for SS:MCMC.

Problem
number

Point
number

Number of intermediate
samples

Conditional
probability

Type of proposal
pdf

Standard deviation of proposal
pdf

Error Effort

1 1 100 0.05 Uniform 0.872192 288.3444 423
2 100 0.05 Uniform 0.868527 24.1341 461
3 100 0.05 Uniform 0.871299 2.435486 480
4 100 0.05 Uniform 0.89924 0.271343 499
5 400 0.05 Uniform 0.985234 0.068458 1768
6 500 0.05 Uniform 0.778918 0.016743 2400

2 1 100 0.2 Normal 0.654107 1.90703 100
2 100 0.2 Normal 0.654482 1.90703 100
3 100 0.05 Uniform 1.391493 1.90703 100
4 100 0.2 Normal 0.654107 1.526077 116
5 100 0.2 Normal 0.638203 1.130762 132
6 100 0.2 Normal 0.652807 0.854875 148
7 100 0.05 Uniform 1.330389 0.816327 157
8 100 0.2 Normal 0.63342 0.473923 164
9 100 0.2 Uniform 0.694711 0.473923 164

10 100 0.05 Uniform 1.393558 0.447279 176
11 100 0.2 Normal 0.774501 0.386848 180
12 100 0.1 Normal 0.62033 0.163265 190
13 100 0.05 Normal 0.768382 0.047052 195
14 200 0.05 Uniform 1.386137 0.036281 200
15 200 0.05 Uniform 1.392416 0.036281 200
16 200 0.2 Normal 0.664094 0.029478 232
17 1700 0.1 Uniform 0.615838 0.021099 1700
18 1800 0.1 Uniform 0.644399 0.012486 1800
19 2400 0.2 Uniform 0.558979 0.007937 2400
20 3400 0.05 Triangular 0.92761 0.007368 3400
21 3700 0.2 Triangular 1.147179 0.004123 3700

3 1 100 0.05 Triangular 0.849076 0.00559 100
2 200 0.05 Triangular 0.811386 0.003287 200
3 300 0.2 Normal 1.005077 0.000553 300
4 1600 0.1 Triangular 0.89679 0.000452 1600
5 2300 0.05 Uniform 0.978379 0.000255 2300
6 3100 0.2 Uniform 1.423807 0.000251 3100
7 4300 0.1 Normal 1.281347 0.000137 4300
8 5000 0.1 Uniform 1.281838 0.000113 5000

4 1 100 0.05 Uniform 0.823592 0.205642 100
2 300 0.05 Triangular 0.851191 0.108786 756
3 700 0.05 Normal 1.314344 0.098411 1631
4 1200 0.05 Triangular 1.460101 0.071344 2568
5 1200 0.05 Triangular 1.483042 0.032871 2796
6 3000 0.2 Uniform 1.459192 0.004294 3000

5 1 100 0.2 Normal 0.650902 0.067034 100
2 100 0.2 Normal 0.641669 0.067034 100
3 100 0.2 Normal 0.626987 0.037649 116
4 300 0.2 Normal 0.613758 0.034384 300
5 400 0.2 Normal 0.509807 0.006428 400
6 1500 0.2 Uniform 0.61886 0.002714 1500
7 1600 0.1 Normal 0.6731 0.001377 1600
8 2900 0.1 Triangular 0.961669 0.0007 2900

6 1 100 0.2 Normal 0.62 0.289941 180
2 100 0.2 Normal 0.62 0.005917 260
3 300 0.2 Normal 0.62 0.000657 540
4 1600 0.1 Normal 0.52 9.25E�05 3040
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suggested by Ang et al. [19]. Hence, it is not necessary that a sen-
sitivity parameter of 0.5 give optimal performance for AIS.

For AIS:MCMC a triangular pdf should be used as the proposal
pdf whose standard deviation should be below 1 for low computa-
tional efforts and vice versa. From Tables A4 of the Appendix, it can
be seen that this increase of standard deviation takes place with
the increase in the number of failed samples used to construct
the kernel sampling density. For lower number of failed samples,
one would want to reduce the number of repetitions in a Markov
chain (i.e., generate more unique samples) to ensure that a greater
area of the vector space is spanned to improve the kernel sampling
density.
4.3.6. Problem 6: Time dependent reliability problem
We finally arrive at a first passage problem of structural

dynamics where the basic variable space, if discretized, runs into
thousands (1500 in this case). The random variables are the
sequence of i.i.d. standard normal random variables that generate
the white noise inputs as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pS=Dt

p
Xk (where Xk are the elements

of the random vector and Dt are time steps for the analysis). The
linear oscillator is observed for 30 s with time steps of 0.02 s. Fail-
ure is defined as the event when the displacement at any time
instant crosses a certain threshold for the first time (in this case
1.75). IS and its variants clearly fail for this problem as can be
seen from the corresponding degenerate points in Fig. 13. The



Table A3
Values of design variables and objective functions for AIS.

Problem
number

Point
number

Number of samples for kernel sampling density
generation

Number of samples generated from
kernel sampling density

Sensitivity
parameter

Error Effort

1 1 1 1754 0.495159 0.001189 994095.6
2 2 3175 0.455696 0.000271 1001908
3 1 2527 0.498147 0.000258 1417061
4 1 2486 0.495926 0.000179 2187198
5 1 2549 0.4984 0.000152 2836061
6 1 8767 0.542907 0.000126 4122489
7 2 2309 0.49574 8.25E�05 4594386
8 2 2438 0.498233 5.31E�05 5406590
9 4 8458 0.521331 2.34E�05 6406349

10 6 7757 0.484378 3.01E�06 21868249

2 1 8 41 0.477386 0.406244 339
2 6 127 0.480078 0.160165 473.8
3 10 48 0.477212 0.056981 482
4 10 80 0.481278 0.022536 577.2
5 10 100 0.481418 0.016065 796.4
6 13 353 0.524966 0.008915 1096
7 27 262 0.5427 0.004318 1637
8 15 844 0.528552 0.002363 1720.6
9 42 1484 0.45 0.002188 3915.8

10 89 923 0.477736 0.000792 6107.8
11 69 3487 0.506608 0.000536 7152.4
12 78 5291 0.500398 8.98E�05 9877

3 1 17 13 0.519378 0.140463 142.6
2 17 10 0.468221 0.128509 143.8
3 17 10 0.520771 0.018054 152
4 18 13 0.469296 0.014444 186
5 20 12 0.519432 0.011595 203
6 15 87 0.47435 0.009523 220.8
7 19 91 0.519443 0.006733 247.6
8 18 79 0.52077 0.005487 249
9 17 101 0.469268 0.004893 249.2

10 17 201 0.469833 0.002062 353
11 19 213 0.521014 0.000915 402.2
12 49 489 0.481898 0.000147 889.8
13 65 1947 0.46832 0.000105 2572.2
14 69 4679 0.486744 0.000102 5356.2
15 70 4771 0.48723 6.37E�05 5392.8
16 70 4985 0.487799 5.56E�05 5662.2
17 70 5143 0.487213 3.03E�05 5775.2
18 75 8467 0.475199 2.6E�05 9150.4
19 82 10000 0.473872 2.58E�05 10712.8

4 1 2 3244 0.471599 0.003579 5409.6
2 2 3575 0.475496 0.001702 7383.8
3 1 3469 0.475488 0.000771 7397.4
4 2 5345 0.457016 0.000658 10511.2
5 3 5276 0.452708 0.000547 11994
6 2 7748 0.504669 0.00034 16645.4
7 7 6714 0.523636 0.000324 34428.2
8 7 6662 0.525295 0.000248 35813
9 7 6607 0.525145 4.34E�05 38764.8

5 1 20 698 0.537781 0.01699 1794.6
2 20 853 0.540744 0.003097 1844.6
3 20 845 0.537249 0.002032 1988.6
4 35 1646 0.472218 0.001455 3578
5 35 1646 0.498262 0.00106 3795.4
6 65 2671 0.502838 0.00096 6302.6
7 67 2448 0.503155 0.000504 6374.2
8 36 7263 0.533459 0.000436 9369.4
9 90 7912 0.497429 0.000238 13645
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deficiencies in IS and its variants when solving problems of high
dimensions are discussed by Au and Beck [21]. For SS:MCMC it is
evident that the proposal pdf in this case should be a normal dis-
tribution. Also the conditional probability should be set at 0.2 for
lower computational efforts. In case of a high computational
effort requirement the conditional probability should be taken
as 0.1.
5. Summary and conclusions

A new way of looking at the error versus efficiency issue for
simulation techniques in structural reliability has been presented.
A Multi-objective Stochastic Optimization (MOSO) problem is for-
mulated using expected values of error and computational effort as
objective functions. The design variables used are parameters of



Table A4
Values of design variables and objective functions for AIS:MCMC.

Problem
number

Point
number

Number of samples for
kernel sampling
density generation

Number of samples
generated from kernel
sampling density

Sensitivity
parameter

Type of
proposal
pdf

Standard
deviation of
the proposal
pdf

Assumed initial point for
MCMC

Error Effort

1 1 1 10 0.497854 Normal 1.099332 6.86 0.923874 11
2 2 10 0.502367 Normal 1.121369 6.87 0.801141 12
3 4 10 0.493516 Normal 1.114545 6.85 0.664555 14
4 8 10 0.49388 Normal 1.125594 6.30 0.621683 18

2 1 17 10 0.456592 Triangular 0.839965 (4.58, 6.3) 0.524513 27
2 20 10 0.456186 Triangular 0.836154 (4.58, 6.32) 0.356476 30
3 25 10 0.451716 Triangular 0.839121 (4.64, 6.27) 0.026809 35
4 63 98 0.515117 Triangular 1.5 (5.97, 5.09) 0.015538 161
5 64 109 0.515476 Triangular 1.5 (5.97, 5.12) 0.004526 173
6 91 179 0.504567 Normal 0.533679 (3.33, 2.85) 0.001177 270
7 75 325 0.500033 Normal 1.034882 (4.87, 6.29) 0.001019 400
8 65 469 0.464899 Normal 1.402708 (8.44, 8.96) 0.000766 534

3 1 13 10 0.543481 Uniform 0.824508 (7.17, 7.13) 0.945733 23
2 14 15 0.542285 Uniform 0.816165 (7.15, 7.13) 0.831238 29
3 15 15 0.548042 Uniform 0.839965 (7.31, 6.98) 0.803506 30
4 18 15 0.541784 Uniform 0.816347 (7.11, 7.11) 0.693503 33
5 35 10 0.520045 Triangular 0.952588 (5.41, 2.6) 0.360405 45
6 38 10 0.519675 Triangular 0.952421 (5.27, 2.63) 0.254229 48
7 36 26 0.526319 Triangular 0.949296 (5.44, 2.92) 0.249605 62
8 37 28 0.525093 Triangular 0.947111 (5.44, 2.88) 0.174339 65
9 62 232 0.455829 Triangular 0.744231 (8.9, 9.44) 0.14108 294

10 50 322 0.47015 Triangular 1.473298 (9.79, 2.6) 0.066579 372
11 100 433 0.539711 Normal 0.77086 (4.99, 8.86) 0.04905 533

4 1 35 35 0.484946 Triangular 0.815037 (0.52, 40.13) 1 70
2 91 148 0.467082 Uniform 1.302877 (0.96, 47.37) 0.849952 239
3 81 509 0.53318 Uniform 0.909355 (0.65, 18.72) 0.372748 590
4 80 515 0.537693 Uniform 0.907958 (0.62, 18.01) 0.368427 595
5 81 526 0.533194 Uniform 0.907719 (0.62, 18.59) 0.322966 607
6 81 532 0.533252 Uniform 0.904696 (0.61, 13.04) 0.230746 613
7 77 557 0.532677 Uniform 0.908145 (0.59, 13.33) 0.056 634
8 79 556 0.533167 Uniform 0.90798 (0.61, 13.43) 0.042022 635
9 81 557 0.532988 Uniform 0.905341 (0.61, 13.52) 0.026955 638

10 81 559 0.53284 Uniform 0.904649 (0.61, 12.92) 0.014285 640

5 1 11 10 0.538267 Triangular 0.5 (0.5, 0.58, 0.69, 0.35, 0.12,
0.7, 0.6, 0.6, 0.7, 0.69,
2.19)

0.902056 21

2 13 10 0.531761 Triangular 0.632347 (0.63, 0.55, 0.7, 0.32, 0.16,
0.66, 0.6, 0.56, 0.69, 0.74,
2.13)

0.805914 23

3 17 13 0.537631 Triangular 0.568914 (0.57, 0.57, 0.69, 0.33,
0.13, �.7, 0.59, 0.57, 0.72,
0.68, 2.13)

0.748286 30

4 18 13 0.535769 Triangular 0.554731 (0.55, 0.57, 0.69, 0.33,
0.13, 0.7, 0.58, 0.59, 0.71,
0.67, 2.13)

0.710108 31

5 20 12 0.540452 Triangular 0.596323 (0.59, 0.6, 0.7, 0.33, 0.13,
0.7, 0.6, 0.55, 0.71, 0.68,
2.15)

0.693119 32

6 17 25 0.541125 Triangular 0.578445 (0.58, 0.56, 0.71, 0.33,
0.11, 0.71, 0.62, 0.54,
0.69, 0.71, 2.13)

0.379753 42

7 69 17 0.478137 Triangular 1.164186 (1.16, 0.58, 0.78, 0.54, 0.2,
0.14, 0.9, 0.04, 0.09, 0.53,
2.41)

0.225309 86

8 69 20 0.475102 Triangular 1.165157 (1.16, 0.59, 0.77, 0.48, 0.2,
0.15, 0.88, 0.04, 0.09,
0.52, 2.4)

0.188291 89

9 75 17 0.4784 Triangular 1.156858 (1.15, 0.58, 0.77, 0.53,
0.21, 0.15, 0.86, 0.04,
0.09, 0.52, 2.43, 0.14)

0.143223 92

10 82 128 0.526842 Triangular 1.314675 (1.31, 0.41, 0.78, 0.98,
0.45, 0.03, 0.54, 0.92,
0.99, 0.4, 3.79, 0.06)

0.064399 210

11 82 130 0.523807 Triangular 1.315647 (1.31, 0.42, 0.78, 0.92,
0.45, 0.04, 0.51, 0.92,
0.99, 0.4, 3.79, 0.06)

0.060582 212

12 84 130 0.522786 Triangular 1.345572 (1.34, 0.41, 0.77, 0.93,
0.45, 0.04, 0.51, 0.92,
0.97, 0.43, 3.81, 0.04)

0.040614 214
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Table A4 (continued)

Problem
number

Point
number

Number of samples for
kernel sampling
density generation

Number of samples
generated from kernel
sampling density

Sensitivity
parameter

Type of
proposal
pdf

Standard
deviation of
the proposal
pdf

Assumed initial point for
MCMC

Error Effort

13 50 358 0.451978 Triangular 1.009265 (1, 0.89, 0.62, 0.68, 0.61,
0.31, 0.13, 0.6, 0.37, 0.92,
2.62, 0.03)

0.037842 408

14 93 460 0.502359 Triangular 1.442365 (1.44, 0.06, 0.53, 0.02,
0.67, 0.81, 0.45, 0.46,
0.31, 0.07, 4.88, 0.03)

0.031869 553

15 94 480 0.502483 Triangular 1.456185 (1.45, 0.04, 0.53, 0.03,
0.69, 0.81, 0.42, 0.46,
0.31, 0.09, 4.76, 0)

0.008399 574

16 46 639 0.519284 Triangular 1.399366 (1.39, 0.28, 0.59, 0.63,
0.11, 0.95, 0.69, 0.93,
0.22, 0.46, 2.41, 0)

0.005959 685

Table A5
Values of error and effort of MCS.

Problem number Point number Error Effort

1 1 1 100000
2 0.091379 1000000
3 0.034637 10000000

2 1 0.183673 100
2 0.00907 1000
3 0.005102 10000
4 1.84E�05 100000

3 1 0.027672 100
2 0.000132 1000
3 1.77E�05 10000
4 6.18E�06 100000

4 1 1.493827 1000
2 0.197531 10000
3 0.003086 100000
4 0.002844 1000000
5 6.05E�05 10000000

5 1 0.26538108 100
2 0.008264463 1000
3 9.40312E�05 10000
4 1.46924E�06 100000

6 1 1 100
2 0.1479 1000
3 0.04 10000
4 0.0286 100000
5 0.0189 1000000
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the algorithm that in previous research have been shown to affect
the performance of the algorithms; as such they are variously of
continuous, discrete and categorial types and the multiobjective
problem has been solved using Genetic Algorithms.

We have considered four variance reducing algorithms in this
work: subset simulations with MCMC moves (SS:MCMC), Impor-
tance Sampling (IS), Adaptive Importance Sampling (AIS) and AIS
with MCMC moves (AIS:MCMC) and have applied them to six dif-
ferent types of reliability problems of increasing complexity. Par-
eto sets produced by the four algorithms for each problem along
with the optimal design variables for each Pareto point have been
obtained. These Pareto sets provide insight into which algorithm
should be used for different reliability problems and what the best
attainable performance is from a given algorithm for a given class
of reliability problem. Suggestions about the design parameters for
each algorithm have also been made to attain optimal computa-
tional effort and accuracy for each class of problem.

Table 4 summarizes the general conclusions from this work. In
addition, the common knowledge that IS is the best algorithm for
solving simple problems as long as the limit state is not concave
has been reinforced. AIS requires a very high computational effort
when the failure probability estimate is very low suggesting that
its application should be limited to problems with relatively high
failure probability. The advantage of SS:MCMC is realized while
solving high dimensional reliability problems as in structural
dynamics and for such problems the Pareto set for IS and its vari-
ants become degenerate.

The proposed approach is able to capture the limits of perfor-
mance for each algorithm for the class of problems considered in
this work. This work will be extended to complex dynamic systems
and other recent methods. The vast information that one can
acquire about the performance of a variance reducing algorithm
along with the corresponding design parameters from this
approach, will be crucial in deciding the best approach for solving
a given reliability problem when the user is constrained by the
available computational resources.
Appendix .

(See Tables A1–A5.)
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