
1 INTRODUCTION 
 
The study of bridges subjected to vehicle loads is a 
problem of interest to bridge engineers. A substan-
tial body of research has looked into understanding 
the behavior of bridges under vehicular and train 
loads (Hino et al. 1985, Fryba 2001, Marur 2001 
Garinei2006, Kim & Kawatani 2006, Zribi et al.  
2006).The effects of dynamic stresses are generally 
taken into account in an empirical  manner for the 
design of bridges (Wang & Huang 1992, Wiriyachai 
et al. 1982, Inbanathan & Weiland 1987, Palamas et 
al. 1995). Bridge codes specify impact factors that 
amplify the static responses of a structure and at-
tempt to account for the additional stresses resulting 
from forces acting dynamically. The impact factors 
vary depending upon the type of bridge and the 
range of loading and are given by empirical formu-
las (Wiriyachai et al. 1982, Inbanathan & Weiland 
1987).  

The effect of surface roughness can be significant 
on the response of a bridge and studies have shown 
(Wang & Huang 1992, Wiriyachai et al. 1982, 
Inbanathan & Weiland 1987, Law & Zhu 2005) that 
on considering the effect of surface roughness values 
of impact factors increased two to three times the 
original value. The impact on the bridge also in-
creases with vehicle velocity. Vehicle mass has a 
significant effect on the response of a bridge when 

either vehicle speed or the ratios of vehicular mass 
to total bridge mass is high (Palamas et al. 1995). A 
comprehensive study of the dynamics of railway 
bridges was undertaken by Fryba (2001). He studied 
resonance vibrations of a bridge, using the Euler-
Bernoulli beam equation, and proposed relations be-
tween resonance amplitude and various geometrical 
and material properties of the bridge and the vehicle. 
Fryba’s work on vibrations of solids helped form the 
basis of any studies related to vibration of bridges 
under vehicular loads.  

This paper deals with the reliability analysis of a 
beam subjected to vehicle structure interactive forc-
es and random earthquake loads. This stochastic dy-
namic system gives rise to a reliability problem of 
very high dimensions and very low failure probabil-
ity. This poses a problem for analytical reliability 
analysis techniques and also the very robust brute 
force Monte Carlo simulation. Subset simulation is 
used in this study as a tool for estimation of reliabil-
ity. This paper includes sensitivity studies of relia-
bility of the bridge with respect to parameters as-
sumed to be random. To reduce the computational 
effort these studies shed light on the necessities of 
the parameters to be taken as random. The necessity 
of random field modeling of surface irregularities is 
also looked at. The non linear interaction between 
vehicle structure interaction and seismic loading is 
demonstrated in terms of failure probability. 
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ABSTRACT: This paper presents a reliability analysis of a simply supported bridge deck subjected to random 
moving and seismic loads. Vehicle structure interactions effects are taken into account, which are affected by 
vehicle speed, vehicle and bridge masses, deck surface irregularities and material and geometric properties of 
the bridge all of which could be random in nature. The random field modeling of the bridge surface roughness 
and the stochastic process modeling of non-stationary seismic loads result in a reliability problem of very 
high dimensions and typically low probability of failure. Subset simulation incorporating Markov Chain 
Monte Carlo moves is adopted in this study for the reliability analysis. The bridge is modeled as a single span 
simply supported Euler-Bernoulli beam and the vehicle is modeled as a SDOF system. Mid span deflection of 
the beam is computed using method of weighted residual and is used as the performance criteria. 
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Figure 1: The model of bridge and vehicle system that is used in the current study (only one vehicle is shown here) 

2  VEHICLE STRUCTURE INTERACTION 
 
Vehicle structure interaction problems have govern-
ing equations that have time varying coefficients. 
The moving mass generates inertial forces that make 
the coefficients of the governing equation time de-
pendent (Fryba 2001, Nasrellah & Manohar 2010).In 
such cases the notion of normal modes and natural 
frequencies are invalid. In addition to this closed 
form solutions cannot be obtained. 
   The bridge is assumed to be a single span simply 
supported homogeneous Euler- Bernoulli beam of 
uniform cross section and mass. The vehicles are as-
sumed to be SDOF systems. The moving oscillator 
mass is divided into two parts- the sprung mass and 
the un-sprung mass. It is also assumed that the mov-
ing oscillator never lose contact with the beam. The 
beam oscillator system that is used for the current 
study is shown in Figure 1. It is assumed that the 
ground movement produces motion in the vertical 
direction only and acts only at the supports. It is also 
assumed that there is no phase difference between 
the vibrations produced at the two supports. This is a 
safe assumption as the length of the beam is quite 
small and hence it can be assumed that the travelling 
waves reach the supports at the same time.  
   Let y(x,t) be the beam displacement in the vertical 
direction at location x and time t, and let ( )vy t  be 
the displacement of the sprung mass in the vertical 
direction at its current location.  Let r(x) be the sur-
face roughness of the beam.  The motion of the ve-
hicles in the vertical direction is given by: 
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Where, ( )n
vC and ( )n

vK are the coefficient of damping 
and the spring constant of the oscillators respective-
ly (‘n’ represents oscillator number). ( )nt  represents 
the time between entry time of current oscillator and 
of the first oscillator on the beam ( ( ) 0nt  for n=1). 
The governing equation of the beam vibration is 
given by: 

  ( ) ( )

( )

( , ) ( , ) ( , )

( , )

IV

n n

n

EIy x t my x t Cy x t
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  

 
 

 (2)

E , I , m and C are the modulus of elasticity, the 
moment of inertia, mass per unit length and the coef-
ficient of damping per unit length respectively. The 
RHS defines the reaction force per unit length acting 
on the beam due to the oscillators moving over it.  

 
2
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( ) ( )
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( , ) ( ) ( , ) ( )
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 (3) 

The boundary conditions and initial conditions for 
the above system are as follows: 
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1

2

Boundary Conditions:
(0, ) ( )  and  (0, ) 0
( , ) ( )  and  ( , ) 0

Initial Conditions:
( ,0) 0 and ( ,0) 0

y t u t EIy t
y L t u t EIy L t

y x y x

 
 
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  (4) 

Let the solution to the beam deflection be of the 
form: 

1 2
1
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N

i i
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L L



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  (5) 

( )i x are the mode shapes of vibration of the beam. 
( )ia t are the time dependent amplitude. 1( )u t and 

2 ( )u t are the displacement due to earthquake at the 
supports. These terms are included in the solution so 
that boundary conditions for a simply supported 
condition can be incorporated. For simplicity, in the 
current study we have assumed 1 2( ) ( ) ( )u t u t u t  .  

Putting in the boundary conditions associated 
with a simply supported beam, the above system of 
equation reduces to 
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Where the terms in the matrix are defined as fol-
lows: 
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vN is the number of oscillators passing over the 
beam. When the beam vibrates there is an inertial ef-
fect of the mass in the vertical direction as well. This 
adds to the force acting in the vertical direction and 
hence gives rise to equation of time varying coeffi-
cients in Eq. (6). This type of a problem cannot be 
solved analytically and no closed form solution ex-
ists for the given set of equations. Numerical meth-
ods of integration are used to solve this system of 
differential equations. 

3 TIME DEPENDENT STRUCTURAL 
RELIABILITY 

 
In the present study we are dealing with a dynamics 
problem involving an extended structural system. 
Thus the general formulation of the limit state is in-
finite dimensional both in time and space and the re-
liability function is given by: 
      ( ) , , , 0, ,rel t P C x D x t x         
 (7) 

 Where,   is the spatial domain of the structure, C 
and D are capacity and demand at time instant  and 
location x. 
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For solving such problems it is necessary to con-
vert the infinite dimensional problem to a problem 
of finite dimensions. Discretization of time into 
small intervals helps in reducing the dimension of 
the problem to a certain extent. Another way of re-
ducing the dimension is by simply removing the spa-
tial dimension from the problem by focusing on the 
capacity and demand terms at certain critical loca-
tions only.       

Simulation techniques like crude (or brute force) 
Monte Carlo Simulation are simple and robust. Even 
though the estimate of failure probability obtained 
from brute force Monte Carlo techniques is unbi-
ased, maintaining a low coefficient of variation 
comes at the cost of increasing the number of simu-
lations to an extent which makes the method ineffi-
cient. Various variance reduction techniques have 
been proposed to overcome the shortcomings of the 
Monte Carlo simulation technique, the most popular 
being importance sampling (Melchers 1999). For the 
method to be most effective one requires a priori 
knowledge of the behavior of the limit state which 
again is not always available.  

Au and Beck (2001) proposed subset simulation 
involving a series of nested limit states (for prob-
lems where such nesting is possible) that used a 
modified Metropolis Hastings algorithm (Au & 
Beck 2001,2003) for generating a sequence of con-
ditional samples. This algorithm can drastically re-
duce the computational effort required for a problem 
(with respect to crude Monte Carlo Simulation) 
however the estimates produced have very high co-
efficients of variation (c.o.v). The basic underlying 
principle in subset simulation is the expression of 
the probability of any given event F  as a product of 
a number of conditional probabilities involving nest-
ed sets 1 3 2 1, , , , ,n nF F F F F  . These sets are such that 

nF F  and 1 2 3 1n nF F F F F     Thus, 

1 2 1 3 2 1( ) ( ) ( | ) ( | ) ( | )n n nP F P F P F F P F F P F F    (8) 

Sets 1 3 2 1, , , , ,n nF F F F F    can be so chosen as to 
make values of 1( )P F , 2 1( | )P F F  , , 1( | )n nP F F   
sufficiently large compared to ( )nP F , and their 
product yields the desired result which presumably 
is very small. 

The probability of exceeding the first limit state, 
which can be computed using crude MCS as 1( )P F  
will be quite high after an appropriate selection of 
number of intermediate levels. If the original pdf of 
the vector x  is ( )f x , then the conditional pdf from 
which the new random variables will be generated, 
to populate the intermediate failure levels, will be of 
the form ( | )if x F . Markov chain MCS is used for 

generation of samples at intermediate failure sets. 
The Markov chain Monte Carlo simulation is done 
using a modified Metropolis Hastings algorithm 
proposed by the authors (Au & Beck 2001, Au & 
Beck 2003, Au et al.2007). A sample having a con-
ditional distribution (. | )if F  can be considered to be 
a state of a Markov chain. Using the algorithm we 
can then generate a new sample as the next sample 
which will be distributed as (. | )if F . This assump-
tion was made by the authors based on the fact that 
the initial sample taken for generation of the Markov 
chains was part of the failure region upon which the 
target distribution is conditioned, hence the Markov 
chain follows the target distribution. Thus there are 
no issues associated with burn-in of the Markov 
Chain. A more pressing issue is that the length of the 
Markov chain generated is quite small (for longer 
Markov Chains larger number of samples is required 
which will defeat the purpose of using this tech-
nique) and hence sometimes may not sufficiently 
populate the variable space at the intermediate lev-
els.      

For the current study we have used subset simula-
tion with Markov chain Monte Carlo simulation (Au 
& Beck 2001, Au & Beck 2003, Au et al.2007). The 
steps involved in the process are: 

1. Generate
0N  samples using the distributions 

of each random variable 
2. Get the number of samples that exceed the 

first intermediate limit state, 1n . 
Get 1 1( )P F n N  

3. Using these
1n  samples as seeds, generate 1N  

samples using the MH Algorithm 
4. Set 2k   and repeat till the final ( n th) limit 

state is reached (that is, k n ): 
 Get kn  as the number of samples that ex-

ceed the k th intermediate limit state 
 Get 1 1( | )k k k kP F F n N   
 Use kn samples as seeds, generate kN sam-

ples using the MH Algorithm 
 Set 1k k   

5. Get 1 2 1 3 2 1( ) ( ) ( | ) ( | ) ( | )n n nP F P F P F F P F F P F F   

In step 4 the Metropolis-Hastings algorithm can 
be further divided into the following steps. It in-
volves generation of the ( 1)k  th state of the system 
using the k th state (Au & Beck 2001, Au & Beck 
2003, Au et al.2007): 

a) Generate a trial sample  centered at ( )kx  
b) For each member j of the n-dimensional 

vector  : 
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 Get, ( )( ) ( )k
x j x jr f f x , where xf is 

the distribution of the random varia-
ble x  

 Assign ( 1) ( )k k
j jx x   with the probabil-

ity  1 min( ,1)r  

 Assign ( 1)k
j jx   with the probability 

min( ,1)r  
c) If  does not lie in kF , assign ( 1) ( )k kx x   
d) Using, ( 1)kx   generate ( 2)kx  and so on, until 

the required number of samples are generat-
ed. 

In order to generate the trial sample  centered 
at ( )kx as mentioned in the first step of the algorithm 
one needs to use a proposal pdf which has the sym-
metry property expressed as  ( ) ( )| ( | )k kf x f x  . 
This ensures that the transition probability is high 
and hence the target stationary distribution is at-
tained faster. 

4 GENERATION OF RANDOM SEISMIC LOAD 
SURFACE IRREGULARITIES 

Synthetic earthquake records are generated for the 
current study using the power spectral density pro-
posed by Kanai-Tajimi (Fan & Ahmadi 1990). The 
Kanai-Tajimi power spectral density (PSD) is: 

4 2 2 2

2 2 2 2 2 2

( 4 )
( )

( ) 4
g g g

g g g

S I
   


    




 
 (9) 

g  and g  are soil constants based on soil proper-
ties. I  is the constant spectral density of the white 
noise excitation at the bedrock level.  

The PSD is filtered by another function ( )H  to 
remove the low frequency content from the resulting 
stationary waves generated.  

 
 

2
2

2
2 2

2

/
( )

1 / 2 /

( ) ( )

h
i

H h

 


   

 


   



 (10) 

From this PSD a stationary Gaussian stochastic 
process ( )X t  with zero mean is generated as a Fou-
rier series. The coefficients of the series are random 
variables with zero mean. The stationary wave is 
then filtered using an envelope function (Shinozuka 
& Sato 1967)  

( ) ( ) ( )u t e t X t  (11) 

Where, 0( ) ( )t te t A e e      

   The surface irregularities are also modeled as sto-
chastic processes (in space). The PSD used in this 
case for generation of stationary Gaussian random 
process is given by Dodds and Robson (Palamas et 
al. 1995). 

2

0

( ) rS A 



 

  
 

 (12) 

This power spectral density is the most widely 
used one for generation of surface roughness of 
roads as random field (Au et al. 2001, Silva 2004, 
Law and Zhu 2005). The road surface profile is gen-
erated using Fourier series in a similar way as the 
synthetic earthquake records are generated.  

5 NUMERICAL STUDIES 

The random variables associated with the problem 
are the oscillator mass, oscillator damping ratio, os-
cillator stiffness, modulus of elasticity and moment 
of inertia of the beam, and the time taken by the os-
cillator to traverse the beam. The time at which the 
first oscillator enters the beam is 0t  . The time at 
which the earthquake starts with respect to the entry 
time of the first oscillator is also treated as random. 
This helps in generalizing the problem and ensures 
that we are not looking at any special case. The oth-
er random variables are the surface roughness coef-
ficient and the intensity term of the Kanai-Tajimi 
PSD. The intensity term is responsible for the varia-
tion of magnitude of the earthquake. When two os-
cillators are considered the mass, stiffness and 
damping of that oscillator are taken to be random as 
well. It is assumed that the second oscillator travels 
with the same velocity as the first. The time differ-
ence between the two oscillators is taken to be ran-
dom as well. The random variables associated with 
the problem and their definitions are given in Table 
1. 
 
Table 1: Basic variables 

Random Variable Description 

Modulus of elas-
ticity of bridge ( E ) 

 62.87 10 ,5%LN kPa  

Moment of inertia 
of bridge ( I ) 

 42.9 ,10%N m  

Vehicle mass 
( vm ) 

 60 ,15%LN t  

Time at which 
earthquake starts ( et ) 

 3 ,3U s s  
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Time taken by ve-
hicle to travel over the 
bridge ( tt ) 

 2.5 ,1Wald s s  

Vehicle stiffness 
( vK ) 

 1595 / ,10%N kN m  

Damping ratio of 
vehicle 

 0%,8%U  

Surface Roughness 
coefficient ( rA ) 

 6 65 10 ,80 10U   
 

Intensity of Kanai-
Tajimi PSD ( I ) 

 0.005,0.002LN
 

Time between two 
vehicles 

 0.5s,1.5sU
 

The uniform mass density of the beam is 2303 
kg/m and is 25 m long. Coefficient of damping per 
unit length is assumed to be 3000  N-s/m-m. The ra-
tio of the sprung mass to the un-sprung mass is 3 :1.  

The constants used for the various constants in-
volving the generation of random processes defining 
both acceleration due to ground motion and surface 
irregularity are given in Table 2 

 
Table 2: Constants used in the current study  

Constants Values 

 
Constants for Kanai-Tajimi 

PSD: 

 

g   0.6  

g  8  rad/s  

 
Constants for correction of 

Kanai-Tajimi PSD: 

 

  0.6  

2  5 rad/s  
 
Constants for modulating func-

tion of the ground accelerations: 

 

0A  4  
  0.1  
  0.4  
 
Constants for road roughness 

PSD: 

 

0 (Discontinuity frequency) 0.5  /m  

 
Reliability analysis of the beam in the current 

study is based on a single time dependent limit state 
that the mid-span deflection under seismic and ve-
hicular loads does not exceed a serviceable limit, 0 
This definition considerably reduces the dimension-
ality of the reliability problem by removing the spa-

tial aspect so that one just has to deal with the tem-
poral nature of the limit state.  

As reviewed by Bhattacharya et al. (2009), a cer-
tain amount of subjectivity exists in the definition of 
deflection limits for bridge decks and girders – both 
in collapse and serviceability limit states. Roeder et 
al. (2002) concluded that deformations that cause 
bridge damage are relative deflections between adja-
cent girder members, local rotations and defor-
mations.  One of the earliest deformation based fail-
ure definition for bridges was based on avoiding the 
undesirable structural effects and undesirable psy-
chological reaction (ASCE 1958) and a limit of 
span/800 for steel bridges (simple as well as contin-
uous spans) under live load plus impact was sug-
gested.  Based on “the limit of visual observation”, 
Galambos et al. (1993) proposed using a maximum 
permanent or residual deflection equal to span /300 
as serviceability limit state in bridge inelastic rating.  
Ghosn and Moses (1998) considered span/100 as 
“dangerously high levels” of deformation.    In this 
paper, the allowable deflection 0 is assumed to be 

350L  (where L is the effective span of the beam) 
since this study is limited to linear domain for both 
stresses and deflections. 

For the subset simulation algorithm the interme-
diate conditional failure probability is taken as 0.1. 
The number of intermediate failure levels is generat-
ed adaptively based on this conditional failure prob-
ability (Au & Beck 2001). The final number of lev-
els gets adjusted based on the estimate of failure 
probability. The proposal pdf for each basic variable 
was taken as Gaussian with standard deviation the 
same as in the original distribution. To begin with, 
we assumed only one oscillator passes over the 
beam. The number of samples generated at each in-
termediate failure level is 100. All coding has been 
done in MATLAB 7.6.0. A desktop PC (2.67 GHz, 
1.98 GB RAM) was used for all the computations. 

For studying the variance in the estimated failure 
probability, ˆ

fP , we computed the failure probability 
estimate N=20 times. The mean, coefficient of varia-
tion (c.o.v.) and the range of the estimates are given 
in each case in Table 3  

 2

,,

1 1

ˆˆ ˆ ˆˆˆ , , c.o.v. ˆ1

N N f if i

i i

PP
S

N N S

 
 


  

  (13) 

The first row of Table 3 lists the mean, c.o.v and 
range of the 20 estimated failure probabilities when 
all 109 basic variables are assumed to be random. 
The average failure probability estimate ̂  is 
0.0105. 
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Table 3: Reliability estimates using 100 samples at each failure level of subset simulation 

Randomness considered in  Mean Proba-
bility of fail-

ure, ̂  

c.o.v min and max Pf Ratio of ̂ with 
respect to all 
random case 

Range of the 
number of 
samples 

All 0.0105 0.0493 0.0011,0.03 1 100-190 
All except I 0.0091 0.1021 0.0009,0.02 1.15 100-280 
All except Damping ratio 0.0135 0.4940 0.001,0.04 0.77 100-190 
All except Ar 0.0129 0.5945 0.001,0.03 0.81 100-190 
All except Road profile 0.0104 0.0376 0.0016,0.03 1.01 100-190 
All except Kv 0.0101 2.0155 0.0004,0.03 1.04 100-280 

 
Table 4: Effect of combination of seismic loads and vehicle 
loads on reliability 

Combination considered Mean probability of 
failure 

Seismic load + one oscillator 
load 

0.0105 

Seismic load + two oscillator 
load 

0.0120 

Only two oscillators 0.0378 
Only one oscillator load 5.63 e-4 
Only Seismic load 3.997e -6 

 
The subsequent rows of Table 3 correspond to the 
cases when one basic variable at a time (as indicated 
in the first column) is taken to be deterministic (at its 
mean value). The fifth row of Table 3 lists the case 
where the surface roughness is not taken as a ran-
dom field. For this case the roughness coefficient is 
deterministic and equal to 642.5 10 . The last col-
umn of the table gives an idea of the sensitivity of 
the probability of failure to each basic variable.  
Clearly, earthquake intensity, damping ratio and sur-
face roughness have the most influence on reliabil-
ity. Conversely, when the beam surface profile is 
considered deterministic, the estimated mean proba-
bility of failure hardly changes from the all random 
case. Hence modeling the surface roughness as a 
random field may not be necessary: in this case the 
dimension of the problem will reduce by 20. When 
two oscillators are considered to be passing over the 
beam subjected to seismic loading the mean failure 
probability estimate is 0.0120 (Table 4). If the time 
difference between the two oscillators is made de-
terministic then the failure probability estimate goes 
down to 0.0093. This shows that it is important to 
model the time difference as a random quantity. Ta-
ble 4 shows the values when five different cases are 
studied. It can clearly be seen that individually the 
mean probability of failure of the beam subjected to 
seismic loads and moving oscillator loads (only one 
oscillator) is very small. However when the com-
bined effects (seismic load + one oscillator load) are 
studied the probability of failure increases drastical-
ly. Hence even though the two events (oscillator 
moving over the beam and earthquake occurring) are 

mutually exclusive events their combined probabil-
ity of failure does not directly reflect that. The prob-
ability of failure when only two oscillators are pass-
ing over the beam is almost three times the failure 
estimate when seismic loads are combined with the 
two oscillators passing over the beam. One may 
conclude that the seismic load has a balancing effect 
when two oscillators pass over the beam. However 
this seems unlikely. This fact might be supported by 
the high c.o.v of the estimate obtained (almost 50%). 
There is a slight increase in the failure probability 
when two oscillators are taken in case of one oscilla-
tor. This can be explained based on the fact that the 
load acting on the beam has increased.  

6 CONCLUSIONS 

The current study demonstrated Subset Simulation 
with Markov Chain Monte Carlo moves as an effi-
cient method for reliability analysis of a problem in 
high dimensions and low failure probability. A beam 
subjected to vehicle structure interaction (vehicle 
modeled as a SDOF oscillator) and seismic loads 
was adopted as the model system resulting in a reli-
ability analysis problem with 109 (for single vehi-
cle) and 113 (for two vehicles) random variables. 
Sensitivity studies showed that it is necessary to 
model the earthquake intensity, damping ratio and 
stiffness of the oscillator and the coefficient of 
roughness as random variables. Treating them as de-
terministic would affect the computed reliability of 
the bridge. Modeling the surface roughness as a ran-
dom field may not be necessary as it had negligible 
effect on reliability and would help in reducing the 
dimension of the reliability problem, in this case by 
20. The current study dealt with two types of load 
cases whose occurrence are mutually independent 
namely vehicle structure interaction forces and ran-
dom seismic loads. The failure probabilities under 
each load case (seismic loading and single oscillator 
load) separately were quite low. However when the-
se two loads acted simultaneously the failure proba-
bility was disproportionately high suggesting an am-
plification caused by vehicle earthquake interaction. 
The current study was confined to a linear structural 
analysis and future efforts should investigate the ef-
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fects of nonlinearities (both geometric and material). 
Future efforts should also evaluate the efficiency of 
schemes such as Hybrid Subset Simulation for this 
problem. 
 

7 ACKNOWLEDGEMENTS 

An earlier version of this work has been communi-
cated to International Journal of Engineering under 
Uncertainty: Hazards, Assessment and Mitigation. 

 
REFERENCES 
ASCE (1958). "Deflection limitations of bridges, progress re-

port of the Committee on Deflection Limitations of 
Bridges of the Structural Division." Journal of the Struc-
tural Division, ASCE 84(ST3). 

Au F.T.K. , Cheng  Y. S., Cheung  Y.K. (2001). "Effects of 
random road surface roughness and long-term deflection 
of prestressed concrete girder and cable-stayed bridges 
on impact due to moving vehicles." Computers and 
Structures 79(2001): 853-872. 

Au S.K., Beck J. L. (2001). "Estimation of small failure proba-
bilities in high dimensions by subset simulation." Proba-
bilistic Engineering Mechanics 16(2001): 263-277. 

Au S.K., Beck J. L. (2003). "Subset simulation and its applica-
tion to seismic risk based dynamica analysis." Journal of 
engineering Mechanics Division, ASCE (August 2003): 
901-917. 

Au S.K., Ching J., Beck J.L. (2007). "Application of subset 
simulation methods to reliability benchmark problems." 
Structural Safety 29(2007): 183-193. 

Bhattacharya, B., Q. Lu, Zhong J. (2009). "Reliability of Re-
dundant Ductile Structures with Uncertain System Fail-
ure Criteria: a Study on a Highway Steel Girder Bridge." 
Sadhana 34(6): 903-921. 

F-G. Fan, Ahmadi G. (1990). "Nonstationary Kanai-Tajimi 
models for El Centro 1940 and Mexico City 1985 earth-
quakes." Probabilistic Engineering Mechanics Vol. 5, 
No. 4. 

Fryba, L. (2001). "A rough assessment of railway bridges for 
high speed trains." Engineering Structures 23(2001): 
548-556. 

Galambos, T. V., Leon T. R., French C.W. (1993). Inelastic 
rating procedures for Steel Beam and Girder Bridges. 
Washington, DC, National Research Council, TRB. 

Garinei, A. (2006). "Vibrations of simple beam-like modelled 
bridge under harmonic moving loads." International 
Journal of engineering Science 44(2006): 778-787. 

Ghosn, M. and F. Moses (1998). Redundancy in highway 
bridge superstructures, Report 406. Washington, DC, 
Transportation Research Board. 

Hino J., Yoshimura T., Ananthanarayana N. (1985). "Vibration 
Analysis of non-linear Beams Subjected to a Moving 
Load using the Finite Element Method." Journal of 
Sound and Vibration 100(4): 477-491. 

Inbanathan M.J., Weiland M. (1987). "Bridge vibrations due to 
vehicle moving over rough surface." Journal of Structur-
al Engineering 113(9): 1994-2007. 

Katafygiotis L.S. , Cheung S. H. (2007). "Application of spher-
ical subset simulation method and auxiliary domain 
method on a benchmark reliability study." Structural 
Safety 29(2007): 194-207. 

Kim C.W., Kawatani M. (2006). "Effect of train dynamics on 
seismic response of steel monorail bridges under moder-
ate ground motion." Earthquake Engineering and Struc-
tural Dynamics 35: 1225-1245. 

Koutsourelakis P.S., Pradlwarter H. J., Schueller G.I. (2004). 
"Reliability of structures in high dimensions, part I: algo-
rithms and applications." Probabilistic Engineering Me-
chanics 19(2004): 409-417. 

Law S.S., Zhu X. Q. (2005). "Bridge dynamic responses due to 
road surface roughness and braking of vehicle." Journal 
of Sound and Vibration 282(2005): 805-830. 

Marur, S. R. (2001). "Advances in nonlinear vibration analysis 
of structures. Part-I. Beams." Sadhana Vol. 26, Part 
3(June 2001): 243-249. 

Melchers, R. E. (1999) “Structural Reliability Analysis and 
Prediction”, John Wiley & Sons. 

Nasrellah, H. A. and Manohar C.S. (2010). "A particle filtering 
approach for structural system identification in vehicle–
structureinteractionproblems." Journal of Sound and Vi-
bration. 

Palamas J., Coussy O., Bamberger Y. (1995). "Effects of sur-
face irregularities upon the dynamic response of bridges 
under suspended moving loads." Journal of Sound and 
Vibration 99(2): 235-245. 

Roeder, C. W., Barth K., Bergman A.(2002). Improved Live 
Load Deflection Criteria for Steel Bridges, TRB. 

Santoso A.M., Phoon K. K., Quek S.T. (2011). "Modified Me-
tropolis_Hastings algorithm with reduced chain correla-
tion for efficient subset simulation " Probabilistic Engi-
neering Mechanics 26(2011): 331-341. 

Shinozuka, M. and Sato, Y. (1967). "Simulation of 
Nonstationary Random Processes." Journal of Engi-
neering Mechanics Division, ASCE, Vol.93, No.EM1, 
pp. 11-40. 

Silva, J. G. S. d. (2004). "Dynamical performance of highway 
bridge decks with irregular pavement surface." Comput-
ers and Structures 82(2004): 871-881. 

Wang T., Huang D. (1992)"Cable-stayed bridge vibrattion due 
to road surface roughness." Journal of Structural Engi-
neering 118(5): 1354-1374. 

Wiriyachai A., Chu K. H., Garg V.K. (1982). "Bridge impact 
due to wheel and track irregularities." Journal of engi-
neering Mechanics Division, ASCE 108(EM4): 648-666. 

Zribi M. , Almutairi N. B., Abdel-Rohman  M. (2006). "Con-
trol of Vibrations due to Moving Loads on Suspension 
Bridges." Nonlinear Analysis: Modelling and Control 
Vol. 11, No. 3: 293-318. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

675

D
ow

nl
oa

de
d 

by
 [

In
di

an
 I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 K

H
A

R
A

G
PU

R
] 

at
 2

3:
47

 2
5 

N
ov

em
be

r 
20

16
 

http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.strusafe.2006.07.003
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.strusafe.2006.07.003
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2FS0022-460X%2885%2980002-X
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2FS0022-460X%2885%2980002-X
http://www.crcnetbase.com/action/showLinks?crossref=10.1061%2F%28ASCE%290733-9445%281987%29113%3A9%281994%29
http://www.crcnetbase.com/action/showLinks?crossref=10.1061%2F%28ASCE%290733-9445%281987%29113%3A9%281994%29
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.ijengsci.2006.04.013
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.ijengsci.2006.04.013

	Reliability of bridge deck subject to random vehicular and seismic loads through subset simulation



