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Abstract Existing Kalman filter-based parameter identification algorithms estimate the system parameters as
either sole states or a subset of augmented states. While the former approach requires the measurement to be
sufficiently clean, the latter is reported to have numerical stability issues. Since the parameters are estimated
in both these approaches in an optimal sense, in the presence of a significant variation in parameters (due
to damage), the estimates may often diverge. In this article, we propose an online health monitoring scheme
powered by dual extended Kalman filtering technique to simultaneously estimate the system parameters along
with the response states of a reduced-order system. To capacitate damage localization beyond sensor resolution,
the proposed method employs location-based structural properties as system parameter. This reduces the
dimensionality of the formulation from 4n2 elements in the state matrix to only a few physical parameters.
Unnecessary estimation of a large number of unmeasured response states has been avoided by employing the
system reduction technique and thus by describing the system using only measured DOFs. This in turn enables
estimating a poorly observed system as a fully observed one. Two numerical experiments are performed on
two degrading structures: an Euler–Bernoulli beam and a bridge truss to demonstrate the competency of the
algorithm with reduced-order models.

1 Introduction

To ensure safety and serviceability of the existing infrastructure systems, the current health of the structure
is necessary to be estimated frequently and any instance of damage should be reported without any delay.
This creates the requirement of online health monitoring of important civil infrastructure systems to identify
anomalies in structures ideally just when they occurred. For uninterrupted monitoring, the structures are
generally equipped with a network of sensors placed at critical locations to record response signals on a
continuous basis. A computationally inexpensive real-time algorithm then analyzes the measured response
and the important health parameters of the structure are estimated to assess the current health or existence of
damage indirectly.

Structural health monitoring (SHM) or damage identification based on measured vibration signals has
always been an intensively researched topic. Different methods of damage identification (encompassing the
four stages of damage detection discussed by Rytter [35]) are tried by several researchers [6,15–17]. Tra-
ditionally, the structural health is defined by some control parameters which are identified using online or
offline optimization algorithms. There exist several time or frequency domain techniques to assess structural
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health [6,21,45]. In time domain algorithms, least-square estimation techniques are mostly employed to esti-
mate parameters in real time [38–40]. Lately, recursive Bayesian filters have emerged as an efficient alternative
for this objective owing to the simplicity in the estimation procedure [18,20,29,36,37]. Among the different
types of Bayesian filters used for SHM, Kalman filter (KF) and its nonlinear variants, e.g., extended (EKF) [20]
and unscented (UKF) [44] Kalman filter, Monte Carlo filter [9], and particle filter [46], are the most frequently
employed techniques.

2 Kalman filter-based parameter identification

KF [22,23,43] is a recursive Bayesian filtering technique to obtain clean estimates of states from noise con-
taminated measured signals. At every time step, it defines a gain matrix using a set of predefined process and
measurement noise covariance to incorporate the mismatch between measured and predicted output response
as feedback into the system. This gain matrix in turn regulates the intermixing between prior belief and the
information in the new data to predict the state estimate for the next time step. This algorithm when used for
parameter identification either appends the parameters to an existing state vector (Augmented state KF (ASKF)
or coupled approach) or considers parameters as the only states (decoupled approach). The system dynamics
is thus described as:

x̄k = f (x̄k−1) + vk;
εk = {yk − h(x̄k)} + wk,

(1)

where x̄k = {xk θk}T (coupled approach) or x̄k = θk (decoupled approach) with xk and θk are the response state
and system parameters, respectively. f (x̄k−1) is the state transition function describing the temporal evolution
of the system states x̄k . h(x̄k) is a linear or nonlinear mapping of unobservable states to measurement. vk and
wk are the zero-mean Gaussian process and measurement noise with constant covariance.

For a given noisy measurement signal recorded from a system, KF estimates the system states x̄k in an
optimal sense. At any arbitrary time step k, KF uses Bayesian belief propagation technique recursively to
update prior estimate of states ˆ̄xk−1 using the measurements y1:k . Since the noise vk and wk are considered to
be uncorrelated Gaussian, Eq. (1) describes a Gauss–Markov process in x̄k , and hence x̄k has the Markovian
property. Since yk is a mapping of x̄k , it too can be shown to be Markovian satisfying the following conditions:

ρ (x̄k |x̄1:k−1, y1:k−1) = ρ (x̄k |x̄k−1) ,

ρ (yk |x̄1:k, y1:k−1) = ρ (yk |x̄k) .
(2)

Provided that the prior estimate of states ρ(x̄k−1|y1:k−1) at any arbitrary time step k−1 is known, the prediction
for the next time step k can be obtained using Chapman–Kolmogorov equation as:

ρ (x̄k |y1:k−1) =
∫

ρ(x̄k |xk−1)ρ (x̄k−1|y1:k−1) dxk−1. (3)

While the second part of the integrand describes the prior probability, the former demonstrates the temporal
transition of states, i.e., process model.

Using recursion rule for Bayesian inferencing, in each step of filtering the updated (or posterior) probability
density function ρ(x̄k |y1:k) of the current state x̄k conditioned upon measurements y1:k can be obtained as:

ρ(x̄k |y1:k) = αρ(x̄k |y1:k−1)ρ(yk |x̄k). (4)

The densities ρ(x̄k |y1:k−1) and ρ(x̄k |y1:k) are the prior and posterior probabilities, respectively, of the states x̄k ,
while ρ(yk |x̄k) signifies the likelihood estimate of the states for the given measurement yk . α is a normalization
coefficient.

KF assumes Gaussian distribution for the initial state and the noise terms. Thus the maximum a posteriori
(MAP) estimate corresponds to the mean of the posterior distribution conditioned on the measurements y1:k :

ˆ̄xk|k = argmax
x̄k

ρ (x̄k |y1:k) , (5)

where ˆ̄xk|k signifies the estimate of state x̄k for a given measurement information up to time step k.
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However, either the process model f (·) (for the coupled approach) or the measurement model h(·) (for the
decoupled approach) brings an unavoidable nonlinearity into the system description for parameter estimation
problems. Thus, instead of KF (a linear estimator), its nonlinear variants (e.g., extended KF, unscented KF) are
generally employed which perform a local linearization of the system around the current estimate of states.

Hoshiya and Saito [20] demonstrated the use of the Kalman filtering technique for structural parameter
identification. This approach was later implemented with modifications on different problems by several
others [18,29]. In theirwork, the researchers appended the control parameters below the regular states (generally
system responses), and this extended state vector is identified online to estimate the current health of the
structure. This dual estimation method is popularly used under the name of Joint estimation of state and
parameters. Under joint estimation of states and parameters, Corigliano and Mariani [12] investigated the
performance of EKF for time varying systems and found it to be not precise enough. Al-Hussein and Haldar [2]
demonstrated the application of the UKF technique with the ASKF approach for structural health estimation
which is later extended to systemswith unknown input [1].Mariani andGhisi [28] compared the performance of
UKF against EKF for parameter estimation. For limited instrumented structures, Das et al. [14] demonstrated
an FE model-based EKF technique to localize damage using limited response measurements. Chatzi and
Smyth [8] presented the PF method for estimating states along with model parameters of a Bouc–Wen model,
while Azam andMariani [5] described a coupled extended Kalman PF approach in order to estimate a partially
observed system.

With parameters appended to the state vector, themajor problemwith dual estimation that has been identified
by Ljung [25], Ljung and Söderström [26] and Nelson and Stear [32] is convergence. Ljung [25] and Ljung and
Söderström [26] attribute this drawback to a simplification in the gradient calculation of the process function
with respect to keeping parameter states constant and thus by avoiding recursive derivation of states, while
Nelson and Stear [32] blame the crude linearization of higher-order coupling between states and parameters.
The issue of convergence can however be avoided through decoupling the parameters and estimating them as
the only states (decoupled approach). Nevertheless, it demands a sufficiently clean measured signal [19] while
the reality seldom conforms to this idealization.

In both these approaches (coupled or decoupled), the parameters are considered as time-invariant system
states evolving over time through an identity state transitionmatrix. KF is then employed to estimate an optimal
set of time-invariant system parameters which minimizes the measurement prediction error. On the contrary,
real systems hardly remain time invariant, and for the case of a progressive damage scenario, the system can
drastically change over a small time interval. Since KF-based parameter identification algorithms are model
based, it is very likely that on the occurrence of significant change in a parameter, the estimation may diverge
and can even leave the zone of optimal solution [12]. In order to cater for this possible time variance of the
system, simultaneous estimation of system states and parameters is necessary. Chen [10] demonstrated the
differences between joint and dual estimation methods along with the benefits of the dual estimation strategies.

2.1 Present work

We employ the dual extended Kalman filtering technique [41,42] for SHM application with location-based
structural parameters as parameter states of the system which are estimated simultaneously with response
states. In each time step, the DEKF estimates the system states based on the current estimates of parameters
and then proceeds to estimate parameters based on the current estimates of states. This enables estimation of
the time-varying system parameters using filtered system states.

Since instrumenting a structure is a costly affair due to both initial and recurringmaintenance cost, it should
be maintained at minimum required level. Employing location-based structural parameters of an appropriate
phenomenological model of the system as parameter states capacitate health estimation beyond sensor reso-
lution and thus by reducing the demand of dense instrumentation. However, detailed estimation necessitates
primary model to be discretized accordingly with large numbers of DOFs, while in practice only a few DOFs
are instrumented for the response measurement purpose. This renders the system to be a poorly observed sys-
tem with a paltry fraction of all states measured. Estimation of the unmeasured response quantities is usually
redundant yet required only for state prediction purpose. In this article, we therefore employ system reduction
approach in order to remove all these unmeasured DOFs from the estimation algorithm.

Two numerical case studies, performed on a simply supported concrete beam and a truss bridge, are
presented to validate the proposed method’s competence to monitor structural systems efficiently using few
channels of measured signal.
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3 Dual extended Kalman filter

DEKF was first introduced by Wan and Nelson [41,42] as a nonlinear extension of Nelson and Stear’s dual
Kalman filtering technique [32]. This development employs two concurrent EKF to simultaneously estimate
states and parameters of a nonlinear speech recognition problem. DEKF alternates between estimating states
based on current estimate of parameters and estimating parameters based on current estimate of states.

Wan and Nelson [42] detailed the basic philosophy of this algorithm in their paper [19]. The probabilistic
aspect of the algorithm is presented in the following. With the DEKF approach, the process and measurement
equations of the system dynamics presented in Eq. (1) can be described as:

Process equation 1: xk = f (xk−1, θk−1) + vxk ;
Process equation 2: θk = θk−1 + vθ

k ;
Measurement equation: εk = {yk − h(xk, θk)} + wx

k .

(6)

The process andmeasurement noise terms vxk , v
θ
k andw

x
k in the above equation are characterized by zero-mean

Gaussian noise with constant covariance matrices Qx , Qθ and Rx respectively.
To employ Bayesian estimation to estimate the system states conditioned on the current estimates of

parameters, the DEKF algorithm expands Eq. (5) as:

{x̂k|k, θ̂k|k} = argmax
{xk ,θk}

ρ(xk |θk, y1:k)ρ(θk |y1:k). (7)

In each time step, DEKF adopts two separate estimation schemes for the states and the parameters. This can
be described as follows:

x̂k|k = argmax
xk

ρ(xk |θk, y1:k); θ̂k|k = argmax
θk

ρ(θk |y1:k). (8)

Subsequently, two concurrent EKFs are employed to estimate the states and the parameters using the noisy
measurement response. The algorithmic approach is detailed in the following.

The estimation initiates with an initially assumed Gaussian states and parameters as:

x̂0 = E(x0) with covariance Px0 = E
[(
x0 − x̂0

) (
x0 − x̂0

)T ]
,

θ̂0 = E(θ0) with covariance Pθ0 = E

[(
θ0 − θ̂0

) (
θ0 − θ̂0

)T
]

.
(9)

In the following, one-step-ahead prediction of the mean of the states x̃k|k−1 and corresponding state error
covariance P̃xk|k−1 are obtained by running the system model with current estimates of states and parameters,

i.e., x̂k−1|k−1 and θ̂k−1|k−1 and linearly propagating the prior covariance estimate P̂xk−1|k−1 as:

x̃k|k−1 = f (x̂k−1|k−1, θ̂k−1|k−1); P̃xk|k−1 = Ak P̂xk−1|k−1A
T
k + Qx , (10)

where the state transition function f (·) is linearized around the current state estimate x̂k−1|k−1 as:

Ak = ∇x f
(
x̂k−1|k−1, θ̂k−1|k−1

)
|k−1. (11)

The temporal evolutionmodel for parameters is, however, considered to be time invariant and only perturbed
by Gaussian noise. The time update of parameter statistics thus can be obtained as:

θ̃k|k−1 = θ̂k−1|k−1; P̃θk|k−1 = P̂θk−1|k−1 + Qθ . (12)

This constitutes the prediction phase of the algorithm. In the following the predicted estimates are corrected
sequentially using the current measurement yk . The error in the measurement is therefore calculated as:

εk = yk − Cx̃k|k−1. (13)
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whereC is a Booleanmatrix to select the states corresponding to themeasured DOFs. Themeasurement update
of states is quite straight forward. The Kalman gain matrix for the state update can be obtained as:

Kx
k = P̃xk|k−1C

T
(
CP̃xk|k−1C

T + Rx
)−1

, (14)

which can subsequently be employed for updating the predicted state estimates as:

x̂k|k = x̃k|k−1 + Kx
k εk; P̂xk|k = (

I − Kx
kC

)
P̃xk|k−1 . (15)

The measurement update of the parameter is, however, a little complex since the relation between error
statistics and parameter is not straight forward. The measurement matrixCθ

k for the parameter filter is therefore
calculated as:

Cθ
k = −∇θ

(
yk − Cx̂k|k

) |θ=θ̃k|k−1
= C∇θ x̃k|k−1|θ=θ̃k|k−1

. (16)

The Kalman gain for the parameter update is subsequently obtained as:

Kθ
k = P̃θk|k−1C

θ
k

(
Cθ
k P̃θk|k−1C

θ
k
T + Rθ

)−1
. (17)

The measurement update of the parameter estimate can then be obtained as:

θ̂k|k = θ̃k|k−1 + Kθ
k εk; P̂θk|k = (

I − Kθ
kC

θ
k

)
P̃θk|k−1 . (18)

4 Existing application of DEKF

There exists sufficient evidence of the competency of this algorithm tested on battery management, vehicular
motion control, reservoir monitoring, speech recognition problems etc. [11,24,31,34,41] in the literature.
However, application of this powerful tool for structural health monitoring is not widely explored. Mariani
and Corigliano [27] and Corigliano et al. [13] implemented the DEKF algorithm in order to detect composite
layer delamination by estimating the constitutive parameters of a softening model. Recently Azam et al. [4]
demonstrated the application of the DKF method to simultaneous estimation of states and input forces.

The above-described DEKF algorithm can be successfully employed considering the elements of the state
transition matrix as parameters of the system. In this attempt the process equations can be described as:

xk = Akxk−1 + vx , where xk = {xd xv}T ,

Ai j
k = Ai j

k−1 + vθ , (19)

where xd and xv are the array of displacements and velocity response states, respectively, with the elements
of the state transition matrix Ai j

k being the parameters of this formulation.
This approach is, however, model independent and thus limited for systems with collocated measurements

with damage localization capability restrained by the available measurement resolution. For non-collocated
measurements, the application of phenomenological models (e.g., FE model) becomes necessary in order to
incorporate the essential correlations between different states for identifying the system as a whole. However,
the order of calculation increases with the model order at the rate of 4n2, where n is the physical space model
order (i.e., numbers of sensors placed on the structure). Thus, unless the number of sensors is small, the
computational demand for this algorithm becomes so high that it loses practicality.

Additionally, since general civil engineering systems are rather complicated, damage interpretation from
the elements of state matrix is not always easy. We, therefore, considered location-based structural parameters
as the system parameters to be estimated using limited numbers of signal channels. Themodification is detailed
in the following sections.
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5 Modified DEKF algorithm

Unlike in the previously described approach (see Eq. (19)), in the modified approach, we define the location-
based health parameters as system parameters θk . The state transition function f (·) in Eq. (6) thus uses a set
of physical structural parameters in the FE modeling environment to define the time evolution of the state
estimate. This strategy helps in three ways:

1. It preserves the physics of the system through the FEmodel, which is not guaranteed in case of identification
of each element of the state matrix Ak ,

2. Updating every element ofAk without using any constraintsmay result in an infeasible estimation especially
when the model order is large,

3. It drastically reduces the order of calculation from 4n2 to the few physical parameters intended to be
identified.

Detection of system deterioration through time variance of its elemental property is physically more inter-
pretable than through the elements of the state transition matrix. It should also be noted that with the former
algorithm, the order of the identified state matrix Ak is 2n for which n is the number of channels in the mea-
sured signal describing the physical system with n DOFs. Thus, with this approach, the resolution of damage
localization is limited by the instrumentation density which is in turn constrained by cost. In contrast the pro-
posed method considers parameters of phenomenological models as parameter states of the formulation. Thus,
for limited instrumented structure, precise damage localization can still be achieved beyond sensor resolution
using higher-order models at the expense of computation time.

Nevertheless, in reality only a small fraction of all the DOFs of the system model are instrumented. Thus,
complete state estimation of such poorly observed system often increases the ill-posedness of the problem.
Estimation of the complete system states (including the unmeasured states) is mostly unnecessary, yet it
increases the computational burden. In addition to that, while the proposed method puts more importance on
the model calibration than the state filtering by putting more belief in the measurement signal compared to
the estimated response, any poor estimate of the unmeasured states may often cause a significant divergence
in the parameter estimates [4,47]. In order to avoid such a scenario, the unmeasured states are decided to be
kept out of the parameter estimation.

With a similar objective, in a very recent research article Capellari et al. [7] (an extension of [3]) proposed
particle Kalman filter-based estimation of a reduced-order system employing proper orthogonal modes (POM)
for system reduction. However, their method is near real time in nature, and in order to construct a snapshot
matrix, it requires response data for a particular time span during which either the system must behave as time
invariant or a recursive updating of the POMs becomes necessary. Our development, on the other hand, aims
at real-time estimation of health parameters of systems for which stiffness deterioration is ongoing, so that it
can be applied to non-stationary signals as well. In this modified approach the non-obligatory estimation of
unmeasured states is dropped through employing the Structural Equivalent Reduction Expansion Programme
(SEREP) [33] and is characteristically a real-time algorithm.

In this modified DEKF approach, the response state transition function f (·) is defined as an envelop of
several functions which uses current estimate of state and parameters as input for one-step-ahead prediction
of the system state (at measured DOFs only). Within this function, using the current parameter estimates, a
sufficiently large-order FE model of the system along with the stiffness, mass and damping matrices (i.e.,
K, M, D) involving all required location-based parameters, is prepared. Subsequently, the full-order model
is reduced to the instrumented DOFs only using SEREP and a corresponding reduced-order state space model
is prepared:

System reduction:
[
Kr ,Mr ,Dr ] = SEREP(K,M,D),

State space model formulation: Ar
c =

[
Z
r

I
r

−Mr−1Kr −Mr−1Dr

]
,

(20)

where the superscript r signifies a reduced-order model involving r measured DOFs only, and Z
r and I

r are
the r th order null and identity matrices, respectively. Ar

c is the continuous time state matrix. Thus, this model
order reduction converts the partially observed system to a fully observed systemwhich is then estimated using
the DEKF algorithm.

However, since the filtering is performed using sampled data, the continuous time state space model is
required to be transformed accordingly using the Zero Order Hold (ZOH) technique as:

Ar
d = ZOH(Ar

c), (21)
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whereAr
d is the discrete time state matrix of the system. Using this discrete time state matrix, the prior estimate

of the state is propagated to predict the state for the next time step as:

xrk = Ar
dx

r
k−1, (22)

where xrk signifies the reduced-order system states.

6 Numerical validation

The proposed method is validated through two numerical experiments performed on two basic structure types:
an Euler–Bernoulli beam and a bridge truss. In both these structures, the progressive damage is represented
by systematically degrading the material or geometric parameters for some selected zone. A white noise
excitation is applied to simulate the system response which is subsequently used for online identification of
the parameters. Details of each of these experiments are given in the next two sections.

6.1 Euler–Bernoulli beam

An Euler–Bernoulli beam is considered for the first numerical experiment. Details of the assumed geometric
and material properties are listed in Table 1. The model is excited with a white noise sequence and a 20s
acceleration signal is simulated at a sampling frequency of 1000Hz using the Newmark-Beta algorithm. A
2% (signal-to-noise or SNR) Gaussian uncorrelated white noise has been added to the numerical signal in
order to replicate the measurement noise in reality. Damage is induced in the 16th and 28th element and the
rate of degradation is considered to be following a sigmoid curve shown in Fig. 1 along with its equation. The
assumed damage rate is considered to be following the same equation with ts = 8 s, te = 12 s, p = 50% for
16th and p = 75% for 28th element. Thus the progressive damage is induced at the 8th second of simulation
and within next 4 s the damaged elements are degraded up to their final value, i.e., 50 and 75%. Furthermore it
is considered that the structure is instrumented with only vertical translational accelerometers at some selected
locations and therefore only the acceleration response corresponding to those DOFs is considered for the
identification.

Two case studies are undertaken, each using a different number of signal channels to identify damage.
For each case study, the number of accelerometers and their respective locations are listed in Table 1. The
contaminated signal obtained from the degrading structure is used in the proposed identification algorithm.
Elasticity of all 40 elements of the beam is considered as the control parameters through which damage is
interpreted as degradation in element elasticity. DEKF is then employed to filter the response states in parallel
to estimating element elasticities. Identification results corresponding to all case studies are presented in Fig. 2.

It has been observed that with a 20 channel measured signal the estimation runs perfectly localizing the
damage without much difficulty. 10 and 5 channels of recorded signal are therefore considered for demonstra-
tion of the efficacy of the algorithm. Figure 2a, b describes the identified elasticity values of each element of
the beam along with its actual values for 10 and 5 channels of recorded signal, respectively. This is evident
from Fig. 2 that denser instrumentation increases the efficiency of the algorithm which is obvious as well.
However, Fig. 2b demonstrates that even with considerable reduction of instrumentation the parameter filter
yields sufficiently good result which is beneficial from an economic view point. Eventually, there should be
a compromise between added cost and desired precision level to achieve overall efficiency of the monitoring
system.

Table 1 Details of the FE model of the beam

Dimension 6m×0.2m×0.25m
Elasticity 3.2×109 N/mm2

Poissson’s ratio 0.3
Number of elements 40
Damping ratio 2%
Damaged elements and damage percentage 75% at 16th and 50% at 28th
Instrumented locations Case 1: nodes 3, 7, 11, 15, 19, 23, 27, 31, 35 and 39

Case 2: nodes 5, 13, 21, 29 and 37
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Fig. 1 Equation for assumed degradation curve: θcurrent = θinitial

(
1 − 0.01p

2erf(3)

) (
erf

{
6(t−ts )

(te−ts )−3

}
− erf(−3)

)
ts , te and t signifies

the damage initiation, completion time and current time respectively. θ is the parameter of consideration. Above figure presents
a sample parameter degradation with ts = 0 s, te = 1 s and p = 50% for a time span of 1 s

Fig. 2 Progressive damage identification of beam with different numbers of response signal channels. a Estimation result for 10
channel measured signal, b estimation result for 5 channel measured signal

6.2 Bridge truss

In the second numerical experiment, a bridge truss is taken for which the geometry, boundary condition and
section details are adopted with minor alterations from a paper titled “Damage detection of truss bridge joints
using Artificial Neural Network” authored by Mehrjoo et al. [30]. This truss presented in Fig. 3 is a simplistic
representation of the Louisville Bridge in the USA. Assumed geometric and section details are listed in Table 2.
Due to the symmetry of the truss, only data corresponding to half of the truss are given in Table 2. The FE
model of the truss is subjected to a zero-mean white noise excitation at all the top nodes and responses are
collected with a sampling frequency of 1000Hz for a time span of 5 s and subsequently contaminated with
2% white noise. Progressive damage is simulated in the member B5B6 through a reduction in the cross-
sectional area following the same degradation rate used for the beam experiment with ts = −3 s, te = 5 s
and p = 50%. Thus, in this problem damage is initiated prior to sampling and gradually increased up to
the fifth second of sampling between which the cross-sectional area of B5B6 is reduced by 50%. Again two
case studies are undertaken for different numbers of channels in the recorded signal. Details of the number
of accelerometers used and their locations for each case are given in Table 3. Since it has been observed that
with all 14 free nodes of the truss instrumented with accelerometers capable of record; vertical acceleration
response, the parameter estimation is quite easy, the case studies presented in this article considered a less
extensive instrumentation (7 and 5 channels, respectively). In addition, while the former considers collocated
measurements, the latter extends it to non-collocated measurement conditions. The contaminated signal is
used for the DEKF identification algorithm from which information about time-varying properties of all 29
members is obtained.

In this numerical experiment, the ratio of current area to initial area of cross section, termed here as area
ratio (AR), is considered as the control parameter which is identified using the proposed algorithm. Figure 4
shows the identification result.
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Fig. 3 Schematic diagram of the truss

Table 2 Geometry and section details of the truss

Elements Length (m) Cross-sectional area (cm2) Section details

B1B2, B2B3 8.0 181.0 IPB360
B3B4, B4B5 8.0 373.0 IPBV300+2PL350×10
B1T1 11.3 463.0 IPBV300+2PL400×20
B2T1, B4T3 8.0 72.7 IPE360
B3T2, B5T4 8.0 143.0 IPBL360
B3T1, B3T3, B5T3 11.3 181.0 IPB360
T1T2, T2T3 8.0 373.0 IPBV300+2PL350×10
T3T4 8.0 463.0 IPBV300+2PL400×20

Table 3 Details of accelerometer locations for three case studies

Case studies Accelerometer location

Case 1 (7 nos) B2, B3, B4, B5, B6, B7 and B8
Case 2 (5 nos) B2, B4, T4, B6 and B8

Fig. 4 Progressive damage identification of trusswith different numbers of response signal channels. AR=area ratio and subscript
act or Id signifies actual or identified quantities, respectively, and the associated number signifies corresponding element numbers.
a Estimation result for 7 channel measured signal, b estimation result for 5 channel measured signal

In Fig. 4 results are presented for only a set of selected members, i.e., the 3rd, 5th, 10th, 18th and 20th
member corresponding to B3B4, B5B6, T2T3, T3B5 and T5B7. Time variance of area ratio (AR) for these
selected members shows that the algorithm successfully captured the exact location of the damage along with
the rate at which the AR is degrading while using a limited amount of signal data. It can also be observed
from the result that as we decrease the number of available signal channels, the performance of the algorithm
degrades. However, even with a 5 channel non-collocated measured signal, the parameter filter still perfectly
localizes the damage while capturing the rate of degradation with sufficient accuracy. Ultimately, considering
the required precision level and associated cost for instrumenting the structure, a cost-effective decision should
be made regarding the number of required signal channels.
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7 Conclusion

In this article we employed dual extended Kalman filtering (DEKF) algorithm for health monitoring of time-
varying structural systems using a reduced-ordermodel and thus by avoiding unnecessary estimation of unmea-
sured states and subsequent ill influence of improper estimates on the parameter filter.

The key feature of the algorithm is the simultaneous but decoupled estimation strategy for states and
parameterswhich are conditioned upon each other. The approachwhen tested for simulated numerical problems
is found to be robust against noisy measurements, while the parameter estimate is observed to be stable with
respect to sudden variation of parameters.

While the consideration of location-based parameters as system parameters lessens the dimensionality of
the parameter states, the system reduction approach reduces the dimensionality of the response state vector to
be estimated and thus by reducing the estimation complexity as a whole. However, the reduced dimensionality
is achieved at the expense of enhanced computation due to additional FE modelling and the system reduction
step.

Damage localization is achieved beyond sensor resolution which is beneficial for limited instrumented
structures. Additionally, the selection of physical structural properties as parameters is more straightforward
in the context of SHM purposes. Future work will involve an economic study involving the trade-off between
the economical benefit due to reduced instrumentation and the consequential sacrifice in accuracy in order to
select the optimal number of sensors.
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