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Kalman Filter (KF) based parameter estimation assumes Gaussianity of the system parameters and thus
propagates only the first two moments of the states. Application of Particle filter or Ensemble Kalman fil-
ter to estimate non-Gaussian parameters, although more accurate, is computationally expensive.
Generalized polynomial chaos (gPC) is well-known as an effective tool to describe any dynamic system
with stationary uncertainty through a set of orthogonal basis functions and associated coefficients.
This article couples gPC with Extended KF (EKF) algorithm in which the uncertainty propagation from
parameter to measurement is described through gPC expansion of parameters and outputs.
Subsequently, the gPC coefficients of the parameter expansion are estimated from available measure-
ments employing EKF. Thus, instead of selecting the system parameters as states, we consider the asso-
ciated parameter gPC coefficients as state variables which reduces the problem of estimating the
complete distribution of parameters down to identification of a few gPC coefficients. The proposed
method is tested on systems with either Gaussian or non-Gaussian parameters. The error in estimating
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non-Gaussian parameters using KF based techniques is demonstrated.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Response prediction of a complex structural system is generally
achieved through an idealized mathematical model based initially
on a set of prior assumptions and then updated periodically with
new information obtained through measurements. The initial ide-
alization and subsequent updating impart uncertainty in the model
and its predictions. To enhance the predictive ability of the model,
systematic calibration through inverse estimation of parameters
from the real measurements is often practised. Commonly, uncer-
tainties in the model parameters are dealt with in a probabilistic
framework where variability in the measurement space is mapped
back to the parameter space. These types of problems can be cate-
gorised under the broad class of stochastic inverse problems.

Direct identification of parameter uncertainty from output vari-
ability information requires the simulator model to be invertible,
which is not always assured. To reduce computational complexity
and time, approximating the actual simulator model by a meta
model can be used. Unfortunately, replacing a detailed phenomeno-
logical model with a much simplified meta model increases the
model uncertainty.
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1.1. Existing methods

Identification of parametric uncertainty in probabilistic frame-
work can be performed using Bayesian inference through maxi-
mum likelihood estimation (MLE) [1-4]. In MLE approach, the
Bayesian estimation problem is posed as a large dimensional opti-
mization problem and subsequently solved using gradient based
[5] or other optimization techniques [6,7]. However, due to the
non convex nature of this high dimensional problem, obtaining a
practical solution often poses as the major challenge.

Kalman filtering [8] (KF) based stochastic data assimilation
techniques have been applied extensively to identify system
parameter uncertainty from noisy output measurements [9-13]
by considering the parameters as additional Gaussian states. KF
attempts Bayesian belief propagation to optimally estimate the
system states by combining prior belief on states with its likeli-
hood with new measurement. Being a linear estimator, application
of KF is limited only to linear systems. This shortcoming led to the
introduction of the nonlinear variants of KF (e.g. Extended KF (EKF)
[14,15], Unscented KF (UKF) [16] etc.) to handle nonlinear prob-
lems by either locally linearising the system or imposing Gaussian-
ity on the posterior distribution. EKF performs first order Taylor
series expansion of the state transition functions, while UKF prop-
agates the uncertainty through a set of weighted sigma points
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around the current state estimate. To employ EKF/UKF for param-
eter estimation, parameters are appended in an extended state
vector while representing the otherwise linear system through a
bi-linear/nonlinear state space representation [17]. Nevertheless,
the assumption on Gaussianity in states or parameters might not
always agree with the real situation. Forcibly fitting a Gaussian dis-
tribution to a non-Gaussian parameter, in fact, can produce large
errors in its estimation.

To accommodate non-Gaussian distributions, particle filter (PF)
approaches propagate higher order moments through a set of par-
ticles [18-21] and subsequently the posterior estimate is obtained
by updating the prior estimate of the particles with their respective
likelihood with the current measurement. PF assumes that the
parameter domain is discrete and thus updating the prior probabil-
ity of a discrete set of sample particles using their likelihood gives a
measure of the uncertainty in the predefined parameter set. How-
ever, with increased dimensionality in the parameter space, the
computational demand increases heavily which can render PF
computationally inefficient [22]. Apart from these filtering tech-
niques, crude Monte-Carlo sampling based Ensemble Kalman fil-
tering technique offers a robust approach to identifying the
parametric variability [23]. However, estimating the probability
distribution for the entire set of parameters accurately can be quite
expensive.

1.2. Generalized polynomial chaos expansion (gPC)

Introduced by Spanos and Ghanem [24] using the concepts
given by Wiener [25] as homogeneous chaos expansion, Polyno-
mial chaos expansion (PCE) technique has emerged as an efficient
tool to describe systems with stationary uncertainty using a set of
orthogonal bases and associated coefficients [26,27]. PCE can be
considered as an advancement of Karhunen-Loeve(KL) expansion
[28,29] to discretize any random quantity and to describe its
uncertainty through parametrization since the former does not
demand the covariance function of the random space to be known
a priori. Xiu and Karniadakis [30] later generalized PCE (denoted as
gPC) using the result of Cameron-Martin [31] to discretize arbitrary
random spaces using hypergeometric orthogonal polynomials cho-
sen from the so called Askey scheme.

In gPC, the physical random variable y is expressed in terms of a
random vector ¢, termed as germ. Based on the selection of germ
distribution, a set of mutually orthogonal basis functions (polyno-
mials) ¢(¢) can be selected. With this germ ¢ and polynomial bases
¢(&), the physical random variable y is described as:

1) = Qodoléo) + 3 a5 (E) + 305 i by (G )
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+o00 =Y aigy(9) (1)
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where a;s are the coefficients of the polynomial expansion.

Verlaan and Heemink [32] used the intrusive Galerkin projec-
tion approach to solve the coefficients a; of the expansion. In later
works, collocation technique [33] introduced a more efficient
approach for estimating the polynomial coefficients.

The basis polynomials vary depending on the germ distribution.
For example, for a normally distributed germ, Hermite polynomials
are the best suited basis functions, for uniformly distributed germ
the basis should be Legendre type and so on. Details of other poly-
nomial basis for different germ distributions are listed in Table 1.
To describe a random variable exactly through gPC, an infinite order
expansion is ideally required. However, for the sake of practicality,
the expansion is generally truncated beyond a certain order.

gPC has been employed by Xiu and Karniadakis [34-36] for
solving stochastic differential equations of fluid mechanics prob-

Table 1
Polynomial types for different germ distributions.

Germ distribution Support domain Polynomial type

Normal N(0,1) R Hermite
Uniform u(-1,1) -1,1] Legendre
Gamma R* Laguerre
Beta R Jacobi

lems. Sandu et al. [37-39] employed the gPC technique for multi-
body dynamics and parameter estimation problems [40]. Soize
and Ghanem [41] demonstrated it for estimating arbitrary proba-
bility densities. Desceliers et al. [42] employed maximum likeli-
hood estimate (MLE) to identify the gPC coefficients of an
arbitrary random filed.

Pence et al. [54], Pence [55] employed a combination of gPC and
MLE in which each point estimate on the probable solution grid is
propagated though the system dynamic model using gPC and sub-
sequently MLE is employed to identify the estimate. Jacquelin et al.
[56] proposed a modification in gPC to accelerate its convergence.
gPC theory has also been extensively used in the literature for
uncertainty propagation of otherwise deterministic systems
[25,30,43]. This technique is capable of describing an arbitrary
parameter distribution in an inexpensive way. It has been exten-
sively used in the context of structural mechanics problems as well
[44-48,59-61]. A review of its application for structural vibration
problems can be found in Schuéller and Pradlwarter [49]. Sepah-
vand et al. [50,51] employed gPC for the purpose of parametric
uncertainty quantification of stochastic systems. Blanchard et al.
[40,52] used gPC technique along with EKF algorithm for parame-
ter identification: gPC solves the forward dynamic state-space
problem while EKF updates the state estimates. Li and Xiu [53]
demonstrated the application of Ensemble Kalman filtering (EnKF)
with gPC theory: the computational efficiency and accuracy are
increased by solving the state prediction equation through gPC.

In this article, we couple gPC with Extended Kalman Filter (EKF),
to propose a new algorithm in which the uncertainty propagation
from parameter to measurement is described using a gPC meta
model. The required gPC coefficients of the parameter gPC model
are then estimated inversely using EKF. As we show in the follow-
ing, such an approach enables an accurate and efficient estimation
of any random parameter.

2. A new parameter estimation approach
2.1. The problem formulation

Let the system be characterized by a set of parameters x that are
random in nature. There is a map F (possibly unknown but accu-
rate models of which are available) that relates x to the system
output y. The actual output y is not known, but can be measured
as y repeatedly, giving the collection Y. The objective of this study
is to determine the probability distribution of X using the informa-
tion stored in Y and the best available model F. Algorithm 1 dis-
plays the pseudo-code of the coupled gPC-EKF estimator
developed in this work.

F is typically a finite element model that maps each realization
in parameter space X to a corresponding point in output space y.
Thus for any parameter-output pair, if the uncertain parameter
can be described by a gPC expansion with a set of germs as its argu-
ment, the associated output gPC expansion can always be defined
by the same set of germs:

V() = FX(2)) @)

and ¢=[&,8&,...,¢&) is the associated germ vector.
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V(&) = [1(8),¥2(9), -
set of germs ¢&.

,¥Ym(&)] are the outputs defined by the same

The truncated gPC expansion for the k™ input and the k™ output
with j, and j, dimensional germs involving up to pf and p!' order
terms respectively can be described respectively as:

Sx(Px.x)

Xk (&) = Z a it (&) =

i=1

gras; (3a)

and

Sy(Pydy)

V(@) =Fel({x1 (&) %2(&), - Xa(E) D) = D A (&) = @™ a’; (3b)
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Where ¢Xk = [ )1(k7 )2('(7"%45;‘:]' and d)yk = [d)“‘llk’gt,?‘w-wgb{;]‘
ak = [d¥,d,. .. ,agq’ and a% = [@*, &, ... ,a{y"]T are the polynomial

coefficients for their respective gPC expansions.

Sx(Px,Jx) and sy(p,,j,) are the required number of terms in the
chaos expansion in order to encompass up to pt" and p§“ order poly-
nomial for parameters and outputs respectively. For example, for
the parameter x, the required number of terms (s,) in gPC expan-
sion can be determined from the chosen order of basis polynomials
(p,) and the number of germ variable (j,) as:

i
SX — (px T.J'X)' (4)
DxiJx*

The parameters xi,X», ..., X, in this problem are assumed to be
independent and thus each is described by a one dimensional gPC
using a single germ. The outputs, being functions of all n parame-
ters, are expanded using n dimensional gPC basis expressed as the
tensor product of parameter gPC bases:

n

(&) =[[(¢9(&) i=12....m andj=12,....n (5)
=1

The above discussion intends to demonstrate how the uncer-
tainty in the parameter space propagates to the measurement
space and how the associated uncertainties can be described
through the same germ vector ¢ for both parameter and output
measurement. For the same set of polynomials ¢ (&) and ¢*(¢),
the distributions of parameters and outputs however differ based
on the coefficients a* and a’x.

2.2. Identification of the output gPC

Let &0 = (&0 & . D] be the I realization of the germ vector

l[h

¢ in which each germ ¢” is associated with the I realization of the

kth system parameter Xx;:
Sx(Dydx)

X&)=Y agiE)k=12, nand 1=12..N (6

i1
Thus the output realization y,g) associated to this particular

parameter set [x\",x),... x] will obviously be a function of the
germ set &0,

As stated above, the actual output (y) is unknown but can be
observed through measurements y collected from the system. Y
is an array of N such measurements. These N such output
realizations are associated to N different germ sets as:

{E} = [§<1>7§(2>7...,gf“)?..‘,g("’)]T. Since the measured outputs Y
are known, a gPC model for y can always be fitted to the data,
say, using Galerkin projection technique. This fitted model y(¢)
has the structure of y(¢) = ¢,($)ar with the germ (¢) being its
argument through which the associated uncertainty is defined.
This fitted model can subsequently be used to generate a large

number of realizations of the synthetic output Y in a computation-

ally inexpensive way. This, in turn, provides a measurement model
required for the EKF algorithm.
The required coefficients a¥ for the gPC model y (&) of the actual

output variable y is obtained using Galerkin projection technique
as (Step 6 and 7 of Algo. 1):
a)_’k —

3 (i)

i £(i
> ¥, ¢ (£)
i=1

i TN

> 6] (E0)e) (E0)

i=1

; for k=1,2,....m (7)

This fitted gPC model can then be used to simulate output real-
izations Y as Y = ¢% (&)aY« for different realizations of £ Although
not essential, this step yields stable estimates of higher moments
of the response which are required in the inverse EKF estimation.
The alternative of using moments directly computed from the

raw data can give rise to convergence issues.

The I" realization of the k™ output is then given by the follow-

ing gPC expansion involving all n germs associated with the n sys-
tem parameters (cf. Eq. (2)):

Sy (Pydy)
VWEy = > akgeh)k=1,2,..m; and 1=12,...N

i=1

8)
In this study, all outputs are defined using the same set of poly-
nomial bases, i.e. ¢** (&) = ¢ (&) = --- = ¢ (&) = ¢ (&). The multi-

variate gPC expansion for N sets of output realizations can then be
expanded as:

£(1 y (e
(¢ AR ¢Sy(§( ) ajl,l a¥z a{," y<]1) y(zl) y("p
£(2 2

(S()) ¢§’y(§ ) a? agz agm y<12) y(22) y‘ﬁ)
<(3) - g m

(E3) - @L(E) | | a oA | = vy e

£(N @z . g (}VJ <}V> . <}v>
g’y(g( )) Clsy Clsy Clsy YWYy o Ym
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In order to obtain a gPC model for the outputs, the polynomials
can be assumed based on the germ type which in turn depends on
the distribution type (cf. Table 1). However, it is often expensive to
collect measured output data Y which makes the accurate classifi-
cation of the output distribution a challenge. Pearson’s model cri-
teria [57,58] offers a good solution in this context (c.f. Appendix
A). This method identifies the underlying approximate distribution
from the limited available data. This in turn helps in selecting the
appropriate germ distribution for the output gPC expansion (Steps
1 and 2 of Algo. 1). Selection of proper germ type helps in reducing
computational complexity since with the proper germ, the random
varible can be defined with least amount of expansion terms in the
truncated expansion [54].

2.3. EKF based estimation of the parameter gPC coefficients

Unlike the outputs, the system parameters X are not directly
observable and thus one cannot develop a fitted gPC model for
parameters directly. However, these parameters are related to
the corresponding measurements through the map F (cf. Eq. (2)).
This study expresses each system parameter through a gPC model
(Eq. (3a)) with a set of assumed gPC polynomials and initial guess
for the gPC coefficients {a*,a*,...a*}. These parameter gPC coef-
ficients are then considered as unobservable system states
observed through the measured output Y (or its fitted model y(¢)
if necessary). EKF is then employed to estimate the coefficients
as states optimally by minimizing the error covariances in state
estimates.
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EKF estimates an optimal set of gPC coefficients
ax = [av,a%,...,a%] for which the estimated output moments
optimally match those of the actually measured or synthetically
generated output (Since the proposed method is numerically vali-
dated in this article, the expressions the “actually measured out-
put” and “synthetically generated output” are synonymous
here.). Moments of the measured output are thus considered as
observations in this estimation. EKF recursively updates the prior
estimate of a* by mapping the mismatch between moments asso-
ciated with the current estimate a* and the actual moments (i.e.
innovation) back to the parameter space using a suitable gain
matrix K. K incorporates the feedback as correction in the current
estimate a*. The optimal solution thus asymptotically converges to
an estimate for which the error between actual and estimated
moments minimizes.

EKF considers gPC coefficients S’r“t as system states with its
dynamics defined in pseudo-time t as:

: . 3X __ X .
Process equation : a”H = aH‘H + Vi (10)

After each time update, the propagated estimate 3}‘“71 is
observed through output moments. The measurement equation
measures the error in the state estimate thorugh the error between
the estimated and actual moments of the outputs as:

Measurement equation: ¢ = {My — M(ﬁﬁm)} + Wg; 11)

v, and w; are the process and measurement noise modeled as
Gaussian white noise with covariances Q and R respectively.
M (e) is a mapping of the parameter gPC coefficients 3;‘“4 to the
moments of the corresponding outputs and My is the actual
moment obtained either directly from the measured output Y or
its fitted model Y. The notation a¥ ., signifies an estimate of a*

at ¢! instant incorporating information up to tJ instant.

€., the difference between the moments of actual and estimated
outpout, is considered as the measurement innovation. In this arti-
cle, the error measure ¢, (as defined in Eq. (11)) is considered to be

the difference between the first four moments of the fitted (Y) and

estimated (?) outputs. Selection of higher order moements in ino-
vation formulation not only helps match the spread but the tail of
the distribution as well [51]. The mismatch along with the Kalman
gain is then used to update the current estimate of coefficients
recursively (cf. Eq. (12)). The iterations are carried out until a pre-
defined tolerance is achieved.

We should note here that, in order to measure the statistical
moments in the estimated output, sufficient output realizations
are usually required. This in turn demands expensive FE calls
which is not practical. Collocation method is employed in this
endeavour to minimize this expensive FE calls.

In each step of EKF, the current state estimate ﬁ’t“H is propa-
gated through the system model for a few selectively chosen germs
only (collocation points £°) and the associated outputs are obtained
(Step 9 of Algo. 1). Subsequently, from this parameter-output
prediction pair, a gPC model y(¢) with the output gPC coefficients
EEV‘H, k=1,2,...m, are obtained (Step 10 of Algo. 1). Monte-
Carlo simulations are then performed on this estimated output
gPC model, y(¢) for sampling output estimates Y. Eventually, a
large set of estimated output realizations Y can be generated from
which the moment estimates associated to a}, , are obtained. A
similar process is also followed to obtain the moments of the sim-
ulated outputs Y realized from the fitted model y(¢) for a germ set
of same length.

Subsequently, the measurement correction can be incorporated
in the predicted estimate aj, ; as:

ay =ay, +Kes (12)

where K; is the Kalman gain at t" iteration step to incorporate the
measurement mismatch ¢, as feedback into the corrected state
estimate.

Algorithm 1: Coupled gPC-EKF algorithm

Step 1: Identify the Output distribution type and select the
appropriate germs and associated polynomial types for
output and parameter gPC models from Table 1. Use these
one dimensional polynomials to define the
multidimensional polynomial for output gPC model.

Step 2: Assume a prior estimate ag, for the coefficients of the
parameter gPC model.

Step 3: Obtain the collocation points for each parameter.

(These are the roots of (p + l)”‘ order polynomial where p is
the highest order of polynomials considered in expansion.)
Step 4: Simulate a set of germs (&€ = {¢P} for [=1,2,...,n¢)

with different combination of the collocation points. n. is
the number of combinations of collocation points.

Obtaining the output gPC coefficients and moments

Step 5: Estimate gPC coefficients a’« for all k =1,2,...,m of
the fitted gPC model y(¢) for the measured output Y using
Eq. (7).

Step 6: Use the fitted gPC model y(¢) to simulate output
realizations Y for different ¢ values.

Start Extended Kalman filter

Iterations (while error < tolerance)

Prediction step

Step 7: Propagate the mean and covariance of states 5;‘7”{71 in
pseudo time ¢ as:

State prediction: aj, ; = a} ;. ;;

State covariance prediction: Py = Pr_qe—1 + Qg

Correction step
Step 8: Using 3}‘“71, map the collocation germ sets (£¢) to a set

of parameters realization X; = {Xg”} forl=1,2,...n.

Step 9: Simulate the system model F (usually the FEM) for
each parameter set as: y;” = [F(f(ﬁ”) forl=1,2,...,nc.
Collect outputs for all I in ¥¢

Step 10: Fit a gPC model to Yf using collocation method and
estimate corresponding gPC coefficients as 3%’“71 (cf. Eq.
(7).

Step 11: Using Eq. (3b) and current estimate for output gPC

coefficient &y, ,, simulate a set of output realizations Y.

Step 12: Calculate the error between simulated (Y) and
estimated (Y) output moments: € = M; — My, where M
signifies moment.

Step 13: Calculate the innovation covariance:

St = HPy,_1H{ + Re; where H; = Vq(€)l,
tle-1

Step 14: Calculate the gain matrix K; : K; = Pt‘[_IHtTSt”
Step 15: Update state estimate: 3’;‘[ = i’t“m + K€
Step 16: Update state covariance: Py, = (I — KcH;)Py;_1;
Step 17: Go to Step 8 till tolerance is achieved.
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3. Numerical examples

We analyze a 0.45m x 0.25m x 0.006 m cantilevered plate
supported at its shorter edge. The plate is modelled with 10 x 10
Mindlin-Reissner plate elements and the Finite Element (FE) model
is assumed to be sufficiently accurate so that model uncertainty
can be ignored. Elasticity (x; = E) and Poisson’s ratio (x, = v) of
the plate are considered to be the unknown parameters. Two cases
are considered: (i) E and v are independent Gaussian, and (ii) E and
v are independent and each is Beta distributed. In each case, the
plate is subjected to white noise vibration along its free end and
acceleration time series are recorded for 10 s at a node 0.05 m X
0.09 m away from one corner of the free end. This signal is subse-
quently contaminated with 2% Gaussian white noise.

The process is repeated 1000 times in order to eliminate small
sample uncertainties and for each experiment the acceleration
responses are collected at the measurement point. A Fourier
domain decomposition of acceleration time histories to construct
the frequency response plot and subsequent peak picking leads
to identification of the natural frequencies. The first five natural
frequencies, {y;,i=1...,5}, are thus obtained as measurements
from the time series data. Eventually, thousand such experiments
generates an array of measurement data Y, (although in a real life
scenario, the process can be repeated perhaps only a few hundred
times).

In each case, the distributions of E and v are estimated (a) first
with the proposed gPC - EKF method that can estimate any arbi-
trary distribution, and (b) the traditional EKF and UKF based Gaus-
sian parameter estimation methods. In the first case when the
parameters are actually Gaussian, even though EKF and UKF gives
sufficiently accurate estimates of the means, the variance esti-
mates significantly deviate from the true values. The problem
becomes more prominent in the second case when the parameters
are in fact non-Gaussian; the proposed method significantly out-
performs the traditional methods, as we describe next.

3.1. Gaussian case

The “true” distributions of the plate parameters (i.e. E and v) are
listed in Table 2. As stated above, the parameters are sampled from
their “true” distributions 1000 times, and propagated through the
system model F to yield the measurements Y. The measurement
distribution, when put through the Pearson classification scheme,
is identified as Gaussian. Gaussian random numbers are therefore
selected for the germ distribution and associated Hermite polyno-
mials are selected for chaos expansion accordingly.

To select the maximum order of polynomials to be used for the
expansion, a separate study is usually undertaken. We have
employed five different order polynomials to describe the variabil-
ity in the output and the evolution of Kullback-Leibler (KL) diver-
gence between actual and estimated distributions of the output
against increasing polynomial orders are presented in Fig. 1. It
can be verified from the figure that beyond the second order, the
precision does not improve much while the computational effort
increases. Second order polynomials are therefore considered for
the outputs. Selection of the order of polynomial for parameter dis-
tribution, however, can not be made a priori. A conservative selec-

Table 2
“True” distributions of the unknown plate parameters: Gaussian case.

Elasticity (GPa) Poisson’s ratio (v)

Distribution Gaussian Gaussian
Mean 62.85 0.334
COV (%) 10 10

10! ‘
[ )8
[
vy,
10°} Vs i
s

-lﬁean KL divergence| |

KL Divergence
=)

TR o i

2

Polynomial order

Fig. 1. KL Divergence over increasing order of polynomials.

tion of third order polynomials for both Gaussian and non-
Gaussian cases are therefore made, even though, first order poly-
nomial would have been sufficient especially for the Gaussian
parameters.

The expansion is therefore truncated beyond second order of
polynomials for the “fitted” output expansion:

yi(&) =yi({&1. &)
=@+ G Y GG+ (E - D+ aiGE Fai(E -1) (13)

Thus 22" = 6 polynomial terms and associated coefficients are
required to describe each of the output, which needs to be esti-
mated from the available measurements Y. Table 3 lists the identi-
fied gPC coefficients for the fitted output. This gPC model of the

fitted output is subsequently used to simulate a sufficiently large
set Y. Table 4 compares the first four moments of the measured
(Y) and fitted outputs (Y).

Parameter estimation is now taken up using the proposed gPC-
EKF method. The same germs used in Eq. (13) are assumed to gov-
ern the parameter expansion. The polynomial is truncated beyond
the third order:

Xi(&) =ay +d)'é + a5 (& - 1) +ay (& - 3¢); 14
Xa(&) = ay + a2 & + a2 (5 - 1) + a3 (& - 3&);

Each input is thus defined using &Y =4 polynomials terms

and their respective coefficients which are estimated as system
states.

In each iteration, the current estimate 3’[‘“_1 is used to obtain the
system parameters X at the collocation points (&) (Step 9, Algo. 1)
which are subsequently propagated through the system model to
get the outputs y (Step 10, Algo. 1). An estimate of the output
gPC coefficients ityH is then obtained from this output set (Step
10 of Algo. 1). The current estimates of the output gPC coefficient

are then employed to simulate output realizations Y (Step 11, Algo.

1). The mismatch between the first four moments of Y and Y are
used to define the error measure €, (Step 12, Algo. 1). The current
estimate of a}, , is then corrected using the Kalman gain and
€i(Steps 13-16, Algo. 1) until convergence is reached. Table 5 lists
the estimated parameter gPC coefficients thus obtained. Statistical
properties and distributions of E and v can be obtained through

Monte Carlo simulation of the respective gPC expansions. The
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Table 3
gPC coefficients for the “fitted” output measurement: Gaussian case.

gPC expansion
fla, e =a)f +dis +aie + a5 (G - 1) +afa s +ad(E - 1)

Coefficients ay @ @ @ @ @l
1 23.710 ~1.130 0.409 0.021 0.102 0.099
Vs 90.293 4531 0.102 ~0.116 -0.073 0.540
Vs 161.60 ~7.807 2.435 0.003 0.076 0.028
Va 319.65 ~15.62 3.871 0.040 0.907 0.825
Vs 517.51 ~24.82 7.300 0.302 2224 1.858
Table 4 _
Comparison of moments of measured Y and “fitted” Y outputs for Gaussian case.
Mean (Hz) Std dev. (Hz) Skewness Kurtosis
Measured Fitted Measured Fitted Measured Fitted Measured Fitted
Y1 23.653 23.702 1.204 1.250 —0.093 —0.085 3.213 2.986
2 90.466 90.563 4.572 4.820 —0.105 0.002 3.001 3.112
V3 161.26 161.58 8.162 8.491 —0.099 —0.080 3.196 2.999
YVa 319.20 319.61 16.02 16.87 -0.111 —0.019 3.044 3.089
Vs 516.55 517.39 25.88 27.10 -0.111 —0.057 3.133 3.039
Table 5
gPC coefficients for system parameters: Gaussian case.
gPC expansion
X&) =ay +aig +ay (& - D)+ a (& -38)
Coefficients ay as a ¥
E (x;) (GPa) 63.29 6.56 0.22 0
Vv (%2) 0.334 0.034 0 0

2| 2| —gPC-EKF
22} 2]

=N =N

Q Q

3| < |

2 £

£ E

R-p =gt ]
° o

— —

Al Al i

40 50 60 70 80 015 02 025 03 035 04 045
Elasticity (GPa) Poisson's ratio

(a) (b)
Fig. 2. Performance of proposed gPC-EKF and traditional KF algorithms in identifying “true” densities of system parameters: Gaussian case.
Table 6

Performance of proposed gPC-EKF and traditional KF algorithms in identifying “true” moments of system parameters: Gaussian case. Note that, being linear Gaussian estimators,
EKF and UKF are unable to estimate moments higher than the second.

Mean (GPa) Std dev. (GPa) Skewness Kurtosis

“True” Identified “True” Identified “True” Identified “True” Identified
Elasticity
gPC-EKF 62.85 63.32 6.29 6.58 0 0.204 3.0 3.054
EKF 62.85 62.84 6.29 1.71 0 - 3.0 -
UKF 62.85 62.55 6.29 1.72 0 - 3.0 -
Poisson’s ratio
gPC-EKF 0.334 0.3345 0.033 0.034 0 —0.041 3.0 2.906
EKF 0.334 0.334 0.033 0.043 0 - 3.0 -

UKF 0.334 0.333 0.033 0.047 0 - 3.0 -
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Fig. 3. Performance of proposed gPC-EKF algorithm vis a vis the traditional KF algorithms in reproducing the probability densities of the first five modal frequencies: Gaussian

system parameters.

Table 7
“True” distributions of the unknown plate parameters: non Gaussian case.

Elasticity (GPa) Poisson’s ratio (v)

Distribution Beta Beta
Mean 44.95 0.124
Std. dev. 10 0.068
o, B {5,2.5} {2,11}

distribution of the estimated outputs too can be obtained from
these same realizations.

Fig. 2a and b compare the density functions of E and v obtained
using the proposed gPC-EKF algorithm with the true densities.

Table 8
gPC coefficients for the “fitted” output measurement: non-Gaussian case.

Table 6 lists the first four moments of these densities. Fig. 3 com-
pares the measured vs. estimated densities of first five natural fre-
quencies of the plate. It is clear that the proposed algorithm is able
to accurately identify the distributions of the unknown system
parameters.

In order to compare our method with linear estimators, we
solve the example using traditional EKF and UKF methods in which
the parameters themselves are considered as the system states.
Figs. 2a, b and Table 6 show the corresponding results. It is clear
that even in this Gaussian case, the traditional KF algorithms fall
short: they are able to estimate the mean satisfactorily, but not
the higher moments.

gPC expansion
Vi) =yi{&r, o)) =af + @ H+ a5 G + B8 -D+dia s +alGE )

Coefficients a @ ay ay ay al

Vi 19.560 2.118 —-0.553 —0.413 —0.022 0.215
Va2 82.993 —3.080 8.617 -1.303 —0.839 -1.150
V3 135.67 —1.438 15.29 —-0.469 0.218 —1.941
Va4 283.38 —20.48 -25.13 -1.718 —2.935 —2.980
Vs 440.43 44.57 —22.41 —8.040 11.33 4.829
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Table 9 N
Comparison of moments of measured Y and “fitted” Y outputs for non Gaussian case study.
Mean (Hz) Std dev. (Hz) Skewness Kurtosis
Measured Fitted Measured Fitted Measured Fitted Measured Fitted
1 19.390 19.390 2.400 2.572 -1.118 -1.416 4.454 6.815
A2 81.497 80.217 10.06 10.75 —1.095 -1.328 4.453 6.621
V3 133.14 133.01 16.46 17.61 —-1.122 —1.425 4.465 6.844
Va 282.50 278.89 34.74 37.08 -1.118 -1.376 4.493 6.765
Vs 441.71 438.51 54.23 57.87 —1.140 -1.430 4,520 6.908
Table 10
gPC coefficients for system parameters: non-Gaussian case.
gPC expansion
xi(&) =ay +aig+ayGE -D+ayGE -3¢4)
Coefficients ay al a s
E (x1) (GPa) 44.94 10.55 ~1.01 ~0.01
v (x2) 0.147 0.086 0.009 0
Table 11

Performance of proposed gPC-EKF and traditional KF algorithms in identifying “true”
estimators, EKF and UKF are unable to estimate moments higher than the second.

moments of system parameters: non-Gaussian case. Note that, being linear Gaussian

Mean (GPa) Std dev. (GPa) Skewness Kurtosis
“True” Identified “True” Identified “True” Identified “True” Identified
Elasticity
gPC-EKF 44.95 45.12 10.00 10.54 —0.594 —0.766 2.877 3.703
EKF 44.95 43.85 10.00 2.39 —0.594 - 2.877 -
UKF 44.95 43.55 10.00 2.40 -0.594 - 2.877 -
Poisson'’s ratio
gPC-EKF 0.124 0.157 0.068 0.086 0.789 0.707 3.473 3.395
EKF 0.124 0.153 0.068 0.102 0.789 - 3.473 -
UKF 0.124 0.148 0.068 0.103 0.789 - 3.473 -
—True —True
£|—gPC-EKF 2
2] w
é —EKF @ L
—UKF
B zl
s s
< «
£ £
£ £
0 10 20 30 40 50 60 70 -0.2 0 02 04 0.6
Elasticity (GPa) Poisson's ratio
(a) (b)
Fig. 4. Performance of proposed gPC-EKF and traditional KF algorithms in identifying “true” densities of system parameters: non-Gaussian case.
3.2. Non-Gaussian case ¥il©) =yi({&, &)
. . . @i i ¢ i ¢ i 3 2 1 Jig £
We continue with the same cantilevered plate, but E and v are =0y + 02 +aq + 0 3 &= 3 +a; &6
now independent and Beta distributed with parameters listed in 3 1
Table 7. The first five frequencies are measured 1000 times as +al <§ 5% _§> (15)

before (giving Y). Pearson classification scheme classifies each dis-
tribution as “three parameter gamma” for which Laguerre polyno-
mials are considered for the gPC expansion. Similar to the Gaussian
case, polynomials of order two and three are selected for measure-
ments and system parameters respectively. The Laguerre expan-
sion for the outputs are:

The output gPC coefficients are estimated as before and listed in
Table 8. This fitted gPC model for output is employed to simulate a

large data set Y. Table 9 compares the moments of the measured
output Y with those of the fitted gPC model Y.
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Fig. 5. Performance of proposed gPC-EKF algorithm vis a vis the traditional KF algorithms in reproducing the probability densities of the first five modal frequencies: non-

Gaussian system parameters.

Similar to the previous case, the parameter gPC expansion is
defined using the same germ set used in Eq. (15):

X X X 3v 1 X 5 3“
(&) =ay +ayé +ay (38 -5 ) +dy (58 -6 );
2172 2172 16)

3 1 5 3
X(&) = a)(()z +a)1(252 +a)2<2 (555 _j) +a§2 (j V; —jfz>§

and proceeding as before with finite element analyses at collocation
points and then minimizing the error between the first four
moments of y(£) and y(¢), the optimal gPC coefficients are obtained
as listed in Table 10.

Fig. 4a and b compares the estimated parameter densities
against their “true” densities and Table 11 compares the corre-
sponding moments. Evidently, the proposed method not only iden-
tified the mean and standard deviations but also accurately
estimated the target distribution by matching up to fourth order
moments. Fig. 5 compares the measured vs. identified output den-
sities for first five modal frequencies.

As before, we compare the performance of our proposed gPC-
EKF technique with those of traditional EKF/UKF techniques.
Table 11 demonstrates the inability of EKF and UKF algorithm to
correctly identify the parameter probability densities. Fig. 4a and
b additionally describe how the forced Gaussian assumption in

the EKF/UKF estimation for a non-Gaussian parameter can result
in significant errors in the estimates. In contrast, the accuracy of
our method is not limited to Gaussian cases; instead, it can identify
any arbitrary distribution for which EKF/UKF fails to provide accu-
rate estimates for even the first two moments of the distributions.

4. Conclusion

In this article we coupled Extended Kalman filtering (EKF) with
generalized polynomial chaos (gPC) expansion to identify probabil-
ity distributions of system parameters using the measured output
uncertainty. The functional relationship between parameter and
output uncertainty is defined using their gPC models. The gPC coef-
ficients for outputs are estimated using Galerkin projection tech-
nique while EKF is employed to estimate the same for
parameters inversely from the fitted gPC model of the output.

While the traditional Kalman filtering based parameter estima-
tion schemes such as EKF and UKF are limited to Gaussian system
parameters, the proposed gPC-EKF approach can estimate arbitrary
parameter distributions efficiently and accurately. The numerical
study on a system with non-Gaussian parameters demonstrated
that with the traditional EKF and UKF algorithms, the forced
assumption of Gaussianity causes significant errors in estimation.
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In contrast, the proposed gPC-EKF efficiently estimated the arbi-
trary non-Gaussian parameter distributions matching up to the
fourth order moments. The dimensionality of the formulation how-
ever increases significantly with the number of parameters and
with the order of the polynomial considered. In this formulation
dependence between parameters is not considered. Future
research will be taken up for systems with correlated parameters.
Application of this algorithm in real life problems with strongly
nonlinear mechanical systems (e.g., systems with plasticity and/
or damage) will also be considered in our future research.

Appendix A
A.1. Pearson classification scheme

This article attempts to identify uncertainty in system parame-
ter from the measured output variability. This necessitates defining
the output uncertainty precisely from the measurement before
propagating it inversely through the model. In this study the distri-
bution of measured output is defined using Pearson’s model crite-
ria [57,58]. Pearson model is a family of continuous distribution
defined by the third and fourth order statistics of a dataset. In Pear-
son model, the density p(x) of a realization x can be obtained as a
solution of this following differential equation:

A—a—x

opRx) .
ax _bZ(X—i)z+b1(x—i)+b0p(x)’ (17)

where by, by, b,, and a are defined as:
bO 4ﬁ2 - Bﬁl

=108, — 128, — 1812 (18)
_p Br+3 .
a—bl—ﬂx/ﬁloﬁz_lzﬁl_ls, (18b)
by — 2, —3p, -6 (18¢)

108, — 12, — 18

Skewness B, and traditional curtosis , of the measured data
set are defined as:

M; M,
ﬁ1:a—§ and 32:0_—%; (19)

Depending on different roots of the quadratic denominator
function of the right hand side of Eq. (17) Pearson model takes
forms of different general distribution type. Thus, using higher
order moments Pearson model identifies the best matching distri-
bution type for a given data set.
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