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Abstract A novel control theory-based eigenstructure

assignment (ESA) technique is employed to update the

finite element model (FEM) of a linear time-invariant

system. The proposed method uses state feedback to pro-

duce the gain matrix which in turn updates the existing

system matrices through simultaneous assignment of

eigenvalue-vector pairs in the FEM generated system ma-

trices. However, unlike general control technique no ex-

ternal input is used to control the system. A subspace

identification algorithm is applied to develop the state

space model and the eigenstructure of its state matrix is

used as the target for the ESA algorithm to update the

FEM. Unlike most FEM updating algorithms which use

optimization techniques, this method is not iterative (and

hence computationally less expensive) as the state matrix

gets updated just once yielding the single best possible

solution to match the desired eigenstructure. Furthermore,

it naturally preserves the basic exploitable properties like

symmetry, sparsity, positive definiteness of the updated

matrices. The method is first validated numerically on a

four-story shear frame subjected to ambient vibrations.

Following this, a two-story one-bay aluminium frame is

subjected to a suite of excitations in the laboratory, and the

response time histories are put through canonical variate

analysis algorithm to yield the real system state space

model, and hence the modal parameters. Noise is taken

care of by singular value decomposition of the signal and

performing ensemble averaging of the state matrix in its

companion form. A very close conformation of the updated

model is observed when compared to the modal parameters

extracted from structural response.

Keywords Finite element model updating � Control
theory � Eigenstructure assignment � Subspace
identification

1 Introduction

Finite element modeling (FEM) is essentially a process of

idealizing an infinite degrees of freedom (DOF) system

into a finite DOF at the cost of accuracy. These idealized

models thus deviate from the real structural systems owing

to assumptions made in regard to boundary conditions,

model order and material and geometric parameters. Model

updating is therefore undertaken, ideally with experimental

cross checking, thus that it can predict the actual response

with better accuracy. The extensive use of experimentally

validated FEMs of complex structure subjected to dynamic

loading have always proved to be a reliable way to verify

structural performance for any kind of load cases. In order

to make the predictor model more reliable systematic im-

provements through calibrating its properties with the real

structure are needed. For that very reason FEM updating

has always been an interesting subject of research for last

few decades [2]. Unlike system identification, which

mostly models the system as black box using almost no

knowledge about the system, FE model updating can be

classified as a gray box modelling approach. In FE model

updating a physical model is derived using prior knowl-

edge about the physics of the system and then updated

using previously identified system properties. Thus the
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updated model still holds its physical significance while its

response conforms to the real system response. Ex-

perimentally measured data (e.g., response history, modal

properties) obtained from real system is an important

component in this procedure as it helps to set the target for

the FE model to achieve.

Different modal testing techniques [12] have been ex-

tensively used for modal parameter estimation of the real

structures. The advancement in the field of digital signal

processing (DSP) and fast Fourier transform technique

(FFT) frequency domain decomposition (FDD) method [6]

of modal testing became popular. However, requirement of

large amount of data to properly identify the modal prop-

erties, deleterious effect of windowing on damping esti-

mation and poor performance with the non-stationary

signals makes FDD less effective in the identification of

real field structures. There are other methods related to

time or frequency domains to identify a system through

measured data in literature. Of these wavelet transform [11]

is a combination of time and frequency domain. Examples

for time domain methods include Ibrahim time domain

method (ITD) [15], complex exponentials method [23],

polyreference method [1], eigensystem realization algo-

rithm (ERA) [17]. Eigensystem realization theory is an

approach of identification based on linear dynamic systems

analysis and control [28]. This method produces a state

space model of sufficiently higher order to describe system

dynamics relating inputs and outputs through some internal

variable termed as states, which may or may not be

physically interpreted. In this method, identification of the

model is done though fitting a state space model of the

damped dynamics of the system [17–19, 26].

To obtain a better predictor model with physical sig-

nificance researchers tried to utilize identified system

properties through FEM updating [13, 16]. Existing tech-

niques to update any FEM can be grouped in four different

categories, namely- direct methods, indirect methods,

control theory-based techniques and probabilistic ap-

proach. Eigenstructure assignment-based FEM updating

can come under the category of control theory-based

techniques. Eigenvalue assignment or pole placement has

always been an interesting field of research for control

engineers. Generally pole placement techniques are used

with an objective to control a system with minimum con-

trol effort possible. There are several pole placement

techniques exist in literature. Arbitrary assignment of

eigenvalues for a closed loop system has been discussed by

Wonham [33]. Moore [25] was the first person to identify

the flexibility offered by state feedback in multivariate

systems beyond closed loop eigenvalue assignment. He

further demonstrated in his paper that a specific number of

elements of each eigenvector of a closed loop MIMO

system can be freely assigned. Kautsky et al. [21],

Srinathkumar [30] discussed robust pole assignment tech-

nique in linear time invariant system. Several other re-

searchers (Garrard et al. [14], Sobel et al. [29]) also

developed algorithm to place eigenstructure for closed loop

system.

ESA for model updating is, however, relatively new

field. Generally vibration data and modal properties have

been used for model updating in most of the literature [4].

Quadratic partial eigenvalue assignment and partial

eigenstructure assignment technique to update FE models

in physical space domain are discussed by Datta [5, 10].

Carvalho [8] showed how state estimates can be used to

update an FE model using optimization techniques. Minas

and Inman [24] has described an iterative way powered by

a non-linear optimization technique of eigenstructure as-

signment to update model using selective elements of

eigenvectors. They also proposed an pole placement tech-

nique for the systems for which mode shapes are unknown.

Several other techniques also exists in literature to update

any parametric model through ESA technique [7, 9, 22, 34,

35].

ESA-based updating technique thus has been exten-

sively used in physical space (second order) or in state

space (first order) in the fields of aerospace or vehicular

motion control. Andry et al. demonstrated how Moore’s

[25] algorithm can be used to update eigenstructure of a

linear system on an airplane model. However, these types

of systems do not contain any particular structure in its

state matrix, whereas state space model of mechanical

system has a specific structure, which can be exploited to

gain more information about the system and therefore re-

quires to be unaltered. Updating of FE models using ESA

technique is thus characteristically different as some extra

constraints are needed to be satisfied. In literature, these

problems are mostly done in physical space, while a state

space model offers greater flexibility for simultaneous

updating of FEM system matrices.

Zimmerman [36, 37] has shown in his paper that it is

possible to find a symmetric correction matrix to update FE

model such that inherent properties of system matrices

remains intact. However, symmetry and other exploitable

properties of updated stiffness and damping matrix can be

identified as major concern in most of these literatures.

Existing methods mostly used optimization techniques

with different objective functions to forcefully maintain

these properties. Application of these techniques in FEM

updating of real life civil infrastructure systems where

assignable eigenstructure needs to be identified from noisy

response signal and thus vulnerable to noise contamination

is also not abundant. Therefore in this study, Moore’s al-

gorithm is employed in state space form of the system

while ensuring controlled updating of the system matrices

to maintain its exploitable structure by a suitable selection
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of input matrix. However, this approach demands that state

space eigenstructure of the system needs to be identified.

Therefore the system is firstly identified through subspace

identification (SSI) algorithm, and then control theory-based

eigenstructure assignment (ESA) technique is employed to

update the state space model of the structure in a way that the

eigenstructure of its state matrix coincides with that of the

state matrix identified through SSI. However, SSI technique

presents few challenges in the identification procedure

which needs special attention. As the measured signal con-

tains noise, identification of the state matrix becomes in-

consistent throughout the length of the time history

presenting different state matrix for different segment of the

signal. Added to that, for different segment of the signal SSI

technique can identify the same state matrix but rotated by

an unknown magnitude. This creates the requirement of

standardizing the identified state matrix for each segment.

An averaging step following the standardization of state

matrix is adopted to minimize the influence of noise in the

signal. The eigenstructure of the identified continuous time

state matrix is then used to update the continuous time state

matrix obtained through FE model using Moore’s algorithm

[25] of eigenstructure assignment.

2 Background

2.1 Discrete time stochastic subspace identification

Generally FE model updating procedure begins with an

identification step. Identified system properties are then

used to update the FE model. State space identification is a

popular identification technique in this regard. It is always

possible to transform differential equations of nth order of

a dynamic system to 2n coupled differential equations of

first order, termed as state space form of the dynamic

system. Consider a dynamical system with n1 DOF. The

linear second-order differential equation of motion of the

dynamic system can be written in state space form as:

_xðtÞ ¼ AcxðtÞ þ BcuðtÞ ð1Þ

where

Ac ¼
0 I

�M�1K �M�1C

� �
; xðtÞ ¼

qðtÞ
_qðtÞ

� �
;

Bc ¼
0

�M�1f

� �
;

ð2Þ

M;C;K are the time invariant mass, damping and stiffness

matrices, respectively, of n1 � n1 order of the dynamic

system. €qðtÞ; _qðtÞ and qðtÞ are the acceleration, velocity

and displacement vectors, respectively, of order n1 � 1 at

the time instant t. FðtÞ ¼ fuðtÞ is the force vector of order

n1 � 1 at time instant t. Ac and Bc are state and input

matrix, respectively, and subscript c represents that the

equations constitute a continuous time state space model of

the process.

The output or measurement equation can be written in

state space form as:

yðtÞ ¼ CcxðtÞ þ DcuðtÞ ð3Þ

where Cc is the output matrix relating states to output yðtÞ
which is generally acceleration time history measured from

the system and Dc is the direct transmission matrix relating

input to output. Equations (1) and (3) describe a continuous

time state space model. The discrete counterpart when the

signal is sampled at intervals of dt can be expressed as:

xkþ1 ¼ Axk þ Buk ð4aÞ

yk ¼ Cxk þ Duk ð4bÞ

where xk ¼ xðkdtÞ and uk ¼ uðkdtÞ are the state vector and
input vector, respectively, in discrete time state space

model at the kth time step. The discrete counterparts of

Ac;Bc;Cc and Dc are:

A ¼ eAcDt; B ¼ ½A� I�A�1
c Bc; C ¼ Cc; D ¼ Dc;

ð5Þ

Equation (4a) describes a deterministic system in its state

space form. If the system is stochastic and the input is

unknown, the input and direct transmission matrices can be

taken to be zero [31]. Further, if noise is present in the

input and the measured output, Eq. (4a) needs to be

rewritten as:

xkþ1 ¼ Axk þ wk ð6aÞ

yk ¼ Cxk þ vk ð6bÞ

where wk and vk are process and measurement noises,

respectively, with covariance matrices

E
wi

vi

� �
wT

j vTj
� �� �

¼
Q S

ST R

� �
dij

Equation (6) can be expressed by a forward innovation

model by applying Kalman’s innovation form as [20]:

x̂kþ1 ¼ Ax̂k þKgek ð7aÞ

yk ¼ Cx̂k þ ek ð7bÞ

where x̂k is the estimate of xk , ek is the innovation vector

and Kg is called Kalman gain. ek is usually modeled as zero

mean white noise. The system matrices A, C and Kg can be

identified using stochastic subspace algorithm given by

Overschee and Moor (See page no: 61 in the [31]) in their

book titled ‘‘Subspace identification for linear systems:

Theory-Implementation-Applications’’.
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2.2 Eigenstructure assignment (ESA)

Control theory has been adopted in this paper to update the

FE model using previously identified system property.

Feedback is used in control to ensure stability character-

istics of the system, to reduce the sensitivity of the system

to modelling error, to improve the system’s capability to

reject disturbances and to alter the transient response of the

system [3]. In this eigenstructure assignment-based model

updating method concept of state feedback is adopted to

assign desired eigenvalues and eigenvectors simultane-

ously to the system matrices. This is done by using a

controller or gain matrix to update the existing system

matrix such that its eigenstructure matches with the desired

eigenstructure.

Consider the state space form of a dynamic system as

given in the following Eq. (8). D matrix is ignored here

considering there is no feed through in the system:

xkþ1 ¼ Aexk þ Beuk ð8aÞ

yk ¼ Cexk ð8bÞ

Transient response of a system depends mostly on the

eigenvalues and eigenvectors of the system. In order to alter

the system’s transient response its eigenstructure must be

changed to the desired structure. In control theory-based

updating an appropriate input vector sequence is selected

[u1; u2; . . .; uk; . . .] so as to place the previously identified

system eigenstructure into the state matrix Ae at respective

locations using system feedback. This process is known as

eigenstructure assignment. In control theory, feedback uses

external input to place this eigenstructure into the system

matrix. But in the proposed approach feedback is used

virtually to update the system matrix. Consider the dynamic

system given in Eq. (8). The control vector uk is defined as a

function of the state vector as: uk ¼ Kcxk where Kc is the

gain matrix. Thus Eq. (8) can be rewritten as:

xkþ1 ¼ ðAe þ BeKcÞxk ¼ �Aexk ð9Þ

This is known as full state feedback since all the states are

used in the updating. Thus, if a proper gain matrix can be

found which updates the system matrix in such a way that

its eigenstructure matches with the desired eigenstructure,

the updated system matrix will represent the system with

better accuracy.

For a system described by Eq. (8) Wonham’s [33] the-

orem enables only eigenvalue embedding to alter the sys-

tem and as such does not ensure a unique solution. Moore

[25] derived the necessary and sufficient conditions for a

proper gain matrix Kc for which the updated state matrix

will have the desired eigenstructure and will also be

unique. This article adopts his technique of eigenstructure

assignment through evaluating a gain matrix Kc.

Moore defined Sk ¼ ½kI� AejBe� and its companion

Rk ¼ Nk Mk½ �T such that the columns of Rk form a basis

for the null space of Sk. Using partitioned basis Rk for each

ki the following holds true:

ðkiI� AeÞNki þ BeMki ¼ 0 ð10Þ

where Nk is a square matrix with linearly independent

columns of size n and Nk� ¼ N�
k, where ð�Þ represents

complex conjugate. The problem at hand given by the

Eq. (9) can be written as:

kiI� Ae Be½ �
vi

�Kcvi

� �
¼ 0 ð11Þ

where vi s are linearly independent sets in C
n and vi ¼ v�j

when ki ¼ k�j . Since the columns of Rk form a basis for the

null space of Sk for each ki; i ¼ 1; 2; :::; n, one can conclude

that vi 2 span of Nk, and thus:

vi ¼ Nkizi ð12Þ

where zi is some vector which relates Nki to vi. Multiplying

both sides of Eq. (10) by zi and using Eq. (12), one gets

ðkiI � AeÞvi þ BeMkizi ¼ 0 ð13Þ

Comparing Eqs. (11) and (13) the gain matrix Kc is given

by:

Kcvi ¼ �Mkizi ð14Þ

This holds true for all ki; i ¼ 1; 2; . . .; n and thus gain ma-

trix Kc can be obtained as:

Kc ¼ w1 w2 � � � wn½ � v1 v2 � � � vn½ ��1 ð15Þ

where wi = �Mkizi. As the desired eigenstructure is a set of

self conjugate eigenvalues and eigenvectors satisfying

k1 ¼ k�2 and v1 ¼ v�2 and so on, the above equation can be

modified as described by Andry et al. [3] as:

Kc ¼
wr1 wI1 wr3 wI3 � � �

wrn wIn

� �

vr1 vI1 vr3 vI3 � � �
vrn vIn

� ��1 ð16Þ

where subscript r and I signifies real and imaginary part of

the corresponding element. The resultant gain matrix is

used in the Eq. (9) to calculate the updated state matrix.

3 FEM updating using ESA technique

This section describes the method developed in this paper

for updating a primary FE model using acceleration history

through ESA technique. Noise in the signal is the major

challenge in SSI-based identification of the real structure
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from its acceleration time history. Although the singular

value decomposition (SVD) step inside the SSI algorithm

removes the effect of noise to some extent, the remaining

noise can contaminate the output of the identification al-

gorithm. To overcome this noise problem, this paper di-

vides the signal into a number of segments and performs

system identification on all those segments separately.

Suppose two segments of the time signal are used to

identify two sets of system matrices A, C and Kg and A0,

C0 and K0
g. Since both models are describing the same

linearly time invariant stochastic system, differing at most

by a linear transformation of the state vector, these two sets

of matrices must be related as:

A0 ¼ TAT�1; K0
g ¼ TKg; C0 ¼ CT�1; ð17Þ

where T is a non-singular and therefore unique transfor-

mation matrix. Although it is not possible to independently

identify this transformation matrix, one can transform the

state matrix A into a sparse matrix (the ‘‘Luenberger

transformation’’ [32]) with non-zero elements a0nj; j ¼
1; . . .; n in the bottom row, unit values in the first upper off

diagonal position, a0iiþ1 ¼ 1; i ¼ 1; . . .; n� 1, and all other

elements being zero:

A0 ¼

0 1 0 . . . 0

0 0 1 . . . 0

..

. ..
. ..

. . .
. ..

.

0 0 0 . . . 1

a0n1 a0n2 a0n3 . . . a0nn

2
6666664

3
7777775

ð18Þ

This transformation yields almost consistent results for

each of these segments used for identification. A time av-

eraging of this transformed state matrix gives a better es-

timation of the state matrix and thus noise effect can be

minimized. This averaged A0 corresponds to discrete time

system and therefore requires to be transformed to con-

tinuous time domain by zero order hold (ZOH) method and

then eigenvalues of the transformed state matrix are used to

update the primary FEM. Although mere placing the

eigenvalues will not ensure a unique solution to this

problem for which the associated eigenvectors should also

be assigned. Fortunately, eigenvectors are not much sen-

sitive to small change in parameters of the FE model. Thus,

if the primary FE model is selected sufficiently close to the

real system, the eigenvectors of this primary model along

with the identified eigenvalues can constitute the desired

eigenstructure which must be matched by the FEM gen-

erated state matrix.

The ability of the ESA algorithm is then exploited to

alter eigenstructure of the continuous time state transition

matrix which is developed using system matrices of pri-

mary FEM. Thus Ae in Eq. (8) is actually continuous time

state transition matrix Ac obtained using the primary FEM.

The choice of Be matrix in the ESA algorithm described

above is however arbitrary as long as: (1) it does not affect

controllability which can be ensured by specifying

Rankð½kiI� AcBe�Þ � n, (2) after updating the upper half of

the updated state matrix does not change. Be is therefore

chosen as:

Be ¼
zðnÞ zðnÞ
B1 B2

� �
;Ac ¼

zðnÞ IðnÞ
Ac1 Ac2

� �
ð19Þ

�Ac ¼ Ac þ Be

k1 k2

k3 k4

� �

¼
zðnÞ IðnÞ

Ac1 þ B1k1 þ B2k3 Ac2 þ B1k2 þ B2k4

� � ð20Þ

where k1; k2; k3; k4 are the four blocks of gain matrix Kc.

zðnÞ and IðnÞ are the null and identity matrix of order n.

The benefit of this technique is that it preserves the

structure of the state matrix and one can identify local

changes in the stiffness or damping matrix due to the up-

dating. Spurious weak coupling between physically non-

connected DOFs are usually insignificant. Finally, any one

out of the three system matrices (stiffness, mass or damp-

ing) must be assumed to have been truly modelled in this

updating process, and thus can be considered to be un-

changed after updating. Commonly the mass matrix is

considered to be unchanged, and the updated stiffness and

damping matrices (Ku and Cu) are obtained from the lower

left block and the lower right block of the state matrix as:

Ku ¼ �MðAc1 þ B1k1 þ B2k3Þ;
Cu ¼ �MðAc2 þ B1k2 þ B2k4Þ

ð21Þ

4 Numerical validation

The proposed method is first validated on a numerical

model of a four-story shear frame building (Fig. 1) sub-

jected to ambient vibrations. The ‘‘real system’’ in this case

is a lumped mass model with 1 % Rayleigh damping, for

which stiffness (K0) and mass matrices (M0) are as

follows:

K0 ¼

800 �800 0 0

�800 2400 �1600 0

0 �1600 4000 �2400

0 0 �2400 5600

2
6664

3
7775kN=m;

M0 ¼

1500 0 0 0

0 3000 0 0

0 0 3000 0

0 0 0 4500

2
6664

3
7775kg;
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The primary model of the same system is then created with

the same mass matrix, a different damping ratio (0.1 %)

and a different stiffness matrix Km:

Km ¼

700 �700 0 0

�700 2100 �1400 0

0 �1400 3500 �2100

0 0 �2100 4900

2
6664

3
7775kN=m;

Each node of the real system is subjected to white noise

excitation and the structural response is obtained using

Newmark beta algorithm. The acceleration signal is

recorded at all four nodes with a sampling frequency of

1000 Hz which is then contaminated with 10 % white noise

for better representing the field condition. A small segment

of the simulated clean signal and the contaminated signal is

presented in Fig. 2. The SSI algorithm is then employed to

construct state space models of the system of orders

10–100. Identification of the system dynamics in its state

space domain facilitates simultaneous identification of the

dynamic properties and the damping information. The

eigenstructure of the identified state matrix contains this

information about the system dynamics.

Eigenvalues of the state matrix identified from the

acceleration signals have the form kn ¼ �nnxn�
ixn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2n

q
. Figure 3 shows the stabilization plots of

ImðknÞ versus model order. Amongst the identified roots,

those having physical significance stabilize over increasing

model order; whereas those that are mere computational

poles scatter away and do not stabilize. Each of these stable

roots belongs to a particular mode of the system and

exploiting its special structure (i.e. kn ¼ �nnxn �

ixn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2n

q
) a set of natural frequency and damping ratio

(xn and nn) pair can be obtained. Thus for each identified

stable root the associated mode number and fxn; nng pair

are identified. For the simplistic nature of the current

problem the selection of most likely fxn; nng pair from

all identified fxn; nng sets is not difficult. However for

complex problems the identified fxn; nng sets are usually

a little scattered which may create problem in identifica-

tion of most likely fxn; nng pair. Thus for complex

problems for each mode all associated fxn; nng pairs are

plotted in 2D histograms and the mode values of these

histograms are selected as the most likely fxn; nng set.

This strategy is attempted in the experimental verification

problem.

Identified fxn; nng pair is subsequently used to recon-

struct the state space eigenstructure which is used to update

the primary FE model of the system. The updated stiffness

(Kup) and damping matrices (Cup) are presented below.

Fig. 1 Schematic diagram of four-story shear frame building and its

lumped mass model
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Fig. 2 Simulated clean and noise contaminated signals

0 2 4 6 8 10 12

10

20

30

40

50

60

70

80

90

100

Im(λ)

M
od

el
 o

rd
er

First mode
Second mode
Third mode
Fourth mode
Identified roots

Fig. 3 Stabilization diagram of the different order state space models

of the shear frame
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Kup ¼

796:5 �804:3 0:007 0:008

�804:3 2411:5 �1614:0 0:002

0:007 �1614:0 4018:6 �2429:1

0:008 0:002 �2429:1 5622:9

2
6664

3
7775kN=m;

Cup ¼

0:6546 �0:4517 �0:0003 �0:0004

�0:4517 1:7761 �0:8733 0:0025

�0:0003 �0:8733 3:1941 �1:0967

�0:0004 0:0025 �1:0967 4:3561

2
6664

3
7775kN�m=sec;

Evidently the updated stiffness and damping matrices re-

tain their symmetry and positive definiteness after updat-

ing. Comparing the stiffness matrices of real and updated

systems one can see that the proposed method locally up-

dates each and every element of the stiffness matrix even

though global properties are used for updating. From the

updated stiffness matrix, the story stiffnesses of all four

stories are identified as 796.5, 1615, 2403.6 and 3219.3 kN/

m, which are sufficiently close (error \1%) to their cor-

responding actual values. The noisy measurements create

spurious coupling between unconnected DOFs (e.g., ele-

ments (1, 3), (1, 4), etc., in Kup) which should be ignored.

The frequency response diagrams for the real system, the

primary FE model and the updated FE model are presented

in Fig. 4. Modal properties of the real system, the primary

and updated models are also listed in Table 1. These clearly
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−200
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[d
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|(
1m
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2 )2 ]/H

z
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Fig. 4 Frequency response plot of real system, primary FE model and

updated FE model of the shear frame building

Table 1 Natural frequencies and damping ratios for all modes of real system, primary and updated FE models

Mode number Real system Primary model Updated model

Frequency (Hz) Damping ratio (%) Frequency (Hz) Damping ratio (%) Frequency (Hz) Damping ratio (%)

Mode 1 1.727 1 1.616 0.1 1.721 1.104

Mode 2 3.854 1 3.605 0.1 3.832 1.159

Mode 3 5.338 1.179 4.993 0.118 5.352 1.0622

Mode 4 7.262 1.465 6.793 0.146 7.287 1.543

Fig. 5 Schematic diagram of

the FE model and experimental

procedure
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demonstrate that the updated FE model better represents

the real system.

5 Experimental validation

The proposed method is then experimentally employed

on a six-member-framed structure made of aluminium bars

of 30 mm � 6 mm cross section instrumented with four

accelerometers of type 4503 (see Fig. 5). An impact

hammer of B&K 8206-002, 2.3mV/N is used to excite the

frame and acceleration signals are recorded by the 3560C

B&K portable pulse acquisition front end software [27] at

sampling frequency of 2048 Hz.

As discussed previously the recorded noisy signal is put

through SSI algorithm to prepare different order state space

models and corresponding eigenstructures are extracted.

Figure 6 shows the stabilization plots of ImðknÞ versus

model order. All sets of identified fxn; nng pairs for each

mode are plotted in 2D histograms. The 2D histograms

corresponding to the first seven identified modes are shown

in Fig. 7. The most likely fxn; nng pair is then obtained as

the mode value (i.e., highest occurrence) of the histogram.

This selected set is used to reconstruct the state space

eigenvalue of the system which is subsequently used to

update the primary FE model of the system, discussed next.

The primary three dimensional finite element model of

the frame consists of six Euler-Bernoulli beam elements

with 6 DOFs at each node. Table 2 lists the material

properties used for modelling purpose. The two angles at

each joint of the experimental set up ensures that the joint

is rigid. Consequently each node of the FE model has been

defined as moment resisting and is assigned concentrated

masses to replicate the angle joints connected by bolts. The

base nodes are modelled as fixed joints. Proportional 1 %

Rayleigh damping is assumed for response simulation. The
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Fig. 6 Stabilization diagram of the different order state space models

of the aluminium frame

Fig. 7 2D histogram plots of

natural frequency and damping

ratio corresponding to first

seven identified eigenvalues
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first ten eigenfrequencies along with corresponding mode

shapes are plotted in Fig. 8. This model fails to produce the

same dynamic properties as the real system and their dif-

ferences are presented in Table 3. This mismatch necessi-

tates updating the model which is undertaken by the ESA

method.

The seven eigenstructures identified above (See Fig. 7)

are used to update the FE model. Table 3 lists (in the 2nd

and 3rd columns) the identified frequency and damping

values of these seven modes. It is important to note that

these seven are not the first seven modes of the structure:

the missed eigenstructures correspond to mode shapes (2nd

and 4th) that are not constrained within the plane of frame

structure (Fig. 8). As the experiment is performed with

accelerometers that pick only in-plane acceleration signals,

no out of plane modes is identified from the acceleration

history. The 4th and 5th columns of Table 3 list the

eigenstructure of the primary FE model. During ESA-based

updating, the unidentified modes are left untouched, and

only the seven identified eigenstructures are updated. The

last two columns of the Table show the updated results.

Updated stiffness and damping matrices are also extracted

from the updated state matrix using Eq. (21) and frequency

Table 2 Assumed parameter values for FE modeling

Material Aluminum

Young’s modulus 70 GPa

Shear modulus 26 GPa

Density 3000 Kg/m3

Poisson’s ratio 0:346

Damping ratio 1 % Rayleigh damping

Fig. 8 Mode shape

configuration corresponding to

the first ten eigenfrequencies of

FE model

Table 3 Natural frequencies and damping ratios related to first nine modes of real system, primary and updated FE models

Mode number Real structure Primary model Updated model

Frequency (Hz) Damping ratio (%) Frequency (Hz) Damping ratio (%) Frequency (Hz) Damping ratio (%)

Mode 1 18.310 1.780 21.140 1 17.831 1.971

Mode 2 Not identified Not identified 42.138 1 42.138 1.000

Mode 3 63.180 0.670 69.879 1.305 62.427 0.606

Mode 4 Not identified Not identified 102.541 1.758 102.541 1.758

Mode 5 168.021 0.184 181.532 2.946 166.856 0.079

Mode 6 231 0.67 257.133 4.118 227.829 0.261

Mode 7 283 1.728 301.516 4.811 281.725 1.526

Mode 8 321.9 0.43 331.363 5.279 321.710 0.287

Mode 9 381.8 0.42 382.10 6.075 381.799 0.425
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response function (FRF) is obtained using these system

matrices. Figure 9 shows the FRFs corresponding to the

initial and updated models. As stated above, the FRFs for

the second and fourth modes remain unaltered. It is clear

that the updated model represents the original structure

more accurately. The updated system matrices K and C

also satisfy the desired exploitable properties like sym-

metry, definiteness, sparsity and bandedness. A negligible

weak coupling between non-connected DOFs is observed.

Unlike optimization techniques, the proposed method does

not need to set constraints on basic properties of the system

matrices. However, as updating is local in the proposed

method (i.e., each element of the stiffness matrix is updated

independently) physical properties such as EI;G may be

estimated in an average sense. Table 4 lists the EI and G

values (mean and coefficient of variation) for all six

members.

6 Conclusion

Identifying the dynamic properties of a real system and

using that information to update the mathematical model of

the system are challenging tasks. The challenges arise from

noise present in the signal, system complexity, closely

spaced modes, etc. Further, the experimental system

identification has potential limitations due to limitations in

number, and type and locations of sensors that can be

placed on the system. A sufficiently close primary finite

element model of the system can be helpful in this regard.

This initial model can guide through the procedure of

identification even if it fails to replicate the real system

properties accurately. This primary FE model can provide

rough ideas about natural frequencies, presence of closely

spaced modes, etc. With this basic information, the iden-

tification of the dynamic properties from noise con-

taminated signals becomes less complicated.

In this paper, the eigenstructure assignment (ESA)

method has been adopted to update the continuous time

state space model of a linear time-invariant system. A

subspace identification (SSI) algorithm is applied to de-

velop the state space model and the eigenstructure of its

continuous time state matrix is used to update the primary

state space model developed using FEM generated system

matrices. This is due to the fact that in continuous time

domain the state transition matrix retains the physically

explicable structure. Thus ESA algorithm given by Moore

is manipulated only to use its capability of altering

eigenstructure of a continuous time state matrix. A state

space model is preferred over physical space model since it

enables simultaneous updating of stiffness and damping

matrices and also can be integrated to the control envi-

ronment. The mapping of the state space back into the

physical space is thus avoided.

The benefit of this method also lies in the fact that it is

not iterative and hence computationally less expensive.

Most FEM updating algorithms use optimization tech-

niques in which stiffness and damping matrices are updated

sequentially. Besides, optimization often suffers from

problem of premature convergence and multiple optima. In

ESA-based method, the state matrix gets updated just once

yielding the single best possible solution to match the de-

sired eigenstructure. Furthermore, unlike other FEM up-

dating algorithm, it preserves the basic exploitable

properties (like symmetry, sparsity, positive definiteness)

of the updated stiffness and damping matrices. Connec-

tivity between DOFs of stiffness and damping matrices is
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Fig. 9 Frequency response function of primary and updated FE

models

Table 4 Approximated EI and
G value obtained from updated

stiffness matrix

Member Primary model Updated model

EI (N-mm2) G (GPa) EI (N-mm2) (mean) COV (%) G (GPa) (mean) COV (%)

3 37.8 �106 26 35.46 �106 8.2 24.2 5.2

35 37.8 �106 26 34.92 �106 7.5 24.8 6.1

56 37.8 �106 26 35.55 �106 10.1 25.1 6.5

64 37.8 �106 26 34.83 �106 11.2 25.4 5.5

34 37.8 �106 26 36.21 �106 9.0 24.4 9.3

42 37.8 �106 26 35.01 �106 6.5 24.5 6.5
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also maintained in most cases. However, this method de-

mands the availability of the system matrices which most

commercial FE analysis softwares do not provide due to

memory constraints. Thus for large and complex systems,

user-developed codes may need to be written to make

system matrices available.
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