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A B S T R A C T

The application of apatites, a class of naturally occurring calcium phosphate minerals with the most common
forms being hydroxyapatite (HAP), fluorapatite (FAP) and chlorapatite (ClAP), range from primary production
of phosphorus, to bone and dental implants, to potential usage in carbon sequestration and nuclear waste
immobilization including those that involve exposure to high temperatures. Due to their hexagonal structure,
apatites have five independent elastic constants: nevertheless, experimental studies commonly report isotropic
properties, and limited computational results available in the literature exhibit a large scatter. Moreover,
investigation of temperature dependence of apatite elastic properties which would be essential for designing
future applications is yet to be addressed in the current state of the art. In this work, we evaluate the single
crystal elastic constants of the three apatite structures using stress–strain relationships: first from density
functional theory (DFT) using ultrasoft pseudopotential with PBEsol exchange–correlation functional under
generalized gradient approximation (GGA) on a single unit cell , and then with molecular dynamics (MD) with
a 5×5×5 unit cell using a core–shell based potential model at temperatures varying from 10K to 1500K. In this
temperature range, apatites exhibit the highest stiffness along the ‘𝑐’ axis, and their elastic constants noticeably
decrease with increasing temperature. At very high temperatures, 𝐶33 becomes greater than 𝐶11 for both FAP
and ClAP. It is noteworthy that our DFT study exhibits better conformity with experimental findings when
compared to other DFT studies reported in literature. Additionally, MD studies have demonstrated favorable
consistency in predicting elastic constants, potentially as a result of fitting potential parameters to experimental
data. We also calculate various effective isotropic elastic properties from our single crystal MD results and study
their temperature dependence as a substitute for first principles modeling of large polycrystalline systems. All
the apatites have very comparable bulk, shear, and elastic moduli, but FAP has slightly higher values, and
interestingly, HAP’s Poisson’s ratio shows no variation with temperature. This study sets the baseline with
which any future studies on high-temperature applications of apatites (such as carbonate or radionuclide rich
apatites) can be compared.
1. Introduction

Calcium phosphate apatites are the most commonly occurring nat-
ural phosphate minerals. As a primary source of phosphorus, they are
utilized in a variety of applications, such as the production of fertilizers,
animal food additives, detergents, and pesticides [1]. The chemical
formula of calcium phosphate apatites is [Ca10[(PO4)6][X]2, where the
X sites are occupied by anions like Br−, Cl−, F−, or OH−. While apatites
are typically found in hexagonal symmetry with P63/m space group,
the structure is highly flexible, allowing for several substitutions [2] in
Ca and PO4 sites. As may be guessed, due to such flexibility, multiple
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types of apatites are found naturally. Of them, the most prevalent ones
are Fluorapatite (FAP), Hydroxyapatite (HAP), and Chlorapatite (ClAP),
where the site X is occupied by F−, OH−, and Cl−, respectively.

These three apatites have numerous biomedical applications: FAP
and ClAP are often used in orthodontics [3], and HAP is widely used
as a coating for orthopedic implants [4]. There is an increasing demand
for these apatites in the environmental remediation industry to se-
quester CO2 [5], heavy metals [6] and dyes [7], and to store radioactive
wastes [8].
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Some of these applications may involve high operating tempera-
tures. For example, if one wants to sequester CO2 directly from the
source, one must consider the typical exhaust gas temperature of 400–
600 K in automobiles and 700–800 K in thermal power plants [9].
For CO2 sequestration, it has been shown that HAP absorbs CO2, upon
dehydroxylation, at a very high temperature range of 1100–1400 K [5].
Likewise, for immobilizing radionuclide waste in apatite matrix, a
sintering temperature of 1300–500 K is needed [10].

While these diverse applications of calcium phosphate apatites are
possible due to their unique macroscale mechanical properties, it is
essential that an accurate estimate of these properties are available
for an efficient and cost-effective adoption of these minerals. Due
to their hexagonal structure, apatite crystals have five independent
elastic constants. Nevertheless, as we review in the next section, ex-
perimental studies commonly report isotropic properties, and limited
computational results available in the literature exhibit a large scatter.
Moreover, investigation of temperature dependence of apatite elastic
properties which would be essential for designing future applications
is yet to be addressed in the current state of the art.

In this work, we evaluate the single crystal elastic constants of
the three apatite structures: first from density functional theory (DFT)
using ultrasoft pseudopotential with PBEsol exchange–correlation func-
tional under generalized gradient approximation (GGA) on a single
unit cell, and then with molecular dynamics (MD) using a core–shell
based potential model at temperatures varying from 10 K to 1500 K.
While DFT is considered to be more accurate than MD, but the first
principle investigations are limited to ground states, although 𝑎𝑏 𝑖𝑛𝑖𝑡𝑖𝑜
MD (AIMD) can be used to include temperature effects, but it is
computationally very expensive. Also, the accuracy of DFT depends on
several factors, including numerical tolerances (e.g., related to spatial
discretization and k-point sampling), the choice of pseudopotential,
and the exchange–correlation functional used. While numerical toler-
ances can be tightened to improve accuracy, the pseudopotential and
exchange–correlation functional cannot be systematically improved.
Higher rung functionals, such as hybrid functionals, offer greater ac-
curacy but are computationally expensive, while semi-local functionals
such as the generalized gradient approximation (GGA) offer a good
balance between accuracy and computational efficiency. Nevertheless,
even with a GGA functional, DFT is computationally expensive due to
its inherent cubic-scaling cost relative to the system size (number of
electrons). This prohibits the use of DFT for large-scale ground-state cal-
culations, let alone for AIMD. On the other hand, MD simulations, being
a linear-scaling method, can handle much larger systems. However, the
accuracy of MD simulations is dependent on the interatomic potentials,
and finding a suitable potential model for a desired system can be
challenging. The choice of MD potential is based on our earlier study
which revealed that the Buckingham-based potential for modeling the
non-bonded interactions is best suited for understanding the elastic
properties of apatites. With the absence of direct experimental data
for hydroxyapatite (HAP) and chlorapatite (ClAP), and the scattered
nature of available data for fluorapatite (FAP), DFT simulations serve
as a reference point for validating our MD results at room temperature.
In order to make the results consistent, we employ the same structure
for both DFT and MD in our current work, along with the same family of
inter-atomic potentials and convergence criteria for the three apatites.

This manuscript is organized as follows: Section 2 reviews and
identifies gaps in the currently available experimental and computa-
tional data on apatite elastic properties. Section 3 details the MD and
DFT simulations adopted for estimating the elastic constants and their
related properties. Subsequently, our results are discussed in Section 4.
We end this manuscript with our conclusions and way forward. We
hope this work will set the baseline with which future studies on high-
temperature applications of apatites (such as carbonate or radionuclide
2

rich apatites) can be compared.
2. A brief review of reported elastic constants

Experimentally, determining the individual anisotropic elastic con-
stants of apatites is challenging. Most of the studies have reported
the effective isotropic elastic modulus of apatites, as may be seen in
Table 1. An interesting observation can be made from Table 1: a wide
scatter may be seen in the reported values of 𝐸. For FAP, 𝐸 varies
from 118.7 GPa to 146.6 GPa. The scatter is even more for HAP and
ClAP. Such large scatter may be attributed to the differences in the
density, geometry, crystallinity, grain size, and purity of the apatite
samples along with the differences in the used experimental methods.
For example, Gilmore and Katz [11] measured the ultrasonic velocities
in compressed HAP powder under various pressures, extrapolated them
to zero pressure to remove the influence of porosity, and based on their
data the approximated (using VRH) 𝐸 = is 114 GPa. Currey [12], on
the other hand, assumed the 𝐸 value of HAP as 176 GPa to demonstrate
that the elastic modulus of bones grows rapidly with mineral content,
and reaches up to 15 GPa. Similarly for ClAP, the elastic modulus as
determined by the nanoindentation technique [13], is reported to be
110 ± 15 GPa (using a weighted average across various directions),
while according to the recent study by Zhang et al. [14], it is ∼
42.7 GPa.

Table 1 also summarizes the experimental results on the five indi-
vidual elastic constants of apatites: 𝐶11, 𝐶12, 𝐶13, 𝐶33, and 𝐶44. It is
likely that due to the difficulty in independently assessing them, only a
few experimental results are available. As can be seen from the table,
two divergent sets of elastic constants of FAP have been reported in the
literature. Bhimasenachar [15] suggested that 𝐶11 > 𝐶33, while Yoon
et al. [16] and Sha et al. [17] independently assessed 𝐶33 to be greater
than 𝐶11. Further, it is important to note that no study, to the best of our
knowledge, has reported the individual elastic constants of ClAP, and
only one study has reported indirectly the elastic constants of HAP [18]
where they are obtained by scaling the isotropic moduli of HAP against
the corresponding moduli of FAP.

The need to accurately assess the different elastic constants, consid-
ering the inconsistencies with the experimental results, has necessitated
their evaluation using computational methods. Of the different meth-
ods, electronic scale density functional theory (DFT) and atomic scale
molecular dynamics (MD) simulations have been widely used by re-
searchers. However, the accuracy of the results obtained using these
methods depends on many factors, such as the underlying crystal
structure (for both DFT and MD), the interatomic potential (for MD),
the choice of exchange–correlation functional and pseudopotential (for
DFT). For example, due to differences in the initial structure, the DFT
results of Ching et al. [20] and Snyders et al. [21] for HAP, differ by
∼ 50% for C12 and by 33% for 𝐶33, as is evident from Table 2. Similar
differences can also be observed in the MD results of HAP as well —
Mostafa and Brown [22] and De Leeuw et al. [23] employed different
potential parameters in MD simulations, which resulted in 25% and
18% differences in 𝐶33 and 𝐶11, respectively. The differences are suffi-
cient to change the relative ordering of the elastic constants 𝐶12, 𝐶13,
and 𝐶44. The inconsistency in the relative ordering is also observed
among the MD and DFT results for FAP and ClAP. The variability and
inconsistency of the reported data make it difficult to reliably estimate
the other mechanical properties of these three apatites. Therefore, it is
important to evaluate elastic constants consistently, taking into account
their dependence on previously identified factors. It is also worth noting
that the elastic constants of apatites stated above are only provided at
the room temperature.

3. Computational methodology

This section outlines the procedure utilized in our investigation to
determine the lattice parameters, the elastic constants and the asso-
ciated elastic properties. Our goal in this study is to: (i) evaluate the
five elastic constants of hexagonal HAP, FAP, and ClAP independently
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Table 1
Reported experimental elastic constants (in GPa) along with reported/calculated values of 𝐵, 𝐺, 𝜈, and 𝐸. The calculated values are obtained through the
Voigt–Reuss–Hill (VRH) averaging.

Type 𝐶11 𝐶12 𝐶13 𝐶33 𝐶44 𝐵 𝐺 𝜈 𝐸 Remarks

166.7 13.1 65.5 139.6 66.3 84.2 60.6 0.20 146.6 Ultrasonic technique [15]
143.4 44.5 57.5 180.5 41 86.5 46.7 0.27 118.7 Ultrasonic pulse superposition method [16]
152.0 49.7 63.1 185.8 42.8 92.7 47.9 0.27 122.8 Ultrasonic technique [17]FAP

– – – – 94a 46.4a 0.29 120a From elastic wave velocity through powders under
pressure [11]

137.0 42.5 54.9 172.0 39.6 82.6 44.6 0.27 113.3 Approximation based on FAP’s elastic constants [18]
– – – – – 89a 44.5a 114 From measurement of elastic wave velocity through

powders under pressure [11]HAP
– – – – – – – – 62.8a Microdeformation of bone filaments under torsional

loading [19]

– – – – – – – – 42.7a Nano-indentation technique [14]ClAP – – – – – – – – 110 ± 15a Nano-indentation technique [13]

aCorrespond to the reported experimental values.
Table 2
Reported elastic constants (in GPa) of apatites from computational studies.

Type 𝐶11 𝐶12 𝐶13 𝐶33 𝐶44 𝐵a 𝐺a 𝜈a 𝐸a Remarks

117.1 26.2 55.6 231.8 56.4 76.31 52.35 0.19 127.83 DFT study using Hexagonal unit cell [21].
117.9 30.55 66.4 165.0 38.5 77.2 39.4 0.28 101.0 DFT study using Hexagonal unit cell [24].
140.0 42.4 54.9 172.0 39.6 83.32 45.23 0.27 114.91 DFT study using orthorhombic unit cell [20].
158.0 57.5 59.8 147 43.9 90.76 46.57 0.28 119.31 MD study based on core–shell model [22].HAP

134.4 48.9 68.5 184.7 51.4 89.63 46.48 0.27 118.89 MD study based on core–shell model [25].

126.3 36.2 63.4 167.6 34 80.7 39.2 0.29 101.3 DFT study on hexagonal unit cell [24].
165.0 55.0 60.0 145.0 40.2 91.5 46.6 0.28 119.5 MD study based on core–shell model [22]FAP
150.6 62.8 73.6 176.6 53.2 99.2 47.6 0.29 123.2 MD study based on core–shell model [25].

109.6 30.9 47.2 152.2 39.2 67.6 39.7 0.2 99.7 DFT study on hexagonal unit cel [26].ClAP 126.7 77.6 38.6 176.0 49.1 82.0 51.9 0.23 128.63 MD study based on core–shell model [27].

aare obtained from VRH approximation.
c
r
s
A
a
i
M
t
f
i
t
a
f
a
p

3

s

𝜎

sing both DFT and MD, (ii) utilize the evaluated elastic constants to
alculate related mechanical properties — isotropic elastic modulus,
ulk modulus, and shear modulus, and (iii) identify the temperature
ependence of the elastic constants and the related mechanical prop-
rties. Considering that very few experimental studies have focused
n studying the single crystal elastic constants of apatites, we use the
FT results as the benchmark for comparison with our MD results. In
rder to avoid the discrepancies associated with the different initial
tructures, in the present work, we use the same structure for both DFT
s well as MD, along with the same family of inter-atomic potentials
nd convergence criteria for the three apatites.

.1. Structural details

The baseline structures of the three apatites, which form the basis
or all of our simulations, are described first. The geometry of the
patites used in this work belongs to the P63/m space group and has a

hexagonal structure. This system comprises two equal crystallographic
axes, 𝑎 = 𝑏 (the basal plane lattice parameters i.e, the edge lengths of
the basal plane of the hexagon) and the third axis, 𝑐, (height of the unit
cell) which is perpendicular to the basal plane. In literature, HAP and
ClAP are also found in the monoclinic space group P21/b, depending
on the stoichiometry, temperature, and synthesis pressure [28,29]. The
variations between the models are due to the differences in the local
ordering of the anion groups (OH−,F−, Cl−) and minor deformation
of the phosphate tetrahedra. For our study, we used the experimental
data given by Hughes et al. [30] in the P63/m space group as an initial
guess of the pristine apatite structures. This structure has been utilized
in numerous theoretical investigations. Mostafa and Brown [22], for
example, employed it to generate the potential model for the FAP
and HAP, Snyder et al. [21] also used it to investigate nanoscale
deformation processes in bulk hexagonal HAP under uniaxial pressure.

It should be noted that the HAP and ClAP structures have a disorder
at the OH− and Cl− locations due to the two mirror planes at 1

4 𝑐 and 3
4 𝑐.

s a result of this disorder, the number of OH− and Cl− ions per unit
3

ell doubles with partial occupancy. This problem is circumvented by
emoving the excess hydroxyl and chloride groups. FAP does not show
uch partial occupancy as the F− ions are situated on the mirror planes.

schematic representation of the unit cells for the three different
patites is depicted in Fig. 1, along with the crystallographic axes. The
nitial coordinates of each structure are given in the Supplementary
aterial. While the base structure for the three apatites are the same,

he fractional coordinates of chloride ions along the 𝑐 axis are different
rom those of hydroxyl and fluoride ions. The potential energy of ClAP
s found to be minimum (not shown) when the fractional coordinates of
he two chloride ions are 0.00 and 0.50 along the 𝑐 axis instead of 0.25
nd 0.75. Thus, we take the configuration of ClAP shown in Fig. 1(c)
or the remainder of this study. All of our MD simulations make use of

5 × 5 × 5 supercell, while our DFT study uses a single unit cell of
ristine apatite structures.

.2. Computation of elastic properties

In the elastic limit, the generalized Hooke’s law relates stresses with
trains through the relation:

𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜖𝑘𝑙 , (1)

where, 𝜎𝑖𝑗 and 𝜖𝑖𝑗 are the components of the stress and the strain
tensor, respectively, and 𝐶𝑖𝑗𝑘𝑙 represents the components of the con-
stitutive matrix. Due to the symmetry of hexagonal crystals, the consti-
tutive matrix of apatites can be expressed in terms of five independent
constants,

𝐶 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

𝐶1111 𝐶1122 𝐶1133 0 0 0
𝐶1122 𝐶1111 𝐶1133 0 0 0
𝐶1133 𝐶1133 𝐶3333 0 0 0
0 0 0 𝐶2323 0 0
0 0 0 0 𝐶2323 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎝ 0 0 0 0 0 𝐶1212⎠
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Fig. 1. A schematic representation of apatite unit cells: (a) Hydroxyapatite, (b) Fluorapatite, and (c) Chlorapatite, where a, b, c are the lattice parameters as mentioned in
Section 2.1.
Table 3
Imposed strains and their corresponding relationship with stresses and strain energy
density. Adopted from [24].

Imposed strain(s) Non-zero stress(es) Strain energy density

𝜖1
𝜎1 = 𝐶11𝜖1

𝑈 = 1
2
𝐶11𝜖21𝜎2 = 𝐶12𝜖1

𝜎3 = 𝐶13𝜖1

𝜖1 = 𝜖2
𝜎1 = 𝜎2 = (𝐶11 + 𝐶12)𝜖2 𝑈 = (𝐶11 + 𝐶12)𝜖21𝜎3 = 2𝐶13𝜖2

𝜖3
𝜎1 = 𝜎2 = 𝐶13𝜖3 𝑈 = 1

2
𝐶33𝜖23𝜎3 = 𝐶33𝜖3

𝜖1 = 𝜖3
𝜎1 = (𝐶11 + 𝐶13)𝜖1

𝑈 = 1
2
(𝐶11 + 2𝐶13 + 𝐶33)𝜖21𝜎2 = (𝐶12 + 𝐶13)𝜖1

𝜎3 = (𝐶13 + 𝐶33)𝜖1
𝜖4 𝜎4 = 2𝐶44𝜖4 𝑈 = 𝐶44𝜖24

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐶11 𝐶12 𝐶13 0 0 0
𝐶12 𝐶11 𝐶13 0 0 0
𝐶13 𝐶13 𝐶33 0 0 0
0 0 0 𝐶44 0 0
0 0 0 0 𝐶44 0
0 0 0 0 0 𝐶66

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(2)

The matrix following the last equality shows the elastic constants in
Voigt notation. In Voigt notation, the index 11 is replaced by 1, 22 by 2,
33 by 3, 23 (and 32) by 4, 13 (and 31) by 5, and 12 (and 21) by 6. These
five independent elastic constants can be estimated by subjecting the
system to five independent strains. Table 2 shows the applied strains,
and their relationships with stresses and strain energy density [24]. One
can estimate the elastic constants through either of the two relations,
with negligible differences [24]. Except for the imposed strains, all
other strains are kept zero. Straining the system in this manner ensures
that extremely low symmetry structures do not emerge, which is a
possibility if random strains are applied to the system. In such low
symmetry structures, it is difficult to compute the energy, particularly
with DFT, necessitating more computing time.

3.2.1. Effective isotropic elastic properties
Polycrystalline materials comprise randomly oriented and shaped

single crystal grains. For all practical purposes, the polycrystals can
4

be considered homogeneous and isotropic at the macroscopic scale.
However, calculating the elastic properties of such polycrystalline sys-
tems using atomistic-scale simulations is challenging. One needs to
consider a large number of samples to average out the behavior due
to the random orientation and shape of the individual grains. This
makes the entire task computationally expensive. The problem can be
circumvented if one can calculate the isotropic properties from single-
crystal elastic constants. For this purpose, researchers have typically
used the VRH approximation, which we detail next.

The elastic (𝐶) and the compliance (𝑆) tensor components for an
isotropic material can be written as:

𝐶𝑖𝑖𝑗𝑗 = 𝐵𝛿𝑖𝑖𝛿𝑗𝑗 + 𝐺(𝛿𝑖𝑖𝛿𝑖𝑗 + 𝛿𝑖𝑗𝛿𝑖𝑗 −
2
3
𝛿𝑖𝑖𝛿𝑗𝑗 ),

𝑆𝑖𝑗𝑘𝑙 =
1
9𝐵

𝛿𝑖𝑗𝛿𝑘𝑙 +
1
4𝐺

(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘 −
2
3
𝛿𝑖𝑗𝛿𝑘𝑙)

(3)

Here, 𝐵 and 𝐺 represent the bulk and the shear modulus, respectively.
Being fourth-order tensors, both 𝐶 and 𝑆 have two linear invariants,
which remain unchanged under coordinate transformation:
∑

𝑖,𝑗
𝐶𝑖𝑖𝑗𝑗 = 9𝐵,

∑

𝑖,𝑗
𝐶𝑖𝑗𝑖𝑗 = 3𝐵 + 10𝐺,

∑

𝑖,𝑗
𝑆𝑖𝑖𝑗𝑗 =

1
𝐵
,

∑

𝑖,𝑗
𝑆𝑖𝑗𝑖𝑗 =

1
3𝐵

+ 5
2𝐺

.
(4)

Henceforth, Voigt notation is used in this manuscript to write these
tensors in a compact form.

Considering a polycrystalline material as homogeneous on a macro-
scopic level, we can approximate its overall average properties by an
effective medium. After taking volume average of Eq. (1), we can write,

⟨𝜎𝑖⟩ = ⟨𝐶𝑖𝑗𝜖𝑗⟩ , ⟨𝜖𝑖⟩ = ⟨𝑆𝑖𝑗𝜎𝑗⟩ (5)

Let this polycrystal be subjected to a macroscopic stress of 𝛯 which
results in a macroscopic strain of 𝜀. Let 𝜎 and 𝜖 be the microscopic
stress and strain at any point of any grain. From the principle of virtual
work, we can write:

𝛯 ⋅ 𝜀 =
∫ 𝜎 ⋅ 𝜖𝑑𝑉
∫ 𝑑𝑉

(6)

When the microscopic strain is 𝜀, let the corresponding microscopic
stress be 𝜎∗. Likewise, for the microscopic stress 𝛯, the microscopic
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strain in grains is 𝜖∗. Using Maxwell’s reciprocal theorem, Hill [31]
argued that the following equations:

𝜎 ⋅ 𝜖 + (𝜎 − 𝜎∗) ⋅ (𝜖 − 𝜀) ≡ 𝜎∗ ⋅ 𝜀 + 2 (𝜖 − 𝜀) ⋅ 𝜎,
𝜎 ⋅ 𝜖 + (𝜎 − 𝛯) ⋅ (𝜖 − 𝜖∗) ≡ 𝛯 ⋅ 𝜖∗ + 2 (𝜎 − 𝛯) ⋅ 𝜖

(7)

can be written as:

𝜎 ⋅ 𝜖 ≤ 𝜎∗ ⋅ 𝜀 + 2 (𝜖 − 𝜀) ⋅ 𝜎 , 𝜎 ⋅ 𝜖 ≤ 𝛯 ⋅ 𝜖∗ + 2 (𝜎 − 𝛯) ⋅ 𝜖 (8)

due to the positive nature of strain energy. In Voigt approximation [32],
the microscopic strain, 𝜖, is assumed to the same as the macroscopic
strain, 𝜀. On the other hand, in Reuss approximation [33], the micro-
scopic stress, 𝜎, is assumed to the same as the macroscopic stress, 𝛯.
Therefore, Eq. (8), under the Voigt and Reuss approximations, can be
simplified to:

𝛯 ⋅ 𝜀 ≤
𝜀 ⋅ ∫ 𝜎∗𝑑𝑉

∫ 𝑑𝑉
, 𝛯 ⋅ 𝜀 ≤

𝛯 ⋅ ∫ 𝜖∗𝑑𝑉
∫ 𝑑𝑉

. (9)

The left-hand side of this equation represents twice the real energy
density and the right-hand side represents twice the energy densities
computed by the Voigt and Reuss theories, respectively. Rewriting
Eq. (9) using Eqs. (1) and (3), we get:

𝐵
3
∑

𝑖=1
𝜀2𝑖 +

2
3
𝐺
∑

𝑖≠𝑗

(

𝜀𝑖 − 𝜀𝑗
)2 ≤ 𝐵𝑉

3
∑

𝑖=1
𝜀2𝑖 +

2
3
𝐺𝑉

∑

𝑖≠𝑗

(

𝜀𝑖 − 𝜀𝑗
)2

1
𝐵

3
∑

𝑖=1
𝛯2
𝑖 + 3

2𝐺
∑

𝑖≠𝑗
(𝛯𝑖 − 𝛯𝑗 )2 ≤ 1

𝐵𝑅

3
∑

𝑖=1
𝛯2
𝑖 + 3

2𝐺𝑅

∑

𝑖≠𝑗
(𝛯𝑖 − 𝛯𝑗 )2

(10)

The suffix 𝑅 and 𝑉 denote the approximated moduli based on Reuss and
Voigt approximation, respectively. Eq. (10) is true for any stress–strain,
so we can write,

𝐵𝑅 ≤ 𝐵 ≤ 𝐵𝑉 , 𝐺𝑅 ≤ 𝐺 ≤ 𝐺𝑉 (11)

The mathematical expression of bulk (𝐵𝑉 ) and shear modulus (𝐺𝑉 ) for
a hexagonal crystal under Voigt approximation can be obtained using
Eq. (4):

𝐵𝑉 = 1
9
[

(2𝐶11 + 𝐶33) + 2(𝐶12 + 2𝐶13)
]

,

𝐺𝑉 = 1
15

[

(2𝐶11 + 𝐶33) − (𝐶12 + 2𝐶13) + 3(2𝐶44 + 𝐶66)
]

.
(12)

Similarly, the Reuss bound of bulk (𝐵𝑅) and shear modulus (𝐺𝑅) can
be obtained as:

𝐵𝑅 =
(𝐶11 + 𝐶12)𝐶33 − 2𝐶2

13
𝐶11 + 𝐶12 − 4𝐶13 + 2𝐶33

,

𝐺𝑅 =
5[(𝐶11 + 𝐶12)𝐶33 − 2𝐶2

13]𝐶44𝐶66

6𝐵𝑉 𝐶44𝐶66 + 2[(𝐶11 + 𝐶12)𝐶33 − 2𝐶2
13]

.
(13)

Hill proposed to take the average of Voigt and Reuss bounds to evaluate
the isotropic elastic constants of polycrystals-

𝐵 = 1
2
(𝐵𝑅 + 𝐵𝑉 ) and 𝐺 = 1

2
(𝐺𝑅 + 𝐺𝑉 ) (14)

The elastic modulus 𝐸 and Poisson’s ratio 𝜈 for an isotropic material
can be computed from the Hill’s values of 𝐵 and 𝐺 using the following
expressions,

𝐸 = 9𝐵𝐺
3𝐵 + 𝐺

and 𝜈 = 3𝐵 − 2𝐺
6𝐵 + 2𝐺

(15)

.3. Ab-initio simulation

Ab-initio calculations are performed using Quantum Espresso [34],
plane wave pseudopotential [35] DFT implementation. The accu-

acy of DFT calculations is significantly influenced by the selection
f the exchange–correlation functional. Under generalized gradient
pproximation (GGA), certain functionals with increased gradient de-
5

endency can improve atomization and total energies but degrade
Table 4
Core–shell parameters for apatites. Adopted from de Leeuw et al. [23].

Atom type Core charge Shell charge 𝐿𝑘𝐶𝑆 (eV Å−2)

Ca 2.000 – –
P 1.180 – –
O(P) 0.587 −1.632 507.40
O(H) 0.900 −2.300 74.92
H 0.400 – –
F 0.400 – –
Cl 0.400 – –

bond lengths [36,37], while functionals with reduced gradient de-
pendency can improve lattice parameters and surface energies but
degrade total and atomization energies [38]. No GGA functional can
excel at both [39], so a practical approach is necessary for lattice
properties. Perdew et al. suggested a modified functional for solids [39]
that restores the gradient expansion for exchange, resulting in better
lattice constants compared to PBE [40] and excellent jellium sur-
face exchange energies. Numerical investigations indicate that PBEsol
can accurately compute bulk exchange energies of metals within the
pseudopotential approximation. So, in our study we employed PBEsol
exchange–correlation functional and the interaction between the ion
cores and valence electrons in our study is accounted for through the
ultra-soft pseudopotential [41].

The lattice parameters are computed by relaxing the unit cell using
the variable-cell relaxation technique. We use 0.3 kbar as the conver-
gence threshold for pressure, 10−6 Ry for energy, and 10−5 Ry/bohr
or force for all DFT simulations. Once the convergence requirements
re met, the lattice parameters are then retrieved directly. The relaxed
tructures are then individually subjected to five independent different
trains to get the elastic constants, as described through Table 2. For
ach type of strain, seven separate values of strain are considered: 𝜖𝑖 =
, ± 0.25%, ±0.50%, and ±0.75% using a displacement controlled ap-
roach. In this approach, the lattice parameters in the desired directions
re changed (increased or decreased). The strained system is subjected
o energy minimization using the BFGS method of Quantum Espresso
QE). The elastic constants are then obtained from the stress–strain
elations shown in Table 3.

.4. Finite temperature molecular dynamics simulation

All MD simulations are performed using the free-to-use software
AMMPS, and comprise a 4 × 4 × 6 supercell with 4224 atoms for
AP and 4034 atoms for FAP/ClAP. Several potential models for ap-
tites have been proposed in the literature [25,42,43]. Based on our
arlier work [44], the apatites are modeled through the core–shell-
ased Buckingham potential. In this potential, any ion is described as
combination of a heavy core and a massless shell. The core, with

harge 𝑄, symbolizes the atom’s nucleus, while the shell, with charge
, approximates the valence electrons. The ion’s total charge is the sum
f 𝑄 and 𝑞. The core and its shell are connected by a harmonic spring
o that the interaction energy is given by,

(𝑟𝐶𝑆,𝑖) =
1
2
𝑘𝐶𝑆,𝑖𝑟

2
𝐶𝑆,𝑖. (16)

Here, 𝑘𝐶𝑆,𝑖 is the force constant for the harmonic spring connecting
the 𝑖th core–shell, and 𝑟𝐶𝑆,𝑖 is the distance between the core and the
shell of the 𝑖th pair. The ion’s exact location is determined by the posi-
tion of the core. The position of the shell has no physical meaning even
though its coordinates are initially the same as those of the core. The
non-bonded interactions are described by the Buckhingham potential

in conjunction with the Coulombic potential. The angle bending and
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Table 5
Potential parameter by de Leeuw et al. [23] for apatites.

Non-bonded parameters Bonded parameters

Ion-pair 𝐴 (eV) 𝜌 (Å) 𝐶 (Å) Atom-pair 𝐷 (eV) k (eVrad−2) 𝑟0 (Å) 𝜃 (deg) 𝛼 (Å)

Ca–O(H) 1250.00 0.343700 0.00 P–O(P) 3.470000 1.6000 2.03
Ca–O(P) 1550.00 0.297000 0.00 H–O(H) 7.052500 0.9485 3.1749
O(P)–O(P) 16372.00 0.213000 3.47 O(P)–P–O(P) 1.300626 109.4700
O(P)–O(H) 22764.00 0.149000 4.92
O(H)–O(H) 22764.00 0.149000 6.97
H–O(P) 312.00 0.250000 0.00
H–O(H) 312.00 0.250000 0.00
F–F 99731834.00 0.120130 17.02
Ca–F 1272.80 0.299700 0.00
O(H)–F 35000.00 0.175000 15.40
O(P)–F 583833.70 0.211630 7.68
Cl–Cl 49039.26 0.243207 16.05
Ca–Cl 1285.14 0.348729 0.00
O(H)–Cl 71379.71 0.227705 0.13
O(P)–Cl 68297092.09 0.153267 15.16
bond stretching are modeled through harmonic and Morse potential,
respectively. Mathematically, the potential can be expressed as:

𝜙BUCK =
∑

bonds
𝐷𝑖𝑗 (1 − exp(−𝛼(𝑟𝑖𝑗 − 𝑟0)))2 −𝐷𝑖𝑗 +

∑

angles

𝑘𝜃
2
(𝜃𝑖𝑗𝑘 − 𝜃0)2+

+
∑

𝑖𝑗

([

𝐴𝑖𝑗 exp
(

−
𝑟𝑖𝑗
𝜌𝑖𝑗

)

−
𝐶𝑖𝑗

(𝑟𝑖𝑗 )6

]

+ 1
4𝜋𝜖0

𝑞𝑖𝑞𝑗
𝑟𝑖𝑗

)

+
∑

𝑖
𝑘𝐶𝑆,𝑖

2
𝑟2𝐶𝑆,𝑖

(17)

where, 𝐷𝑖,𝑗 is the bond enthalpy, 𝑟0 is the equilibrium bond length, k𝜃
is the force constant and (𝜃𝑖𝑗𝑘−𝜃0) is the deviation from the equilibrium
angle 𝜃0. In this study, we use the force field parameters proposed by
de Leeuw et al. (cite), which may be seen in Tables 4 and 5. Due to
implementation issues, we consider the P–O interactions of phosphate
group as non-bonded Morse type with parameters remaining the same
as shown in table, but with a cutoff equaling 2.0 Å.

The time step used for all MD simulations is 0.2 fs. Using the Nosé–
Hoover thermostat [45], the system is initially equilibrated for 50 ps at
the target temperature (NVT). Following the NVT runs, the system is
subjected to a constant temperature and pressure (NPT) environment
for 30 ps. The system is kept at the desired temperature for these
NPT runs, and the pressure is set to 1 atm. It should be noted that
the ‘‘aniso’’ option of LAMMPS has been selected for pressure control,
which controls the pressure in the 𝑥, 𝑦, and 𝑧 directions independently.
The simulations are performed for the temperature range 10–1500 K.

The optimized lattice parameters (𝑎, 𝑏, and 𝑐) are determined from
the relaxed structure obtained during the NPT runs. The parameters 𝑎
nd 𝑐 are directly calculated by dividing the time-averaged simulation
ox length (obtained across all the NPT runs) along the 𝑥 and 𝑧 direc-
ions by the corresponding number of unit cells along those directions,
espectively (4 and 6, respectively,). The time-averaged simulation box
ength along the 𝑦 direction is divided by the product of the number of
nit cells along the 𝑦 direction and the tilt (4 cos 30◦ in our example) to
btain the lattice parameter 𝑏.

The relaxed structure is used to calculate the elastic constants. The
elaxed structure is initially subjected to 50 ps of NVT runs at the target
emperature. The system is then continuously strained (up to ±1.5%) in
ccordance with the loading directions specified in Table 3. The strain
ate is set at 106/s in all cases. The 𝑥𝑦 direction is subjected to zero
ressure and the desired temperature regardless of the loading. This
ype of pressure control is not employed in other directions. It should
e noted that under these simulation settings, we receive zero stress
n all directions except those listed in table. For example, when 𝜖1 is
sed, the non-zero stress components are 𝜎1, 𝜎2, and 𝜎3, as would be
xpected for a hexagonal crystal.
6

Table 6
Predicted lattice parameters from DFT and MD study.

Lattice parameters of structure of interest (in Å)

Type a b c

Experimental [30] 9.417 9.417 6.875
DFT 9.390 9.398 6.819HAP
MD 9.389 9.389 6.857

Experimental [30] 9.397 9.398 6.878
DFT 9.339 9.339 6.831FAP
MD 9.367 9.372 6.903

Experimental [30] 9.593 9.593 6.776
DFT 9.693 9.693 6.622ClAP
MD 9.327 9.368 6.939

4. Results

First, we discuss and compare the equilibrium lattice parameters
obtained from DFT and MD simulations with the available experimental
data. The temperature dependence of the lattice parameters is also
addressed. Following that, a similar analysis is presented for the elastic
constants. Lastly, the temperature variation of the isotropic elastic
properties – bulk modulus, shear modulus and elastic modulus – are
discussed using the VRH approximation detailed earlier.

4.1. Lattice parameters

Table 6 presents the lattice parameters derived from the present
study, as well as the results of other theoretical investigations and ex-
perimental measurements. In our study, the PBEsol exchange–
correlation functional is employed, which is acknowledged for generat-
ing structural characteristics that are more comparable to experimental
values when compared to PBE outcomes. For example, the lattice
parameters of HAP are 𝑎 = 𝑏 = 9.39 Å and 𝑐 = 6.81 Å, which
deviate from the experimental data [30] by −0.2% for 𝑎 and −0.8%
for 𝑏. Likewise, The DFT-obtained lattice parameters of FAP differ from
the experimental values (𝑎𝑒, 𝑏𝑒, 𝑐𝑒 = 9.33, 9.33, 6.83 in Å, respectively)
marginally by −0.6%. Note that the subscript 𝑒 is used to signify the
experimental results. For ClAP, the lattice parameters obtained from
DFT are: 𝑎 = 𝑏 = 9.69 Å and 𝑐 = 6.62 Å. They differ from the
experimental results by 1% and −2%, respectively.

Mirroring the DFT findings, the lattice parameters of the three
apatites from room temperature MD simulations agree well with the
experimental data; the absolute maximum error being smaller than 3%.
For HAP, we find 𝑎0 = 𝑏0 = 9.38 Å, and 𝑐0 = 6.89 Å, the subscript 0
indicating room temperature. Defining the relative deviation of lattice
parameters through the following equation:

𝛿𝑎 =
𝑎0 − 𝑎𝑒 × 100, 𝛿𝑏 =

𝑏0 − 𝑏𝑒 × 100, and 𝛿𝑐 =
𝑐0 − 𝑐𝑒 × 100, (18)
𝑎𝑒 𝑏𝑒 𝑐𝑒
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Fig. 2. Normalized lattice parameters as a function of temperature: (a) 𝑎∕𝑎0, (b) 𝑏∕𝑏0, and (c) 𝑐∕𝑐0. The parameters 𝑎0, 𝑏0 and 𝑐0 indicate the lattice constants at room temperature.
the deviations with respect to the experimental results are: 𝛿𝑎 = −0.28
%, 𝛿𝑏 = −0.29 % and 𝛿𝑐 = 0.26 %. Similarly, for FAP and ClAP,
the deviation from the experimental data are: 𝛿𝑎 = −0.31%, 𝛿𝑏 =
−0.27%, and 𝛿𝑐 = 1.71%, and 𝛿𝑎 = −2.77%, 𝛿𝑏 = −2.90%, and 𝛿𝑐 =
2.41%, respectively. The temperature dependence of the normalized
lattice parameters (𝑎∕𝑎0, 𝑏∕𝑏0, and 𝑐∕𝑐0), obtained from our MD sim-
ulations, is shown in Fig. 2. The normalized cell parameters increase
as the temperature increases which is an expected behavior in any
anharmonic system. Interestingly, the rate of increase of the different
lattice parameters with temperature depends on the type of apatite:
while in FAP 𝑎∕𝑎0 grows faster, change in 𝑏∕𝑏0 and 𝑐∕𝑐0 is less than
other apatites. We may infer from comparing the radial distribution
functions of various elements that the P–P distance varies significantly
as the temperature increases, but that the P–O and Ca–O bonds do not
significantly vary with temperature.

4.2. Single crystal elastic constants

Apatites have five independent elastic constants: 𝐶11, 𝐶12, 𝐶13, 𝐶33,
and 𝐶44. While the elastic constants 𝐶11 and 𝐶33 reflect the unidi-
rectional resistance towards deformation along the principal crystallo-
graphic axes 𝑎 and 𝑐, respectively, the elastic constants 𝐶12 and 𝐶13
couple a normal stress component along the crystallographic 𝑎 axis
with a uniaxial strain along the crystallographic 𝑏 and 𝑐 axes. The last
independent elastic constant, 𝐶44, couples the shear stresses with the
shear strains.

The single crystal elastic constants obtained from the DFT simula-
tions are shown in Table 7. All three apatites have a higher 𝐶33 value
than any other elastic constants, which implies the 𝑐-axis to be the
stiffest. Even though the elastic constants of these apatites are similar,
7

which is expected given that they all have the same structure, FAP is
Table 7
Predicted elastic constants from DFT and MD study (at room temperature) (in GPa)

Single crystal elastic constants of structures of interest
obtained in this work

Type 𝐶11 𝐶12 𝐶13 𝐶33 𝐶44

Experimental [18] 137.00 42.50 54.90 172.00 39.60
DFT 136.50 39.90 70.50 182.70 35.80HAP
MD 130.30 47.10 65.70 174.70 48.70

Experimental [16] 143.40 44.50 57.50 180.50 41.00
DFT 146.90 46.50 67.50 186.80 39.30FAP
MD 146.65 63.55 63.48 162.80 48.65

Experimental - - - - –
DFT 115.70 29.40 64.30 180.70 42.60ClAP
MD 139.70 55.84 54.49 160.70 45.97

found to have the highest value of all elastic constants, except 𝐶13 and
𝐶44, among the three apatites. The relative ordering of the different
elastic constants for FAP: 𝐶13 > 𝐶12 > 𝐶44 corresponds well with the
previous theoretical data based on DFT [24]. Interestingly, the relative
ordering of these elastic constants change for ClAP: 𝐶13 > 𝐶44 > 𝐶12 but
for HAP the relative ordering is same as FAP: 𝐶13 > 𝐶12 > 𝐶44. Further,
the relative ordering of the elastic constants for HAP are in agreement
with those reported by Katz and Ukraincik [18] 𝐶13 > 𝐶12 > 𝐶44.
It is worth noting that there is a significant amount of scatter in the
experimental data as well, and the differences between our results and
those of the experiments could be due to the structural differences, such
as the presence of impurities, defects, the temperature effect on defects,
metastability, etc.

The elastic constants obtained from MD calculations agree well
with the experimental data at room temperature. For example, our
results and the experimental results of Katz and Ukraincik [18] for
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Fig. 3. Temperature variation of the five single crystal elastic constants.
HAP show a good match. Likewise, for FAP, a good agreement can
be seen with the experimental results of Yoon and Newnhman [16]
and Sha et al. [17], with the exception of 𝐶12 and 𝐶44, for which
the deviations are ∼ 43% and 18%, respectively. Due to the lack
of experimental data for ClAP, we cannot compare our MD results
with experiments. The elastic constants obtained from MD and DFT
show good agreement, except for 𝐶12 in all three apatites, where the
difference exceeds 20%. It is worth noting that the relative ordering
of 𝐶12, 𝐶13, and 𝐶44 is not consistent between the results obtained
from DFT and MD. These discrepancies may be understood by looking
into the calibration of MD potential parameters. Primarily, a variety of
experimental data itself has been used to obtain these parameters. For
8

(

example, the Ca–O interaction parameters [46] have been determined
by empirically fitting the experimentally obtained structural properties,
elastic constants, and vibrational frequencies. Likewise, the Ca–F, P–O
and O–O interactions have also been obtained from the experimental
data [27].

Figs. 3 depicts the temperature dependence of the elastic constants
of apatites over the temperature range of 10 K–1500 K. Five important
observations can be made from these figures: (i) all elastic constants
decrease with an increase in temperature, (ii) 𝐶11 is always less than
𝐶33 at low temperature, showing that it is easier to compress along the
⟨100⟩ direction than along the ⟨001⟩ direction, (iii) at high temperatures
> 900 K), 𝐶 < 𝐶 for FAP and ClAP, which suggests that the more
33 11
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Table 8
Predicted elastic properties from DFT: the bulk modulus, 𝐵, the shear modulus, 𝐺, the
elastic modulus, 𝐸, and the Poisson’s ratio, 𝜈.

Type B (GPa) G (GPa) E (GPa) 𝜈

HAP 88.31 41.68 108.05 0.29
FAP 92.34 45.26 116.71 0.28
CLAP 76.45 42.07 106.66 0.26

compressible direction changes at higher temperature, (iv) 𝐶12 of HAP
does not vary significantly with temperature, which is not the case
for the other two apatites, and the values deviate significantly from
that at the room temperature, and (v) the rate at which the elastic
constants change depend on the type of apatite, especially for 𝐶12 and
44. Regardless of the temperature, the elastic constants satisfy the
echanical stability requirements for hexagonal structures:

44 > 0, 𝐶11 − 𝐶12 > 0, 𝐶33(𝐶11 − 𝐶12) − 2𝐶2
13 > 0. (19)

The relative ordering of 𝐶12, 𝐶13 and 𝐶44 remains as 𝐶12>𝐶13>𝐶44
for ClAP and FAP. This ordering, however, changes to 𝐶12>𝐶44>𝐶13
at extremely high temperatures for FAP. While for HAP, the relative
ordering is 𝐶13>𝐶44>𝐶12 for temperature below 500 K, it changes to
𝐶13>𝐶12 > 𝐶44 at high temperatures.

The highly anisotropic nature of apatites dictates the calculation
of degree of elastic anisotropy. A mismatch of elastic constants in the
surrounding crystals of a polycrystalline or a multiphase ceramic can
increase the propensity of microcrack formation during loading, and
can lead to early failure. One can estimate the degree of anisotropy
from the calculated elastic constants by evaluating the shear anisotropic
factors (SAFs). The SAF for the {100} plane between ⟨011⟩ and ⟨010⟩
directions is:

𝐴100 =
4𝐶44

𝐶11 + 𝐶33 − 𝐶13
, (20)

and, for the 001 plane, between ⟨110⟩ and ⟨120⟩ directions is:

𝐴001 =
4𝐶66

𝐶11 + 𝐶22 − 𝐶12
(21)

In an isotropic material, 𝐴100 and 𝐴001 must all be equal to unity. For
all apatites, we find the SAFs to deviate from unity in the prismatic
plane (𝐴100). But, in the basal plane (𝐴001), SAF is equal to one for
all three apatites, which agrees with the general property of hexagonal
materials.

The knowledge of single crystal elastic constants can also be used
to calculate the Cauchy pressure, 𝐶12 − 𝐶44, which is closely related
to the ductile characteristics of a material. A ductile (brittle) material
has 𝐶12 − 𝐶44 > 0(< 0) [47]. Apatites, on account of being minerals,
are expected to be brittle. However, only HAP is found to be brittle
from MD simulations at temperatures < 500 K and ductile from DFT
simulations. Surprisingly, at all temperatures, both FAP and ClAP have
𝐶12 − 𝐶44 > 0.

4.3. Isotropic material properties

We now look at the temperature dependence of the following
isotropic elastic properties — bulk modulus, shear modulus, elastic
modulus, and Poisson’s ratio.

4.3.1. Bulk and shear moduli
The bulk modulus, 𝐵, and the shear modulus, 𝐺, obtained from

DFT simulations are listed in Table 8. As may be seen from the table,
both bulk and shear moduli of the apatites are similar: the difference
between the largest and the smallest values is ∼ 15 GPa for 𝐵 and
∼ 4 GPa for 𝐺. Of the three apatites, ClAP is the most compressible one
(𝐵 = 76.45 GPa), while HAP has the smallest value of 𝐺 = 41.68 GPa.
9

Interestingly, FAP is the least compressible apatite (𝐵 = 92.34 GPa) and
also the most resistant to shear deformation (𝐺 = 45.26 GPa). DFT re-
sults are in good agreement with the experimental investigations [18].
The relative compressibilities of the different apatites are in agreement
with the experimental results. For instance, the DFT results maintain
the findings of Gilmore and Katz [11] that the bulk modulus of FAP is
higher than that of HAP. Such an agreement is not evident for 𝐺.

At room temperature, the bulk modulus of HAP, FAP, and ClAP
from MD simulations are 86.36 GPa, 92.91 GPa, and 85.38 GPa, respec-
tively. The corresponding shear moduli are: 44.62 GPa, 45.34 GPa, and
45.01 GPa. These results are in good agreement with the experimental
results of Gilmore and Katz [11]. Likewise, the results are in good
agreement with the MD results of de Leeuw et al. [22,23,27]. Similar
to our DFT studies, the MD results also indicate a consistent relative
ordering of the bulk moduli of the three apatites: 𝐵FAP > 𝐵HAP > 𝐵ClAP.
The temperature dependence of 𝐵 and 𝐺 for all three apatites are
shown in Figs. 4(a) and 4(b), respectively. In the temperature range
of 10–1200 K, FAP has a higher resistance to volumetric changes than
either HAP or ClAP. However, at even higher temperatures (1300–
1500 K), HAP has a greater 𝐵 value than FAP. We observe ClAP
to be the most susceptible amongst the three apatites to volumetric
changes, regardless of the temperature. In comparison to 10 K, 𝐵 falls
by about 45%–50% at 1500 K. Unlike 𝐵, throughout the temperature
range investigated, FAP has the highest shear modulus. While at lower
temperatures, the shear moduli of ClAP and HAP are almost identical,
at higher temperatures, shear modulus of ClAP decreases faster than
HAP. In comparison to 10 K, the shear modulus decreases by ∼33% at
1500 K.

The knowledge of 𝐵 and 𝐺 can be used to quickly identify other me-
chanical properties. For example, the criterion proposed by Pugh [48]
uses 𝐵∕𝐺 ratio to understand the ductility characteristics, and an
estimate of Vicker’s hardness can be obtained from the value of 𝐺.
Adopting Pugh’s criterion for apatites suggests that 𝐵∕𝐺 > 1.75 at all
emperatures. With increasing temperature, Vicker’s hardness is found
o decrease for the different apatites.

.3.2. Elastic modulus and Poisson’s ratio
The elastic moduli of the three apatites, predicted by the DFT

nalyses, are in range between 106 GPa and 116 GPa. At room tem-
erature, the MD simulations predict 𝐸 = 114.21 GPa, 117.00 GPa,
nd 114.86 GPa for HAP, FAP and ClAP, respectively. The results
f HAP and FAP are in good agreement with the reported value of
[11]. These findings indicate that FAP has the highest elastic modulus

mong the three apatites, and the trend is corroborated by both the
xperimental data and our DFT investigations. Temperature variation
f 𝐸 is shown in Fig. 5(a). As we can see in this figure, with increasing
emperature elastic modulus decreases for all three apatites. Irrespec-
ive of the temperature, FAP has the highest value of 𝐸. At temperatures
elow 500 K, the elastic modulus of ClAP and HAP are comparable, but
t higher temperatures, they no longer remain comparable.

Now, let us look at Poisson’s ratio, which is the ratio of transverse
train to axial strain when a material is subjected to uniaxial tension.
he results obtained from our DFT calculations may be seen in Table 8.
he values are comparable for the three apatites, and a similar trend is
bserved from our MD simulations at room temperature. The tempera-
ure variation of Poisson’s ratio is depicted in Fig. 5(b). Most ceramics
how a clear variation of Poisson’s ratio with temperature, for example,
used quartz, ZrB2, HfB2, TiB2 [49] etc Poissons ratio increases with
ncrease in temperature. There is a marginal decrease in Poisson’s ratio
or FAP as the temperature increases.

. Conclusions

We calculated the single crystal elastic constants of apatites through
irst-principles (DFT) and molecular dynamics (MD) based simulations,
nd subsequently studied their temperature dependence. The limited
xisting experimental and computational studies at room temperature
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Fig. 4. Temperature dependence of: (a) Bulk modulus and (b) Shear modulus.
Fig. 5. Temperature dependence of: (a) Elastic modulus and (b) Poisson’s ratio.
how a wide scatter due to the use of different methodology, ini-
ial structure, convergence criteria, etc. As a secondary objective, we
valuated the elastic constants and their temperature dependence in
consistent manner by using the same methodology, initial structure,

nd convergence criteria for all our DFT and MD simulations. Apart
rom the elastic constants, we also studied the temperature dependence
f related mechanical properties — bulk modulus, shear modulus,
lastic modulus, and Poisson’s ratio. The main conclusions of our study
re:

1. The obtained lattice parameters from both DFT and MD are in
good agreement with the experimental and previously reported
theoretical values. The normalized lattice parameters 𝑎∕𝑎0, 𝑏∕𝑏0,
and 𝑐∕𝑐0, increase with temperature. The P–P distance varies
more noticeably with temperature, which may be the primary
cause of the change in lattice parameters.

2. The published data based on DFT consistently underestimates
the elastic constants of apatite. Researchers have tried with
different implementations to see if the DFT results improve, but
such approaches have not been very successful. For example,
Menendez et al. [24], apart from considering the P63/m sym-
metry structure, also computed the elastic constants using the
P21b symmetry structure with PBE [40] exchange–correlation
functional, but could not find any discernible differences in
the elastic constants due to the two structures. Likewise, the
application of external pressure on the system also did not result
in improved elastic constants for HAP. The primary reason for
10
such discrepancy is because of the usage of PBE exchange–
correlation functional. PBE has a general tendency to underbind
in solids [50–54], leading to overestimation of lattice constants
and underestimation of elastic constants. As can be seen from
our DFT results, making use of PBEsol exchange–correlation
functional significantly improves the elastic constants, which are
now in better agreement with the experimental results. This is
because the PBEsol exchange–correlation functional is known to
provide better estimates for bulk properties of solids. The DFT
results indicate ⟨001⟩ to be the stiffest direction for all apatites,
and FAP to be the stiffest among the three apatites.

3. Interestingly, the elastic constants obtained from the MD studies
are in good agreement with the experimentally reported ones at
room temperature. We attribute this to the fact that the parame-
ters of the potential function are calibrated to the experimental
results. Nevertheless, like DFT, MD also predicts 𝐶33 > 𝐶11 for
all three apatites, which changes to 𝐶11 > 𝐶33 for FAP and ClAP
at very high temperature. As the temperature rises, the elastic
constants decrease but the rate is different for the different
elastic constants. At 1500 K, 𝐶33 and 𝐶13 decrease by > 50% in
comparison to their value at 10 K. Like the elastic constants, the
isotropic properties such as elastic modulus, shear modulus and
bulk modulus decrease with temperature. However, Poisson’s
ratio is relatively unaffected.

4. Our DFT investigation reveals that the relative ordering of the
elastic constants for ClAP is 𝐶13 > 𝐶44 > 𝐶12, but for HAP
and FAP the following holds true: 𝐶 > 𝐶 > 𝐶 . The trend
13 12 44



Materials Today Communications 35 (2023) 106223A. Roy et al.
indicated by our DFT analysis is not reflected in our MD results;
for ClAP and FAP, it is 𝐶12 > 𝐶13 > 𝐶44. For HAP, the relative
ordering for temperatures below 500 K is 𝐶13 > 𝐶44 > 𝐶12, but
at high temperatures, the trend becomes 𝐶13 > 𝐶12 > 𝐶44. A
clear idea about the relative ordering of these elastic constants
is essential since the cleavage planes depend on it. Further, in
bio-friendly functional materials such as liquid crystals made of
HAP, the optical characteristics may change depending on the
relative ordering.

5. Calculation of Cauchy pressure using MD simulations suggests
that for HAP 𝐶12 − 𝐶44 < 0, which indicates brittleness, at tem-
peratures below 500 K. The other two apatites show 𝐶12 −𝐶44 >
0. Considering the fact that apatites are minerals, and hence,
likely to be brittle, the usefulness of Cauchy pressure in case
of minerals needs careful investigation. For this purpose, a full-
scale MD simulation of uniaxial tensile test with polycrystalline
apatite needs to be performed.

It needs to be noted that the potential parameters used in the MD
calculation do not intrinsically include the temperature effect, the accu-
racy of the results cannot be judged as there are no experimental data
available. However, this study provides useful insights for the further
development of the applicability of apatites by providing an initial
assessment of mechanical stability and elastic properties of apatites as
a function of temperature.
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