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To design a coating that will absorb maximum energy prior to failure with minimum deformation, the
shearing process of polycrystalline Zn coated Fe is simulated in the presence of dislocations, using molec-
ular dynamics. The results fed to an Evolutionary Neural Network generated the meta-models of objec-
tive functions required in the subsequent Pareto-optimization task using a Multi-objective Genetic
Algorithm. Similar calculations conducted for single crystals, and also in the absence of dislocations,
are compared and analyzed.
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1. Introduction

An assembly of Fe and Zn and thereafter the phases in a Zn
coated layer were studied in two of our earlier investigations
[1,2] by coupling molecular dynamics (MD) with a genetic algo-
rithms based [3] bi-objective optimization procedure [4–7]. A
more realistic simulation would however call for studying the
polycrystals in the presence of dislocations. This necessitated a ser-
ies of additional simulations and the outcome is summarized in
this communication.

2. Methodology

The idea behind this study is to design a coated assembly at the
molecular level, which would, at some prescribed situation of fail-
ure, tend to show a minimum amount shear induced deformation
(c) after a maximum amount of energy absorption (DE) relative to
some reference point. The optimization task therefore was:

maximize DEf

minimize cf

)
ð1Þ
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orti).
where the subscript f denotes a predefined failure point, taken
conveniently as the relative interlayer displacement exceeding
the lattice spacing of Zn–Zn, as detailed earlier [1,2]. The decision
variables are as listed in Table 1. Since these two objectives are
mutually conflicting, together they would never be able to attain
their individual best levels. This leads to a Pareto-optimal prob-
lem [8], studied extensively in recent times [9] where the singu-
lar optimum solution, generally encountered in case of
conventional single objective tasks, is replaced by a Pareto-opti-
mal set, in which the members represent the best possible trade-
offs between the objectives. Pareto-frontier, the locus of the
members in the Pareto-set, denotes the boundary between the
feasible and infeasible solution space and no feasible solution
could be better than any member of in this frontier in terms of
one or more objectives, while remaining equally good in terms
of the rest. Mathematically Pareto-optimality can be defined as
follows [8,9]:

For a decision variable vector x = (x1, x2, . . ., x1,)T; x 2 S, where S
denotes the feasible solution space, a subset of the decision variable
space Rn, if we attempt to minimize the corresponding vector of
objective functions f(x) = (f1(x), f2(x), . . ., fk(x))T; where k P 2 and
each objective function fi : Rn ! R, then a decision vector ~x 2 S is
Pareto-optimal if there exist no other decision vector x e S for which
fiðxÞ � fið~xÞ for all i = 1, . . ., k and at least for one i f iðxÞ < fið~xÞ. Sim-
ilarly, an objective vector ~z 2 Z is Pareto-optimal if the decision
vector corresponding to it is Pareto-optimal. In recent times
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Table 1
Input variable list for molecular dynamics simulation.

Polycrystalline Fe–Zn system Single crystalline Fe–Zn system

Shear velocity (m/s) 10, 30, 50 Shear velocity (m/s) 10, 30, 50
Coating thickness (Å) 30, 40, 56 Coating thickness (Å) 30, 40, 56
Grain size (Fe–Zn) (Å) 84–78, 102–92, 110–100 Fe–Zn interfacial orientation 0�, 2.5�, 5�, 7.5�, 10�, 20�, 30�
Grain orientation (Fe–Zn) Low–Low,

Low–High,
High–Low,
High–High

(High angle grain boundary: P20�; low angle grain boundary; 610�)
Time step 0.5 fs

All simulations were for (0001) Zn over (100) Fe.
Periodic boundary condition in all directions.
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genetic algorithms are being very efficiently used to compute Par-
eto-optimality [9].

3. Computing strategy

In this study shear deformations for both polycrystalline and sin-
gle crystalline Fe–Zn assemblies were first simulated thorough
molecular dynamics using LAMMPS [10]. Dislocations were intro-
duced in these assemblies through uniaxial tensile deformation
prior to shearing. This aspect of the present work makes it more real-
istic and significantly different from its predecessors [1,2] where no
such attempts were made. Further details are provided in Fig. 1.

To reduce the computing burden of the optimization process
the data from the MD simulations were utilized to construct
meta-models for both c and DE. An Evolutionary Neural Network
(EvoNN) developed and used extensively in our earlier studies
[1,2,4,11,12] was utilized for that. The genetic and evolutionary ap-
proach used in this study and our earlier works [1,2] requires to
process a population of probable solutions from generation to gener-
ation till convergence. Thus, in contrast with the gradient based
optimization strategies, here we require to evaluate the objective
functions for each member of the population and that too in every
generation. Attempting this through direct MD simulations in each
case requires a huge computing power and the simulations done
without a massive parallelization quickly tend to go out of hand.
It’s however, a totally different story when the direct MD simula-
tions are replaced by objective function evaluations through a
meta-model: there the computing time drastically reduces. For
example, in a Windows Server 2003 R2 environment of a single
processor machine with Intel(R) Xeon(R) CPU (E5420 @
2.50 GHz) with 3.25 GB of RAM, a single MD simulation for the
higher velocities would require anywhere between 9.7 and
13.89 h to execute, and here for the construction of a meta-model,
on the average, we needed about a hundred of such simulations.
For some of the higher velocities used in this study, a second pro-
cessor was needed to finish the calculations within a comparable
amount of time. Running the optimization task in an evolutionary
Fig. 1. Molecular dynamics simulation of Fe–Zn system.
environment for a moderately decent population size of hundred,
for hundred generations without the meta-model, will require
10,000 of such MD runs, leading to about two orders of magnitude
increase in the computing time. The task therefore, is to come up
with a meta-model that would faithfully represent the basic trends
in the MD data. Unlike the conventional Neural Nets, EvoNN uses a
flexible architecture and evolves using a Multi-objective Genetic
Algorithm, as a Pareto tradeoff between the complexity of the net-
work and the accuracy of training. This led to the Pareto-frontiers
shown in Fig. 2 where each empty diamond represents a separate
optimized neural net, out of which one in each case, marked as so-
lid diamonds, was selected by applying a corrected Akaike Infor-
mation Criteria [6]. Further details are available elsewhere [4,6].

Using a Predator–prey bi-objective Genetic Algorithm [4] the
meta-models were utilized for generating the Pareto-frontiers be-
tween c and DE. The computational steps are further elaborated in
Fig. 3 and the input variables for MD simulations are summarized
in Table 1. Although attempts were made to use realistic parame-
ters as far as possible, the value of shear velocity remained a bit
above normal, so that the MD simulations do not require prohibi-
tively large time steps to reach the failure level.

Here Fe and Zn polycrystals were generated by first creating
large cubic shaped structures for them with crystallographic orien-
tation of (100) for Fe and (0001) for Zn. These crystals are then ro-
tated by different angles, between 2.5� and 60�, along Y axis in X–Z
plane, creating different configurations. Next, a hexagon was re-
moved from these structures. Different grains of a polycrystalline
structure were created by placing such hexagons adjacent to each
other so that they make tilt boundaries amongst themselves.

Both high (P20�) and low (610�) angle grain boundaries were
created following this procedure detailed elsewhere [13–16].

Energy minimization of these polycrystals was conducted using
conjugate-gradient method. Subsequently they were stabilized as
NVE ensemble for 10,000 time steps and then under NPT ensemble
for another 10,000 time steps. A typical polycrystal of Fe is shown
in Fig. 4 along with the equilibrated structure.

Stabilized Zn polycrystals were placed over stabilized Fe to cre-
ate the Fe–Zn system with various grain orientations. This assem-
bly was again stabilized as NPT ensemble and subjected to shear
deformation. This equilibrated system was subjected to uniaxial
tensile deformation at a constant engineering strain rate
(5 � 108 sec�1) for 1.5 ps as NPT ensemble in order to generate de-
fects and dislocations from the grain boundaries. The system was
then again stabilized as an NPT ensemble before subjecting it to
shear force under NPT conditions.

The shear force was introduced to the equilibrated assembly by
setting a few atoms of top layer in motion with constant velocity,
holding some atoms in the bottom layer fixed. It was done under
an NPT ensemble and the shearing effects gradually propagated
from layer to layer. The entire system was assumed to be under plain
strain condition. When the relative displacement of any layer above



Fig. 5. Fe–Zn assembly of high angle grain orientation at the onset of failure.

Fig. 2. Tradeoff between training error and complexity for the optimized EvoNN networks.

Fig. 4. Initial (top) and equilibrated structure of polycrystalline Fe.

Fig. 3. Computational flow chart of Polycrystalline Fe–Zn System.
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the interface exceeded the value of 2.87 Å, the lattice parameter of
Fe, the onset of shear failure was assumed. This point of shear failure
was identified from the corresponding RMS displacement (drms) vs.
time plot. Further details are provided elsewhere [1,2]. A typical
structure of Zn coated Fe, both with high angle grain orientations,
is shown in Fig. 5 at the onset of shear deformation.

The energy of the system at the onset of failure provided the
shear energy absorbed up to the point of failure, and enabled com-
puting of the first objective function. The energy needed for failure
was taken as the difference between the energy at the failure point
and that at the end of initial equilibration, when the shearing pro-
cess started.

The shear strain at failure (c), the second objective, was com-
puted as the ratio of deformation of the top layer by thickness, as
explained schematically in Fig. 5.

For the single crystals the initial configuration was created by
placing (0001) Zn crystal over (100) Fe crystal, keeping the inter-
facial orientation as 0�. To create structure with different interfa-
cial orientation at the Fe–Zn interface, the Zn crystal was rotated
with respect to Fe to create the interfacial orientations listed in Ta-
ble 1. These structures were then stabilized and deformed, follow-
ing the scheme outlined in Fig. 1. Some instances of stabilized and
deformed structures are presented in Figs. 4 and 5. The data gener-
ated from MD simulations were fed into EvoNN for creating meta-
models for c and DE, considering polycrystalline systems with and
without dislocations, along with the single crystalline system. Typ-
ical models for both DE and c are shown in Fig. 6.

4. Analyses of results

The Pareto-frontiers of all three systems are compared in Fig. 7.
All the Pareto-solutions correspond to a low shear velocity of



Fig. 6. Performance of EvoNN meta-models for polycrystals without dislocation. The values refer to the predefined failure point.

Fig. 7. Computed Pareto-frontiers. The values refer to the predefined failure point.

Table 2
Parameters of Pareto-solutions.

Polycrystal without dislocation based upon grain size

Grain boundary orientation (Fe–
Zn)

Grain size (Å) Coating th
(Å)

Low–Low 84 55
94 35
105 55

Low–High 84 55
94 45
94 45
105 55

High–Low 94 35
94 45
94 35

High–High 84 55
94 45

Polycrystal without dislocation based upon DE

DE Grain boundary orientation (Fe–
Zn)

Grain size

<100 eV Low–Low 84
94
105

Low–High 105
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10 m/s. Deformations at higher velocities would impart larger strain
in most levels of energy absorption, leading to solutions dominated
by the ones present in the Pareto-frontier. Expectedly, the Pareto-
solutions obtained for the Fe–Zn polycrystal with dislocations are
dominated by those without it. The dislocations set into motion by
any value of DE led to a higher value of c than the dislocation free
polycrystals, leading to inferior solutions in terms of the present
objectives. The Pareto-solutions were further analyzed in the
variable space. The results are summarized in Table 2. In this
table the maximum numbers in a given category are indicated in
boldfaced italics.

A careful examination of Table 2 reveals that in the absence of
dislocations in polycrystals most of the Pareto-solutions came from
low–low (Fe–Zn) grain orientations, while in the presence of dislo-
cations most were from high–high grain boundary orientations.
Possible phenomenon underlying such trend is as follows. High
angle grain boundaries are better emitter of dislocations. Thus
in the absence of dislocations, presence of high angle grain
ickness Number of Pareto
values

# Pareto-solutions for a grain
orientation

4
1
22 27

6
1
1
7 15

1
1
3 5

1
2 3

Coating thickness # Pareto solutions

55 2
35 1
55 4
55 3

(continued on next page)



Table 2 (continued)

Grain boundary orientation (Fe–
Zn)

Grain size (Å) Coating thickness
(Å)

Number of Pareto
values

# Pareto-solutions for a grain
orientation

High–Low 94 35 1
94 55 1

100–200 eV Low–Low 84 55 2
105 55 12

Low–High 84 55 3
94 45 1
94 55 1
105 55 3

High–Low 84 55 1
94 45 2

High–High 94 45 1
94 55 2

>200 eV Low–Low 105 55 6
Low–High 35 55 3

105 55 1

Polycrystal with dislocation based upon grain size

Grain boundary orientation (Fe–
Zn)

Grain size Coating thickness Number of Pareto
values

# Pareto-solutions for a grain
orientation

Low–High 84 55 4
105 55 2 6

High–High 84 45 1
55 13

94 35 3
45 4
55 5

105 55 3 29

High–Low 94 45 1 1

Polycrystal with dislocation based upon DE

DE Grain boundary orientation (Fe–
Zn)

Grain size Coating thickness # Pareto solutions

>40 eV High–High 105 105 1
Low–High 84 55 4

105 55 2

40–60 eV High–High 84 45 1
84 55 13
94 55 1
105 55 2

>60 eV High–High 94 35 3
94 45 4
94 55 4

High–Low 94 45 1

Single crystal on the basis of DE

DE Fe–Zn interfacial orientation Coating thickness Number of Pareto
values

<66 eV <1� 56 2
>70 eV 25–30� 56 33
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boundaries result in easier shear straining and thus lower absorp-
tion of energy. Consequently, in the absence of dislocations,
low–low boundaries which will require higher absorption energy
would dominate. On the other hand in the presence of dislocations
or pre-strain, further emission of dislocation by high–high
boundary possibly hardens the polycrystal resulting in higher
absorption of energy as compared to low angle boundaries. Thus
the observed trend is due to the fact that a polycrystal deforms
most easily or absorbs minimum energy at an optimum level of
dislocation density.

5. Concluding remarks

As a concluding remark: although Genetic and Evolutionary
algorithms are now being extensively used for studying various
assemblies at the atomic level [17–19] and also for designing
steels of newer properties and compositions [20], the bi-objective
meta-modeling strategy, as adopted in this work and our earlier
studies of this system [1,2] is still at the cutting edge, and warrants
further exploitation in the atomic and molecular assembly design
problems at large. The present study remains a paradigm case
demonstrating the advantages and capabilities of this evolutionary
approach. As for the practical relevance of this study, coating the
steel surfaces with Zn for corrosion resistance is a common proce-
dure followed by numerous steel plants worldwide [21]. This
study, along with its predecessors [1,2] provides a complete strat-
egy for designing such coatings with the capability of optimum
performance, which, now effectively could be scaled up for the
real-life application.
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