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Various interfaces in Zn coated steel are examined for their stability on the basis of two conflicting
requirements of minimum deformation at a maximum absorption of shear energy. The shearing process
is simulated using a Molecular Dynamics technique and meta-models of both energy and strain are con-
structed using an Evolutionary Neural Network that itself evolved through a multi-objective Genetic
Algorithm. Simultaneous optimization of deformation and energy absorption is conducted with a Preda-
tor–prey Genetic Algorithm and the resulting Pareto frontiers are analyzed and discussed. The findings
show good correspondence with existing experimental observations.
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1. Introduction

A multi-objective analysis of the Fe–Zn system was presented in
a recent work [1] where the performance of an HCP zinc layer over
BCC iron was appraised in terms of two conflicting requirements:
shear failure at a maximum energy absorption, but with minimum
deformation. In course of their routine applications, the coated re-
gion in the hot dip galvanized sheets are subjected to shear defor-
mations and the studies of this nature can go a long way towards
designing strong and stable coatings over a steel susceptible to se-
vere environmental degradation.

Enough evidence [2,3] is available however to show that the
coated layer in the hot dip galvanized iron is not a single phase
region, rather it consists of several layers of various phases found
in the Fe–Zn phase diagram [4], as shown schematically in Fig. 1.
When subjected to shear force, this composite assembly of phases
is expected to behave in a substantially different way than the pure
Fe–Zn system considered earlier [1]. In fact, the shear resistances at
the interfaces between any two pair of phases are expected to vary
significantly as both their crystal structures and hardness values are
known to be widely different [2,3]. Therefore, in this study, our ear-
ll rights reserved.
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lier methodology [1] has been extended to all the interfaces present
in a more realistic situation. The details are provided below.
2. The model

The characteristics of the various phases in the coated layer are
summarized in Table 1, based upon information available in the
literature [5–7]. The idea here is to separately subject the Fe–C,
C–C1, C1–d, d–f, and f–g interfaces to shear forces till a predefined
criterion for failure is satisfied. At that instant it is necessary to
know both the amount of strain and the total amount of energy ab-
sorbed, so that both of them could be simultaneously optimized for
each interface using the results of many such numerical experi-
ments with systematic parameter variation. The basic computation
scheme is summarized in Fig. 2. As evident from this figure, for
each interface, the Molecular Dynamics (MD) simulations were
performed for various combinations of temperature, shearing
velocity and the upper layer thicknesses to obtain the strain energy
DE, measured with respect to an equilibrated configuration, at a
predefined failure point and the corresponding value of strain c.
The data set obtained from it is fed to an Evolutionary Neural Net-
work (EvoNN) module to construct meta-models for both DE and c.
The details of EvoNN will be provided later. The optimization tasks
for these two quantities are constructed using a Predator–prey
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Fig. 1. Schematics of phases present in zinc coated iron [2,3].

Table 1
Characteristics of Fe–Zn intermetallic phases.

g phase f phase d phase C1 phase C phase

Stoichiometry Zn FeZn13 FeZn10 Fe5Zn21 Fe3Zn10

Crystal structure HCP Monoclinic Hexagonal FCC BCC
Symmetry group Pc3mmc C2/m P63me F43m I43m
Iron wt.% 0 5–6 7–11.5 17–19.5 23.5–28
Lattice

parameters (Å)
2.612 a = 10.862 a = 12.83 a = 17.98 a = 8.98

b = 7.608 c = 57.72
c = 5.061
b = 100.53�

Atoms/unit cell 6 28 555 408 52

Fig. 2. Schematics of modeling and computation.

Fig. 3. Loading scheme of MD simulation block shown for C–C1 system.

Table 2
Morse potential parameters.

D0 (eV) a (Å�1) r0 (Å)

Fe–Fe 0.4216 1.3765 2.849
Zn–Zn 0.091552277 2.17861958 2.65552272
Fe–Zn 0.196464857 1.731724531 2.750560712
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type Genetic Algorithms [8,9] described later. It should also be
noted that the EvoNN module also used a Predator–prey type Ge-
netic Algorithm for its own evolution from an initial set of network
configurations, which again will be elaborated later. Before provid-
ing the details of the Predator–prey Genetic Algorithms, it is essen-
tial to elaborate the basic concepts of multi-objective optimization
and Pareto optimality [10].

3. The multi-objective optimization task

Here for the every pair of contiguous phases we have attempted
to simultaneously optimize both DE and c at a predefined failure
point. In order to design an interface that would fail with a mini-
mum amount of deformation and that too after a maximum
amount energy absorption starting from the equilibration point,
DE was maximized and c was minimized. This would be the ideal
mechanical property combination required for designing a coated
product. Since these two are conflicting requirements, the problem
essentially works out to be a multi-objective problem, where none
of the objectives would attain their individual best and a set of best
possible tradeoffs between them, the so called Pareto frontier [10],
contains the optimum. No feasible solution could dominate a
member of the Pareto set and weak dominance [10] measure was
invoked to implement that. Some pertinent mathematical details
are briefly provided below considering a minimization type of
problem, and the problem in hand could be easily transformed into
one by simultaneously minimizing c and the negative of DE.

In such a situation, for the task of simultaneous minimization of
l objective functions of the type fið~xÞ; i 2 I, a solution vector ~x 2 X,
where X denotes the feasible search space, is considered to be Par-
eto optimal if for any other feasible solution~x 2 X either

î2I
ðfið~xÞ ¼ fið~xÞÞ ð1Þ

or there exists at least one i 2 I such that

fið~xÞ < fið~xÞ ð2Þ

It is rather obvious that there is every likelihood of having more
than one solution satisfying the Pareto optimality condition, and
together they constitute the Pareto frontier.

In this study the bi-objective optimization of DE and c was car-
ried out using a Predator–prey Genetic Algorithm [8,9] used earlier
in a number of related works [11–15].
4. Predator–prey Genetic Algorithms

This algorithm was used in several of our earlier studies
[9,11,12,14,15]. It introduces two distinct entities, the prey and
the predators, in a two dimensional computing lattice, emulating
a forest. The preys denote a set of possible solutions and their initial
members are randomly generated as an initial population of any
Genetic Algorithms. The predators are externally induced artificial
entity, and their task is to prune the prey population based upon
a function U, related to the objective function values. For any prey
i that is examined by a predator j for possible annihilation is given
as a weighted sum of the two objectives F1,i and F2,I, such that
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Uij ¼ xjF1;i þ ð1�xjÞF2;i; 0 6 xj 6 1 ð3Þ

where the weight value, xj, is uniquely generated for each predator
through a uniform random number. Initially, the preys and the pre-
dators are randomly introduced in the computational lattice, and
each node in the lattice, if not empty, would accommodate either
a prey or a predator. The adjacent nodes in the lattice constitute
the neighborhood for the predator or a prey, and standard configu-
rations like Moore’s or Von Neumann neighborhoods [16] are gen-
erally used. A predator is allowed to hunt only in its neighborhood,
moves one step at a time, and for that matter, allowed only to kill
the weakest prey determined on the basis of Eq. (3). Once it makes
a kill, it takes the position of the annihilated prey and hunts again in
its changed neighborhood. For each predator such hunts continue
up to a prescribed maximum number of times that is dynamically
adjusted at the end of each generation, on the basis of a target prey
population. In case of a neighborhood devoid of preys, the predator
is allowed to make one random move, which gets deducted from its
permissible number of hunts. When all the predators exhaust their
hunting quota, the members of the surviving prey population are al-
lowed to move randomly one step at a time and the maximum
number of such steps is predetermined. During such movements
if it encounters an occupied position in the lattice, it loses one
chance. Next the preys are allowed to perform crossover in their
new neighborhood and mutate, as in any Genetic Algorithms. Each
prey chooses a random partner in its own neighborhood for cross-
Table 4
Time steps for MD simulations.

MD simulation

NVE (for equilibrating) Time step: 0.5 � 10�15 s
Equilibration runs 30,000
NPT (for shear) Time step: 1.0 � 10�15 s

Table 3
Ranges of input parameters for MD simulations.

Interface Velocity,
m s�1

Temperature,
K

Thickness
(top layer)
– x2, Å

Total no.
of atoms

Total no. of
simulations

Fe–C 1–100 1–400 8.98–
35.92

3873–
5835

288

C–C1 1–100 1–400 17.98–
35.96

3430–
4298

264

C1–d 1–100 1–400 22.141–
33.211

18,314–
19,882

264

d–f 1–100 1–400 15.216–
38.04

6080–
8120

384

f–g 1–100 1–400 18.284–
33.96

5226–
6117

336

Fig. 4. Schematics of crossover p
over. If no other prey resides in its neighborhood, the crossover pro-
cess is aborted for the lone prey.

Two children are produced after crossover and mutation are ran-
domly placed in any unoccupied location in the lattice. To find an
empty lattice position only a finite number of attempts are al-
lowed, beyond which any unplaced child would be culled. This
migration process leads to better mixing of the available gene pool
– a prerequisite for maintaining excellent population diversity. The
predators do not emulate any of these biological processes and
thus their number remains fixed. The surviving prey population,
after prescribed generations of predator activity, is ranked follow-
ing the procedure of Fonsceca [17] and the best among them, the
so called rank 1 members, approximate the Pareto frontier. In this
procedure the rank of any individual, n, is given by

Rn ¼ 1þHn ð4Þ

where Hn denotes the number of individuals dominating n. The
domination criteria are as discussed in the previous section.

We will now discuss the MD procedures for calculating energy
and strain, followed by the strategy of constructing meta-models
for them using the Evolutionary Neural Network.

5. Calculation of energy and strain

In this study the Total Energy (ET) of the system of N atoms is
computed from the onset of the shearing process at the top atomic
layer of an equilibrated Fe–Zn phase assembly, and continued until
its ‘failure’, defined conveniently as the relative interlayer displace-
ment exceeding 2.9 Å, which is equivalent to the lattice spacing of
Zn–Zn. The Strain (c) measurement also pertains to that failure
point. Both the parameters were computed in a Molecular Dynam-
ics (MD) environment for which the Morse potentials were used
for both Fe–Fe and Zn–Zn interactions. In its general form Morse
Potential [18] is expressed as:
rocess between the nodes.

Table 5
Parameters used in training of the Evolutionary Neural Networks.

EvoNN parameters (training) Value

No. of hidden nodes 5
Probability of node crossover 0.95
Probability of mutation 0.7
Prey population 300
Number prey preferred 290
Predator population size 20
Number of generations 200
Probability of prey movement 0.5
Lattice dimension (no_x � no_y) 40 � 40



Fig. 5. A typical user interface of modeFRONTIER™.
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E ¼ D0 e�2aðr�r0Þ � 2e�aðr�r0Þ
� �

r<rc
ð5Þ

where E denotes interaction energy between the two atoms (eV), r
is the distance between the two atoms (Å), r0 represents the equilib-
rium distance between the two atoms (Å), rc is the cutoff distance
(4.5 Å),

While a and D0 are constants with respective dimensions of re-
ciprocal distance (Å�1) and energy (eV).

The Fe–Zn potential that was used earlier for the pure iron and
zinc assembly studied earlier [1] could not be used satisfactorily
for the complex Fe–Zn phases studied here. Morse potential was
used once again for the Fe–Zn system, by adjusting its parameters
through the combination rules [19] such that:

D0ðFe�ZnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0ðFeÞ � D0ðZnÞ

q
ð6Þ

aðFe�ZnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðFeÞ � aðZnÞ

p
ð7Þ

R0ðFe�ZnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0ðFeÞ � R0ðZnÞ

q
ð8Þ

The numerical values of Morse potential parameters are pre-
sented in Table 2.

The ground state structures of the atoms adjacent to both sides
of the interfaces were simulated using the CrystalMaker™ software
[20]. Like our previous work [1] the shearing phenomena were
simulated using the Molecular Dynamics code LAMMPS [21]. It
was implemented by equilibrating the concerned interface and
its adjacent regions first as an NVE ensemble and subsequently ini-
tiating the shearing process, treating the system as an NPT ensem-
ble. The entire system, shown typically in Fig. 3 for C–C1 system,
consisted of two boxes – a lower box (C in this case) whose two
lowest atomic layers were held fixed in all directions, and an upper
box (C1 in this case) whose two topmost layers were moved at
constant velocity in x1 direction to simulate shear loading. The sys-
tem was assumed to be under plain strain condition in x3 direction
and hence periodic boundary condition was employed in the x3

direction.
The size of the upper box was kept smaller in both x1 and x3

directions than the lower box. This was necessary because at the
onset of shear failure, part or the entire upper box would slip
relative to the lower box, and the hanging layer would behave
unrealistically if the two box dimensions were exactly the same.
Therefore, the other two boundaries (i.e., x1 and x2 planes) were
kept under isolated boundary condition.

Of the three displacements u1, u2 and u3 (along the respective
axial directions), u3 is identically zero due to the plane strain
assumption. Since we are loading the block beyond shear failure,
we allow for large strain magnitudes and use finite strain expres-
sions, which in the 1–2 direction are:

E12 ¼
1
2

@u1

@x2
þ @u2

@x1

� �
þ 1

2
@u1

@x1

@u1

@x2
þ @u2

@x1

@u2

@x2
þ @u3

@x1

@u3

@x2

� �
ð9Þ

Because of the plane strain assumption it reduces to:

E12 ¼
1
2

@u1

@x2
þ @u2

@x1

� �
þ 1

2
@u1

@x1

@u1

@x2
þ @u2

@x1

@u2

@x2

� �
ð10Þ

However, as will be shown subsequently, the displacement gra-
dients ou2/ox1 and ou1/ox1 are found to be negligibly small in our
simulations, and consequently, we use the following standard
approximation for shear strain:



Fig. 6. The equilibrated (a) and failed (b) structures for various interfaces.

Fig. 7. Time history of displacement gradients for C–C1 interface.
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c12 ¼ 2E12 ¼
@u1

@x2
ð11Þ

which can be calculated simply as the ratio of the x1-displacement
and the phase thickness as elaborated in Fig. 3 for C–C1 interface.

Shear failure is defined in our study as the slip of any layer at or
above the interface in the simulation block by at least one lattice
position. The equilibrium interatomic distance of Zn–Zn varied be-
tween 2.6 Å and 2.9 Å in the phases considered in this study. Thus,
shear failure was identified as the relative displacement between
any two adjacent layers above the interface exceeding 2.9 Å.
6. Meta-modeling with Evolutionary Neural Network

Although the values of DE and c are both obtained using Molec-
ular Dynamics, their recurrent calculation for the multi-objective
optimization task would immensely increase the computing bur-
den. To circumvent the problem, like in our previous work [1], a
meta-modeling task was undertaken through an Evolutionary Neu-
ral Network [9,11] using the outputs of judiciously designed
numerical experiments conducted through Molecular Dynamics.
The input parameters that varied were: (i) the velocity at which
the top layer is set to motion, (ii) thickness of the layers above
interface, and (iii) temperature of simulation. The ranges of input
parameter variation are provided in Table 3. The MD time steps
are listed in Table 4. The Evolutionary Neural Networks (EvoNN)
that were utilized to construct the meta-models using MD outputs,
themselves evolved through a Predator–prey Genetic Algorithm.
The idea, as explained in other places [9,11] is to subject a popula-
tion of neural networks to a bi-objective optimizing process to
work out a Pareto frontier between the complexity of network
and its training error, both of which had been attempted to be min-
imized. In the population of the neural networks the topology and
the magnitude of weights in the lower part of the network varied
between the individuals and were subjected to crossover as shown
in Fig. 4. The mutation scheme is elaborated in [9] and is not re-
peated here.

The upper portion of the network evolved through a linear least
square procedure [22] and was not subjected to genetic evolution.
For the linear problem that is solved in the upper part of the net-
work, an evolutionary paradigm might not have any special advan-
tage. However, genetically evolved near optimal inputs from the
lower part of the network can immensely improve the perfor-
mance of any gradient based solver employed at the upper part,
and the Evolutionary Neural Net takes advantage of that. Since
the linear least square procedure has a firm mathematical proof
of convergence, the convergence of this hybrid procedure is also
assured. The complexity of the network was measured through
the total number of weights in the lower part of the network
excluding the biases. Out of the networks presents in the Pareto
frontier, a suitable one was selected through the corrected Akaike
Information Criteria, like in a previous study [23], such that

AICc ¼ AIC þ 2kðkþ 1Þ
n� k� 1

ð12Þ

where AIC, the Akaike Criterion is expressed as

AIC ¼ 2k� n lnðRSS=nÞ ð13Þ

Here the total number of connections in both upper and lower
parts of the network including the biases determines k, n denotes
the number of observations used and RSS is the residual sum of
squares for the model.



Fig. 8. Relative RMS displacement for various interfaces.
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The GA parameters used in constructing the Evolutionary Neu-
ral Networks are provided in Table 5.
7. Modeling and optimization using modeFRONTIER™

During this study the evolutionary approach described above
was pitted against the commercially available software mode-
FRONTIER™ [24]. The software comes with various modules that
the user can easily integrate in a GUI interface as shown in Fig. 5.
The data driven model could be constructed using the options of
its built-in neural network or genetic programming [25] modules
and for the optimization task the user gets to choose from a num-
ber of Genetic Algorithms, including MOGAII [26] and NSGAII [25].
Fig. 9. Energy absorbed as a function of MD time step for C–Ce1 interface.
8. Outcome of the MD simulations

The equilibrated and failed structures of the various interfaces
are shown in Fig. 6. Typical time histories of the three displace-
ment gradients are shown in Fig. 7. Clearly, the only significant dis-
tortion in the lattice is @u1=@x2 as discussed previously.



Fig. 10. Optimized networks for strain and energy at various interfaces. Each diamond indicates a separate neural network, and a darkened diamond indicates a network
selected through corrected Akaike criteria.
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Since LAMMPS provides RMS displacement (drms) for any speci-
fied group of atoms, the point of shear failure may be identified
from the drms vs. time plot. It is not essential that the failure would
occur exactly at the interface. To ascertain the region where the fail-
ure has occurred, we had divided the structure above the interface
into different segments in vertical direction and called them layer 1,
layer 2, layer 3 and so on. Most simulations ran with a total of 3400–
20,000 atoms. After that we calculated the RMS displacement of
near surface atoms in these layers and the layer that crossed the rel-
ative RMS displacement of 2.9 Å first, we assumed that the failure
had occurred there. The computed RMS displacement plots are
shown in Fig. 8, the assigned failure points are marked on each fig-
ure. Like our previous work [1] the noisy MD output was smoothed
using a local linear least square regression routine (LOESS) available
in the Curve Fitting Toolbox™ of MATLAB™.

The energy of the system at the failure point, measured with ref-
erence to the energy at the equilibration point, provided the shear
energy absorbed up to the point of failure, and was taken as a value
of the first objective function used in the subsequent task. A time
history of the total energy of the system (ET), as shown for the typ-
ical case of C–C1 system in Fig. 9, is required to compute this objec-
tive function. The second objective, the shear strain at failure was
calculated as the ratio of the displacement of the top two layers
at failure to the coating thickness, as explained in Eq. (11).
9. Outcome of the objective function training

The Genetic Algorithms based Evolutionary Neural Network
[9,11] could train both the objective functions efficiently. The Par-
eto frontiers between the error of training and the complexity of
network are presented in Fig. 10 for all the relevant interfaces. Each
diamond in these figures is a unique neural net, denoting one of the
optimum tradeoffs between the error and complexity, and in each
case a specific network, indicated as darkened diamond, was
picked up using the corrected Akaike critera explained in [11].
The neural network module in modeFRONTIER™ was also utilized
to come up with the same and their performances are compared
for energy in Fig. 11 and in Fig. 12 for strain. It seems that mode-
FRONTIER™ in many cases has attempted to overfit the data a
bit. Even a careful visual observation would confirm that, since
the fitted curve tends to capture nearly every fluctuation in the ori-



Fig. 10 (continued)

P. Rajak et al. / Computational Materials Science 50 (2011) 2502–2516 2509
ginal data set. This however has a colossal effect on the optimiza-
tion process, which we will discuss shortly.
10. The computed Pareto frontiers

The objective functions calculated by the evolutionary networks
were optimized using the same Predator–prey Genetic Algorithm
[8,9] that was used to generate them. The GA parameters used
for this are listed in Table 6. For the modeFRONTIER™ objectives,
constructed using its neural network module, optimization was
carried out using the well known strategies of NSGAII [25] and MO-
GAII [26], provided also as modules in the software. The computed
Pareto frontiers are presented in Fig. 13. The evolutionary neural
net could compute the Pareto frontiers in all the cases. The mode-
FRONTIER™ on the other hand, could accurately compute the fron-
Fig. 11. Comparison of network training by Evolutionary Neural Net (EVONN) and mode
data number and each data point is generated by a distinct MD simulation with its uniq
tier accurately only in case of f–g interface. For the rest, it had just
generated the solutions at the prescribed limiting values. Consider-
ing the proven track record of the two optimization strategies used,
it seems that the problem lies with the over fitting at the neural net
module of modeFRONTIER™ and similar problems were encoun-
tered in some of our earlier studies as well [14,15,23]. The best
possible combinations of DE and c at failure, expectedly would
be found along the Pareto contours shown in Fig. 13. Since there
are marked differences between the Pareto contours for different
phase pairs, some galvanized steel may very well preferentially fail
along a particular phase boundary depending upon the optimum
combination of the absorbed energy and the corresponding strain.
These frontiers however represent the functional space between
DE and c and each point on the frontier corresponds to a unique
set of the decision variables: (i) the temperature of simulation,
(ii) thickness of the interfacial layer, and (iii) the velocity at which
FRONTIER™ for energy. Numbers along the abscissa are the identifiers for the input
ue set of parameters.



Fig. 11 (continued)
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the shear has been initiated. Different combinations of these deci-
sion variables would lead to Pareto optimality as shown in Table 7
for the regions of Pareto frontiers marked as a, b and c in Fig. 13.
The specific role played by each of them to influence the objective
functions needs to be analyzed further, for which some further
analyses have been performed, as described below.



Fig. 12. Comparison of network training by Evolutionary Neural Net (EVONN) and modeFRONTIER™ for strain. Numbers along the abscissa are the identifiers for the input
data number and each data point is generated by a distinct MD simulation with its unique set of parameters.
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11. The influence of individual variables

In a complex problem like the one in hand the role played by
the individual variables is seldom easy to ascertain. The variables
often tend to influence each other and isolating their individual
impact on the objective function usually remains a difficult task.
The method that we have adopted in this study to accomplish this
has evolved through a series of our previous work [14,15,27] and
the basic strategy could be summarized as follows:

� In any model (e.g. the model of either DE or c at failure in this
case) every variable input is held at the base level, except for
one.
� The pertinent variable is arbitrarily perturbed both below and

above the base level following some definite patterns like sud-
den changes, gradual changes, holding above or below the base
level etc. and the model output is recorded.
� If the trend of the model predictions follows exactly the nature
of the perturbation given to the input variable, their interdepen-
dence is considered to be direct. Alternately, if an increase in the
input variable causes a decrease in the output space and vice
versa, their mutual dependence is considered to be inverse. In
some cases the responses could also be mixed and the analysis
might point to no dependence as well.

Following this strategy the variable responses for both the
objectives were analyzed for all the phases. Some typical results
presented in Fig. 14 for the Fe–C interface. The input data numbers
along the abscissa refer to the synthetic data points used to gener-
ate the desired input profiles (i.e. the thickness profile shown in
the panels at the top, and the velocity and temperature profiles
in the middle and the bottom panels respectively). Similar analyses
were carried out for all the remaining interfaces and the major
findings are summarized in Table 8.



Fig. 12 (continued)

Table 6
Parameters used in optimization of energy and strain.

Optimization

Prey population 180
Number prey preferred 300
Predator population size 20
Number of generations 200
Probability of prey movement 0.5
Probability of mutation 0.16
Lattice dimension (no_x � no_y) 100 � 100
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A careful observation of Table 8 would reveal some interesting
trends. Expectedly, being the primary source of energy input,
velocity is directly correlated with the energy absorbed in all cases.
The shear strain also followed the same trend, except for the C–C1

case which has shown bit of a mixed response, some of which may
not actually be significant. With an increase in temperature the
atomic mobility increases and shear failure occurs at a lower en-
ergy input. This trend is corroborated in all cases except for f–g,
a fairly complex assembly where even after the prescribed amount
RMS displacement of 2.9 Å, the extent of bond breaking seems to
be rather small, as shown in Fig. 6. Temperature however has af-
fected the strain responses in a mixed way in some cases, and often
the model could not pick up any dependence. It is likely that in
these complex phase assemblies certain segments deformed differ-
ently than the others and it would be a formidable task to distin-
guish that from some of the noise already present in the
Molecular Dynamics data. With increasing thickness the expected
direct proportionality to energy absorbed is observed in three cases
out of total five. The remaining two showed bit of a mixed re-
sponse, a factor contributed by the unit cell height and the regions
exposed to shear at different thickness values. Three of the config-
urations C1–d, d–f and f–g have shown the expected inverse trend
of strain with the thickness variation. The mixed trend and no re-
sponse shown by the remaining two again point towards the com-
plexities of these phase assemblies and their representative unit
cells.
12. Identifying the strong and weak interfaces

To meaningfully augment our understanding of this system, it is
imperative that we should try to identify the interface that offers
the best tradeoff between the two conflicting objectives: maxi-
mum energy absorption and minimum deformation at the onset
of failure. It is equally important to identify the one that performs
worst in terms of those criteria. To achieve this, the Pareto solu-
tions shown in Fig. 13 for all the phases are mixed together and
ranked once again amongst themselves using Eq. (4). The idea be-
hind this second round of ranking is quite simple. The Pareto solu-
tions found separately for various interfaces are now pitted against
each other for a global tradeoff between DE and c at the failure
point. The interfaces that are now able to provide a significant
number of rank 1 solutions are expected to be more stable under
the shear force compared to the others that they dominate. Alter-
nately, if some interface is unable to produce any rank one solution
in this situation is expected to be weaker compared to any inter-
face that does. The results of this analysis are summarized for
ranks 1–6 in Fig. 15, constructing a series of frequency plots, which
provide some interesting revelations through these global rank-
ings. It appears that all the Pareto solutions belonging to the f–g
interface belong to the global rank 1 shown in Fig. 15; while none
of the Fe–C Pareto solutions appear there, not even up to rank 6.
The best tradeoff therefore is offered by the f–g interface, while
Fe–C performs worst. Additionally, a close examination of Fig. 15



Fig. 13. Pareto-frontier between energy and strain at the onset of failure for various interfaces.
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reveals that the d–f interface also performs reasonably well, since
it is present in the global rank 1 and is adequately represented in
rank 2 and beyond. Now referring back to Fig. 1, we realize the sig-
nificance of this. It is the g phase that faces the environment and its
excellent stability with its adjacent f phase, in terms of the two
objectives considered here, provides the Zn coated steel its basic
Table 7
Decision variables in the regions a, b and c of the Pareto frontiers shown in Fig. 13.

Thickness, Å Velocity, m s�1

Fe–C (a) 22.18051 99.92152
Fe–C (b) 19.5043 99.38773
Fe–C (c) 35.56571 96.51162
C–C1 (a) 35.58559 63.24879
C–C1 (b) 33.12147 1.001511
C–C1 (c) 35.00034 99.72182
C1–d (a) 32.9853 1.0015
C1–d (b) 33.1293 88.8723
C1–d (c) 22.14107 99.52462
d–f (a) 38.0372 1.001511
d–f (b) 37.30854 71.3685
d–f (c) 37.83411 99.2559
f–g (a) 27.99763 1.001511
f–g (b) 27.98705 49.47878
f–g (c) 27.93955 99.06698
resistance to environmental degradation, for which it is conven-
tionally used. The reasonably good stability of the next phase pair
d–f further reinforces it. Since the phases are of different stiffness,
any high shearing effects encountered in the top layers need not be
experienced at the same level by the phases down below. Equally
interesting is the fact that Fe–C, the weakest link, is deep inside the
Temperature, K DE (eV) Strain

19 92.9775 0.1804
33 101.6274 0.2366

117 116.0908 0.2819
122 73.61414 0.57939

32 56.9149 0.513146
74 83.80537 0.617963

232 61.9089 0.3133
148 252.0466 0.578

63 338.5061 0.8719
38 81.5624 0.3013

2 153.768 0.5696
2 209.7349 0.6832
1 13.71509 0.168764

92 30.45331 0.228685
132 50.17142 0.296272



Fig. 14. Responses of arbitrary individual variable perturbations on ET (left) and c (right) for the Fe–C interface. The perturbed variables are indicated on the figures. Numbers
along the abscissa are the identifiers for the input data number. Details of input data generation are provided in the text and major findings are summarized in Table 8.
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coating and therefore, in most cases, is reasonably protected from
any direct exposure to the shearing effects. However, after pronged
exposure to the environment, the upper layers might ultimately
yield to corrosion related processes, exposing the C phase to large
Table 8
Summary of Input variable responses to energy absorbed and shear strain.

Interface Input variable Respons

Fe–C Thickness Mixed
Fe–C Velocity Direct
Fe–C Temperature Inverse
C–C1 Thickness Direct
C–C1 Velocity Direct
C–C1 Temperature Inverse
C1–d Thickness Mixed
C1–d Velocity Direct
C1–d Temperature Inverse
d–f Thickness Direct
d–f Velocity Direct
d–f Temperature Inverse
f–g Thickness Direct
f–g Velocity Direct
f–g Temperature Direct
shearing strains, which, in turn, would lead to an easy failure at the
weak Fe–C interface.

At this stage it is highly relevant to point out that there is ample
experimental evidence [2] that the in Zn-coated Fe failure occurs
e to energy absorbed Response to shear strain

Mixed
Direct
Mixed
No response
Mixed
No response
Inverse
Direct
Mixed
Inverse
Direct
No response
Inverse
Direct
Direct



Fig. 15. Frequency plots for the global ranks of Pareto solutions presented in Fig. 13.
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along the C phase layer/substrate interface and the high ductility
of f phase, and hence its high energy absorption, is known to pro-
tect the coating from failure. The computation work presented
here fully supports this. Although the computations were per-
formed here with empirical potentials and with rather limited
number of atoms, their success in predicting the correct physical
trend could be very well attributed to the evolutionary meta-mod-
eling approach adopted here and the subsequent multi-objective
optimization. Relevance of Genetic Algorithms in materials design
problem is thus, once again, demonstrated.
13. Concluding remarks

Although there is sufficient literature [28–39] now that deals
with Genetic Algorithms applications for atomic assemblies, the
attempts to apply the multi-objective Genetic Algorithms for such
problems is still somewhat limited [40]. This study shows some
obvious advantages of a multi-objective approach. Molecular
Dynamics, although known for its rigorousness, could be computa-
tionally prohibitive for scaling up the computations for more real-
istic physical system. In such a scenario, the meta-modeling
approach using the Evolutionary Neural Network presented in this
study can make a significant difference by combining the ease of
calculation with reliability of results and in principle, can augment
the earlier strategies based upon the response surface method and
the likes [41]. The present approach is currently being applied to
determine the influence of dislocations on the system studied,
which we expect to report in a subsequent publication.
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