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Abstract

This paper reviews atomistic simulation (AS) of fracture of solids along with recent advances reported in the liter-

ature. While classical fracture mechanics is based on continuum assumptions, AS can provide a first-principles based

description of fracture that accounts for the discrete nature of matter. The idea of atomistic simulation was first applied

to fracture during the early 1970s; brittle fracture was studied first using simple potential models and equilibrium con-

ditions. Advances in materials science and computational power have led to significant progress in AS of fracture. Since

the early 1990s, complex phenomena such as ductile fracture, fracture of non-homogeneous materials, fracture interac-

tion with other physical and chemical effects have increasingly been investigated by atomistic simulation. This paper

discusses achievements and shortcomings in regard to fracture criteria, potential models, initial and boundary condi-

tions, temperature control and multi-scale simulation. An atomistic simulation of the displacement-controlled fracture

process of a single-walled carbon nanotube (SWNT) with a pre-existing Stone–Wales defect is given as an example high-

lighting the essential steps of the methodology. Elastic modulus, ultimate strength and ultimate strain of the tube are

determined from the simulation results (both with the defect and in the defect-free case) and the dependence of these

parameters on the loading rate is investigated. Time histories of potential energy, temperature, axial force and bond

angle are described, and a series of snapshots detailing the progress of the fracture process is provided.
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1. Introduction

In the 1950s, molecular dynamic simulation (MDS) was first introduced by physicists to study the bulk

properties of matter [1]. Today the idea of simulation at the atomic or molecular level is applied in physics,

chemistry, material science, biology, etc., both in academics and in the industry. In the context of simula-
tion of fracture in solids, atoms, rather than molecules, are the primary entities. Consequently, we use the

term ‘‘atomistic simulation’’ (AS) in this paper which is in tune with the current literature on the subject,

although the basic idea is essentially the same as in MDS.

Atomistic simulation predicts the motion of a large number of atoms based on appropriate assumption

of their interactive forces and boundary conditions (Fig. 1). At the heart of atomistic simulation is New-

ton�s law F = ma of classical mechanics. The simulation starts from a set of initial conditions, which basi-

cally includes the initial positions and velocities of all the atoms [2–4] and continues to monitor the state of

all the atoms in the system until the loading process is complete or equilibrium is reached. Relevant quan-
tities such as elastic modulus, fracture toughness, etc can be derived from the simulation results.

The interactive forces between atoms are commonly represented in the form of interatomic potential

energy models. The potential energy is usually a function of the positions of atoms. The parameters

of the model can be obtained empirically from experimental data on material properties such as elastic
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Fig. 1. Basic steps in atomistic simulation of fracture.
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modulus and cohesive energies (the energy required to break the atoms of the solid into isolated atomic

species). In more advanced models, the parameters can be obtained from studying the electronic structure

of atoms using quantum mechanics methods.

The calculation of forces is the most time-consuming part of atomistic simulations because of the large

number of atoms involved. The force on the ith atom is obtained by the differentiating the potential func-
tion, /:
fi ¼ � o/ðr1; r2; . . . rN Þ
ori

ð1Þ
Although the potential, as indicated above, is a function of all the N atoms in the simulation, a trunca-
tion distance of potential model is invariably used since the summation of N-tuple potential of all particles

is beyond the ability of present-day computers.

The differential equations of atomic motion
d2riðtÞ=dt2 ¼ aiðtÞ ¼ fiðtÞ=mi ð2Þ
are solved by numerical integration where ri(t) and ai(t) are, respectively, the position and acceleration of

the ith atom at time t, and mi is its mass. Standard integration algorithms such as Runge–Kutta algorithm

or Verlet algorithm are frequently used. The latter is given by
rðt þ DtÞ ¼ 2rðtÞ � rðt � DtÞ þ f ðtÞ
m

Dt2 þOðDt4Þ ð3Þ
The time interval Dt needs to be significantly smaller than the typical time taken for an atom to travel its

own length.

The basic idea of atomistic simulation has not changed much since the 1950s. Tricks like periodic bound-

ary conditions and potential model truncation used widely in current simulations have been used from the

very beginning. However, sophisticated techniques such as temperature control, application of quantum
mechanics in determining atomic interactions, parallel computation, multi-scale modeling and advanced

visualization methods have gradually been introduced over the past several decades.

This paper is organized as follows. In Section 2, the shortcomings of continuum based approaches in

addressing fracture are discussed, and the suitability of atomistic simulation as an inexpensive computa-

tional/experimental alternative is highlighted. Following this, the essential aspects of atomistic simulation

of fracture are described in Section 3. Recent advances in regard to general mechanism of fracture,

advanced simulation techniques, scale bridging, etc. are discussed in Section 4. A numerical example of

fracture simulation is provided in Section 5 where a single-walled carbon nanotube with a pre-existing de-
fect is pulled to failure under displacement controlled loading. Finally, current shortcomings and future

needs in atomistic simulation of fracture are discussed in Section 6.
2. Need for atomistic simulation of fracture

Scientific research has always been motivated, among others, by a desire to explore natural phenomena

at a fundamental level. The first good attempt to explain fracture phenomena physically is the famous Grif-
fith theory. Based on the stress solution proposed by Inglis [5], Griffith [6] treated fracture as an equilibrium

process in which the loss of strain energy can be equated to the surface energy generated due to the growth

of cracks. The problem of singularity at crack tip was thus circumvented. His theory provided good phys-

ical background and was successfully applied to fracture of glass. Linear elastic fracture mechanics (LEFM)

was developed during the late 1940s to the early 1960s. The milestones are: Irwin [7] and Orowan [8]
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independently extended Griffith�s theory to metals; Irwin [9] used the Westergaard approach [10] to show

that the local stresses and displacements near the crack tip had a general closed form solution that could be

described by a single constant, i.e. the stress intensity factor, that was related to the strain energy release

rate; and the Paris–Erdogan law [11] which shows how the stress intensity factor could be effectively applied

to describe fatigue crack growth. LEFM was initially focused on linear elastic-brittle behavior, thus was
only applied to fracture with limited plastic deformation. The need for fracture mechanics analysis in duc-

tile materials gave birth to elastic–plastic fracture mechanics (EPFM) in the late 1960s. Several researchers

developed corrections for yielding at crack tip including Irwin [12], Dugdale [13] and Barenblatt [14]. Wells

[15] proposed the displacement of the crack surface as an alternative criterion for ductile fracture, which led

to the development of the parameter now known as the crack tip opening displacement (CTOD). Rice [16]

introduced a parameter in a line integral form, the J-integral, to express the nonlinear strain release rate.

Hutchinson [17] and Rice and Rosengren [18] related the J-integral to the crack tip stress fields in nonlinear

materials. Similar concepts were developed independently by Sanders [19], Eshelby [20] and Cherepanov
[21]. Begley and Landes [22] were able to establish the J-integral parameters as the premier criterion in elas-

tic–plastic fracture mechanics. Shi and Hutchinson [23] provided the theoretical framework for establishing

the relation between toughness, stress and flaw size based on J-integral concept, thus made it possible to

apply to real designs. Shih [24] later showed that the J-integral and CTOD are equally valid for character-

izing fracture.

The first study of rapid crack growth is perhaps Mott�s paper in 1948 [25], in which he applied dimen-

sional analysis to determine the relationship between kinetic energy and crack speed, and obtained a lim-

iting crack speed proportional to C0 the elastic bar wave speed for the material. Dulaney and Brace [26] and
Berry [27] independently derived a crack growth history relation that corrected the error in Mott�s result. In
1954, Robert and Wells [28] obtained an estimated limiting speed of 0.38C0 by applying the Westergaard

stress function [10]. Yoffe [29] provided the first dynamic solution in 1951, which gives a limiting speed esti-

mate of 0.6C2, where C2 is the shear wave speed. Broberg [30] later improved Yoffe�s solution by consid-

ering a uniformly expanding crack, and suggested the limiting speed is CR, the Rayleigh wave speed.

Atkinson and Eshelby [31] introduced the contour integral idea to account for inertia and viscoplasticity.

Freund [32–34] and Nilsson [35] performed more detailed numerical analysis for unrestricted crack growth

in an infinite domain, and predicted a limiting crack speed larger than Robert and Wells� result. On the
experimental side, the earliest experiment for dynamic fracture might be done by Schardin�s [36] in

1930s. Other important works are: the measurement of actual crack speed by Hudson and Greenfield

[37] in 1947, the photoelastic investigation by Wells and Post [38] in 1958, crack growth measurements

by Carlsson [39] (the interested reader is referred to the excellent texts such as [40–42] for further details).

The development of fracture mechanics over the past half century has also led to far-reaching contribu-

tions in various engineering disciplines, which is readily apparent from the multitude of fracture mechanics-

based design guides and codes of practice. Examples include the Boilers and Pressure Vessels code by the

ASME [43], Fracture performance tests by BSI [44], Manual for Condition Evaluation of Bridges by
AASHTO [45], Fitness-For-Service of Pipings, Vessels and Tanks by API [46], Standard Test Method

for Measurement of Fracture Toughness by ASTM [47], etc.

Nevertheless, in spite of their brilliant successes, LEFM, EPFM, etc. are, in essence, elegant continuum

models developed from Griffith�s energy balance concept. Fracture, on the other hand, is essentially the

breaking of atomic bonds and crack propagation is nothing but successive breaking of atomic bonds at

the crack tip. Fracture is thus significantly affected by details such as material structures and compositions

at atomic level, which cannot be completely explained by continuum theories. Continuum mechanics is

based on the existence of the so-called representative volume element, a necessary aspect of which is to
assign properties and responses averaged over a sufficiently large volume element onto idealized material

points [48–50]. Such ‘‘smoothing out’’ cannot occur without significant loss of information, and continuum

approaches may not always be adequate when phenomena involving fracture are concerned.
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For example, at the atomic scale, the discrete lattice structure gives rise to the so-called ‘‘lattice trapping’’

effect [51], which results in a higher fracture toughness than Griffith�s theory predicts. According to the

Griffith theory, the critical stress for a brittle crack to propagate is
rF ¼
ffiffiffiffiffiffiffiffi
2Ec
pa

r
ð4Þ
where E is Young�s modulus, c is the surface energy per unit area and a is the crack�s half-length. Crack
propagates if stress is greater than rF. A study with atomistic model [51], however, shows that the discrete

lattice structure introduces certain constraints on the critical stress level, such that the crack does not prop-
agate at the predicted stress value shown above, but at a higher value, called r+. For same reason, the stress

level where crack heals is less than the predicted value, and is called r�. The r+ and r� are the upper and

lower limit of the stress for the crack to propagate and to heal, respectively. A ratio R = r+/r� was found to

be 1.15 in the same study.

‘‘Lattice trapping’’ also results in other effects which cannot be predicted by continuum theories, for

example, the ‘‘directional anisotropy’’ effect [52–55]. Griffith�s theory predicts that fracture is most likely

to occur in the plane with lowest surface energy, and within a certain crack surface, there is no preferred

crack direction. However, atomistic studies show that because the lattice trapping effect is anisotropic in
nature, there is a preferred plane and direction of crack propagation. Also due to this anisotropy, the most

likely crack plane can also be changed to one without the lowest surface energy, as confirmed by a few

experiments [53,56,57].

In one study on tungsten [53], the fracture toughness of tungsten crystals were measured both at room

temperature and at 77 K; atomistic simulations were carried out for comparison. Experiments show that

with decreasing temperature, the h110i direction is preferred over the h100i direction for both {100}

and {110} crack systems; this finding coincides with atomistic simulation results as well. By carefully

excluding other possible reasons such as dislocation activities and mistakes in interatomic potential, the
authors concluded that the anisotropy is caused by the discrete lattice structure itself.

Another study shows that directional anisotropy of cleavage fracture can also be caused by a tilted grain

boundary [58]. Both effects from discrete lattice and tilt boundaries cannot be predicted by available con-

tinuum based theories without understanding the material characteristics at atomic scale.

Furthermore, the location and configuration of defects at atomic scale are random in nature, thus it is

more difficult to study the effect of defects on material properties with continuum-based theories. These

defects include point defects such as vacancies and interstitials, line defects such as dislocations, surface

defects such as grain boundaries and stacking faults, and bulk defects such as voids and cracks. It is well
known that fracture behavior is affected significantly by these defects [59]. For example, the ductile-to-brit-

tle transition of fracture is directly related to the dislocation nucleation and mobility at the crack tip

[60–62]. Although there are other available dislocation models [63], these models cannot account for the

interaction of the dislocation with the crack tip without considering the atomic details at the crack tip.

It is therefore clear that fracture is naturally suited to be studied at the atomistic level. Furthermore,

fracture is an environment-sensitive phenomenon: physical and chemical factors such as temperature, irra-

diation, electronic or magnetic fields, chemical erosions or biological erosions can largely change the behav-

ior of fracture. Analytical methods are quite restricted in their ability to study these problems, but complex
environmental effects can be handled at atomistic scales in a relatively straightforward manner by describ-

ing them as actions on each atom; a few examples are given in Section 4.1. Moreover, real experiments are

difficult and often prohibitively expensive to be performed at such small scales and atomistic simulation pro-

vides a viable alternative in the form of ‘‘computational experiments’’. The recent interest in nano/micro-

electro-mechanical systems also makes atomistic simulation an attractive platform for their design and

analysis since AS is performed at a scale that is becoming increasingly compatible with the actual size of

these nano/micro-systems.
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3. Essential features of atomistic simulation of fracture

As early as the 1960s, researchers started to use discrete atomic lattice models to study the strain energy

at dislocation core [64,65], which cannot be solved by continuum theories because of the singularity at the

tip. As described above, Thomson [51] studied lattice trapping with a discrete atomic model. Although his
approach was analytical, Thomson�s results drew attention to the discrete nature of fracture. However, pos-

sibly the earliest simulations of fracture using atomic model were conducted by Chang [66] in his study on

core structures of edge and screw dislocations in BCC and FCC iron; by Kanninen and Gehlen [67] in their

study on cracks in a-iron; and by Sinclair [68,69] in his study on the BCC dislocation core and the influence

of interatomic force models and kinks on the propagation of brittle cracks.

These early studies mainly focused on fracture resistance of materials. Compared with present-day sim-

ulations, simple potential models and equilibrium conditions (crack propagation was assumed to proceed

slowly) were adopted. However, they did set up a new approach to study fracture that was directly based on
the atomistic nature of matter.

In this section, the essential features of atomistic simulation are discussed under the context of fracture

of solids. These features include the interatomic potential models, initial conditions, boundary conditions

and loading methods, fracture criteria, temperature control and extraction of relevant information from the

simulation.

3.1. Potential models

The mechanical, thermo-dynamical and electro-magnetic properties of a material and its structure are

largely determined by the chemical bonds among its atoms. In the context of atomistic simulation for sol-

ids, interatomic forces, which are governed by the chemical bonds, are expressed in terms of interatomic

potential models. An ideal potential should be able to accurately describe the interaction including the

effects of valence electrons which bind the atoms together, and would require the solution of Schrödinger

equation (Schrödinger equation is a wave equation describing analytically the probability of the states of

electrons, the eigenvalues of the wave equation were shown to be equal to the energy levels of the quantum

mechanical system). A ‘‘full’’ quantum simulation includes the interactions between the nuclei in each time
step and the degrees of freedom of electrons are directly obtained from electronic structure, which is not

applicable to a system of many atoms. Approximate approaches including tight binding [70,71] and density

functional theory [72,73] have been used in such ab initio simulation of fracture.

At the present state of the art, the ab initio approach is limited by computational resources to usually a

few thousand atoms. Therefore, so-called classical potentials (as opposed to quantum mechanical or ab ini-

tio) are used extensively; these classical potential models are to various extend empirical in nature and are

often functions of atomic positions (r1, . . . rN) alone. Although these relatively simple classical mechanics

based functions provide only approximate information about the bonding of the real material, they have
shown their advantages in numerous applications of fracture simulation (as detailed in Section 4) and in

interpretations of the properties of materials, (e.g., [74]). In this paper, the word ‘‘potential’’ is used only

for the potential models based on classical mechanics, no quantum mechanics is involved in the

simulations.

A large number of interatomic potentials have been developed and reported in the literature; each of

these models is usually tailored for use with a select group of materials. They range from the simple pair

potentials, to relatively complicated potentials incorporating effects of bond angles, bond orders, local elec-

tron densities, etc.
As mentioned in Section 1, the interaction between atoms drops quickly as their separation becomes

large. Thus it is computationally convenient to choose a cut-off distance, rc, so that for a given atom, i, only

those atoms within a radius rc from i are treated as its neighbors and are involved in the calculation of its
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potential. Apart from making the simulation more efficient, the cut-off distance may also play an important

role in defining the bond breaking and hence the onset of fracture (discussed in Section 3.4).

The potentials used in very early stages (1950–1960s) were empirical isotropic pair potentials (Lennard-

Jones potential [75] introduced in 1924, Morse potential [76] introduced in 1929, etc.). These are ideally sui-

ted for atoms with no valence electrons. For isotropic pair potentials, the total potential energy of the whole
system is given by the sum of pairwise contributions within the cut-off distance:
Etot ¼
X
i

X
j>i

/2ðrijÞ; /2ðrijÞ ¼ 0 for rij > rc ð5Þ
where /2(rij) is the pairwise potential function usually in an exponential or polynomial form, and rij is the

scalar distance between atoms i and j. In this class of models, the interaction among atoms is confined only

to pairs and depend only on the relative spacing between the atoms (regardless of the direction). The

parameters used in the potential function are obtained empirically, often by fitting predicted intrinsic mate-

rial properties such as the elastic modulus and crystal lattice parameter to their experimental values. These

pair potentials reflect the basic interatomic relations such as the Pauli repulsion and dipole–dipole
attraction.

As an example, consider the parameters of the Morse potential for copper [77–79]. The Morse potential

for metals is usually given in the form
/ðrijÞ ¼ D½expf�2aðrij � r0Þg � 2 expf�aðrij � r0Þg� ð6Þ
consisting of three model parameters, D, a and r0. These three parameters can be determined by fitting them

to experiment data on equilibrium lattice parameter (a), cohesive energy (Ecohesive) and bulk modulus (B) at

zero temperature and pressure. The potential energy per atom, U, in a cluster of N atoms is obtained by (i)

choosing one atom in the lattice as the origin, (ii) calculating the sum of its interaction with all the other
atoms in the cluster, and (iii) dividing the sum by 2 because all atoms have been counted twice
U ¼ 1

2
D
XN
j¼1

½e�2aðrij�r0Þ � 2e�aðrij�r0Þ� ð7Þ
U should satisfy the three conditions below.

(i) For equilibrium
dU
da

����
a¼a0

¼ 0 ð8Þ
where a0 is the value of lattice parameter for which the lattice is in equilibrium at 0 K.

(ii) Cohesive energy per atom (the cohesive energy of a solid is the energy required to break the atoms of

the solid into isolated atomic species):
U ¼ 1

2
D
XN
j¼1

½e�2aðrij�r0Þ � 2e�aðrij�r0Þ� ¼ Ecohesive;0 ð9Þ
where Ecohesive,0 is the cohesive energy at zero temperature and pressure.

(iii) Bulk modulus
B0 ¼ V 0

d2U

dV 2

����
a¼a0

ð10Þ
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where V is the volume of lattice occupied by one atom, V0 is the corresponding volume at zero tem-

perature, and B0 is the bulk modulus at zero temperature and pressure.

Since copper has FCC structure, only the 12 nearest neighbors around one particular atom are consid-

ered in the calculation of potential energy, hence N = 12 and V = a3/4. Using (7) in Eqs. (8)–(10), we obtain
the three model parameters:
Table

Morse

Lattice

3.61
r0 ¼
ffiffiffi
2

p

2
a0; D ¼ Ecohesive;0

6
; a2 ¼ 3B0r0

4
ffiffiffi
2

p
D

ð11Þ
The experiment data on copper and the three fitted parameters for the Morse potential (Eq. (6)) are listed in

Table 1.

Isotropic pair potentials were originally developed for liquids and gases. Basically, they describe the

interaction of closed-shell atoms. They were applied extensively in the early years to simulation of solids
with the purpose of obtaining basic properties such as stability of lattice structure, defects in metals [80–

82] and fracture behaviors [66,67]; etc.), and they continue to be in use today mainly because of their sim-

plicity [83]. Isotropic pair potentials can give good results if applied properly, but they suffer from major

shortcomings when applied to solid metals. For example, the melting temperature, the vacancy formation

energy and the ratio of the elastic constants, C12/C44, of a cubic crystal generated by pair potentials cannot

fit the corresponding experimental data [84,85]. The reason is that these models have no environmental

dependence, making little difference between behavior of a bulk atom and that of a surface atom. Studies

have shown the electron density effects are necessary for correct simulation of metals [84,86,87].
Many-body potentials consider the effects of local electron density. Examples include the embedded

atom method (EAM) potential [88–90], the Finnis–Sinclair [85] potential, the Sutton–Chen potential

[91], etc. These potentials have the general form
Etot ¼
X
i

F ðqiÞ þ
X
i

X
j>i

/2ðrijÞ ð12Þ
The term F(qi) is intended to model the interaction between atom i and its neighbors as a function of the

local electron density where the atom i is placed. The term /2(rij) has the same meaning as pair potential

above. The functions F(qi) and /2(rij) are approximately determined by studying the lattice constant, elastic

constants, vacancy-formation energy and sublimation energy in various phases. This type of potential is
widely used for metals due to its straightforward form and its ability to incorporate the approximate var-

iation of bond strength with the electron density [92].

However, neither isotropic pair potentials nor many-body potentials account for the angle between

atomic bonds, thus they cannot reflect the directional preference of bonding, which is essential in simulation

of covalent materials and some properties of defects in metals. The Stillinger–Weber [93] potential for sil-

icon has a two-body term and a three-body term
/ðr1; r2; . . . rN Þ ¼
X
i

/1ðriÞ þ
X
i

X
j>i

/2ðri; rjÞ þ
X
i

X
j>i

X
k>j>i

/3ðri; rj; rkÞ ð13Þ
1

potential parameters (determined by experimental data from [194])

parameter (Å) Bulk modulus

(dyn/cm2) · 1012
Cohesive energy

(eV/atom) · 1022
a (Å�1) r0 (Å) D (eV)

1.37 3.49 1.41 2.55 0.582
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where the two-body term accounts for the bond stretching; the three-body term manages the bond angle

preference. ri, rj and rk are atomic position vectors. It reproduces well the diamond-cubic structure and

liquid state of silicon. However, it is not good for modeling the amorphous solid state or under-/over-

coordinated silicon atoms. Thus its validity of applications on fracture studies, where new crack surface

is created, should be verified further. An example of this three-body type of potentials, which is modified
from the Morse potential by adding a three-body term, has been used in a simulation of carbon nanotube in

Section 5 of this paper.

The more complicated bond order potentials, including Tersoff and Brenner�s models [94–96], involve

the variations in bond energy due to the changes to an atom�s coordination number (number of neighboring

atoms). It has the form
Ei ¼
X
jð6¼iÞ

½V RðrijÞ � BijV AðrijÞ� ð14Þ
where Bij is the bond order term, which itself is the function of the atom�s coordination number. The bond

order potential is widely used for simulation the bulk and surface properties of silicon and carbon, includ-

ing defects production, film growth, ion bombardment and fracture. The parameters of the functions pres-

ent in these potential models are chosen primarily by fitting them to the cohesive energies of various

polytypes, along with the lattice constant and bulk modulus of semiconductors. The bond order models
are among the most frequently used potentials for semiconductors. However, as pointed out by a few recent

studies [97,98], they do not reproduce fracture properties well and seem to give unrealistic high fracture

strains.

The environment dependent interatomic potential (EDIP) [99–102] models for silicon and carbon are ob-

tained by fitting the parameters to the cohesive energy curves obtained by ab initio calculations, but not the

experimental data. They are a little more complicated than bond-order models and have the form of similar

to the Stillinger–Weber potential
Ei ¼
X
j

V 2ðRij; ZiÞ þ
X
jk

V 3ð~Rij;~Rik; ZiÞ ð15Þ
where Zi is the coordination number of the ith atom. The pair functional V2(Rij,Zi) represents the strength

of bond (ij), while the three-body functional V 3ð~Rij;~Rik; ZiÞ represents preferences for special bond angles,

due to hybridization, as well as the angular forces that resist bending away from those angles. The environ-
mental effect is represented by the number of nearest neighbor atoms, which is determined by an effective

coordination number Zi for atom i. The form of this potential is derived by inversion of cohesive energy

from ab initio calculation. Then by analyzing the elastic properties of covalent solids, they explored the

cohesive forces in certain special bonding states. Although it is developed for bulk studies of silicon, it is

also used for simulation of fracture [103].

Generally speaking, potentials are developed for targeted materials and targeted properties. Therefore,

how sophisticated a potential is and what its capabilities are depend on which material is being studied and

which properties one is interested in reproducing. It should also be mentioned that different potential mod-
els may be selected for the same material when simulating such diverse processes as static brittle fracture,

dynamic fracture, ductile fracture and fracture with defects.

3.2. Initial conditions, boundary conditions and loading methods

Atomistic simulation predicts the time history of atomic movements by solving their differential equa-

tions. Initial conditions provide the information for the simulation to start. The initial atomic positions

are determined either by their lattice structure and composition, or by random method, depending on
whether the system to be simulated is crystalline or amorphous. The initial velocities are determined by
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the temperature of the system, and calculated from random distributions given by statistical mechanics.

Simulation of fracture usually focuses on a region around a pre-existing crack tip, assuming the crack to

be of macroscopic size. The crack is described with a crack plane and a crack direction. The initial config-

uration of the pre-existing crack tip can be determined by a few methods: (i) simply removing several layers

of atoms from the matrix, (ii) shifting the atoms on the crack surface from their original position on the
crystal lattice to the position that is specified by the anisotropic elasticity continuum mechanics equations

[104] for a desired value of the stress intensity factor.

Periodic boundary conditions are widely applied in many simulations of gases and liquids in order to

avoid free surfaces. The basic idea is to replicate the simulation cell infinitely in all directions, thus these

replicas serve as the boundaries. However, this method causes problem in fracture simulations since the

crack is not periodic in all directions. Under the periodic assumption, the crack and the related defects

would interact with themselves ad infinitum, which would result in fictitious forces and energies. Therefore,

in most fracture simulations, a boundary layer of atoms is defined to serve to reduce the edge effects and
maintain proper configuration of the lattice [66–68]. Fig. 2 shows boundary layers as shadowed circles in an

example of Mode II fracture with a pre-existing crack.

Mechanical load can be applied through one or more layers of the boundary atoms, by prescribing either

the displacements [105–107] or forces [108–110] on the boundaries. The loading strategy in Guo et al.�s
study [111] is shown as a typical example: (i) before applying the external loading, the interior atoms are

relaxed to reach equilibrium. (ii) The external loading is applied incrementally, by moving the boundary

atoms according to the linear-elastic solution. (iii) The boundary atoms further interact with the interior

atoms. For a specified stress intensity factor, the system is relaxed under fixed-displacement boundary con-
dition for several hundred time steps. (iv) The stress intensity factor is updated during the simulation due to

the change of crack size. The load is incrementally applied by repeating the above procedure.

Special loading methods may be applied to simulate fracture in the presence of electric field, magnetic

field, radiation, chemical erosion, etc. (brief examples are given in Section 4.1).

With increasing computational resources, the number of atoms in recent simulations have reached the

order of 109 [112,113], which is nevertheless still many orders of magnitude less than the representative vol-

ume element of the material. Thus the simulations invariably focus on the neighboring area around the

crack tip. Therefore, the size of the material under study is always not large enough, so that the properties
obtained from the simulation cannot reflect the general properties of the material correctly. In some studies,

this problem is solved by integrating different sizes of models in one simulation, which is popularly called

multi-scale modeling (introduced in Section 4.2).

3.3. Temperature control

In conventional atomistic simulation, instantaneous temperature T of the system is calculated based on

the statistics of the particle momenta [2]:
Fig. 2. Geometry and loading method for Mode II crack.
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T ðtÞ ¼
XN
i¼1

miv2i ðtÞ
kBN f

ð16Þ
where T(t) is the instantaneous temperature at time t, mi is the atomic mass, vi(t) is the atomic velocity at
time t, kB is the Boltzmann constant, N is the number of particles, Nf (=3N � 3) is the degree of freedom.

The original idea of molecular dynamics simulation was developed to study the natural time evolution of

an isolated system of N particles occupying a volume V and with total energy E. In statistical mechanics,

these systems belong to the microcanonical ensemble, or NVE ensemble; the temperature is not constant for

NVE ensemble. However, constant temperature is sometimes a favorable feature in simulations with net

energy input/output, such as mechanical loading in fracture simulation. Without any control, the temper-

ature of the system could go unrealistically high or low. The systems with constant temperature belong to

the canonical ensemble, or NVT ensemble, in which the particle number N, the volume V and the temper-
ature T are constant.

An ideal temperature control technique should have control on the velocities of all particles so that they

obey the distribution for canonical system at a given temperature; also, the trajectories of particles (velo-

cities and positions) should be ergodic, that is, the ensemble average can be replaced by the temporal

average.

Various techniques for temperature control have been frequently used. The widely used Nose–Hoover

approaches include the original Nose Hamiltonian [114], the Nose–Hoover dynamics [115], the Nose–Hoo-

ver chains [116], and other modifications [117,118]. Basically the idea in the Nose–Hoover approaches is to
add one additional degree of freedom to the system that acts as a heat reservoir. It controls the fluctuation

in the system temperature by controlling the heat flux between the reservoir and the system. The velocity

rescaling method simply rescales the atomic velocities to attain the desired temperature [4]. The Anderson

thermostat [119] couples the system to a heat bath that is represented by stochastic impulsive forces acting

occasionally on randomly selected particles. These stochastic collisions with the heat bath simulate the

energy exchange between the system and the heat bath. The Gaussian thermostat, based on Gauss� principle
of least constraint, is to project the particle momentum to the iso-kinetic hyperspace [120].

Generally speaking, temperature control techniques can be very helpful but they must be applied care-
fully so that the artificial modifications introduced to the atomic velocities are physically meaningful. How-

ever, temperature control techniques are not guaranteed to work well in non-equilibrium situations [121]. It

is therefore necessary to understand their limitations before using them arbitrarily in fracture simulation

which can be a highly non-equilibrium process.

3.4. Identification and detection of fracture

At the macroscale, ‘‘fracture’’ can be defined as the growth of a single dominant crack (or a group of
cracks) leading to the separation of a member into two pieces usually under the application of loads. At

the atomic scale, however, fracture is simply the breaking of a series of atomic bonds. Therefore the crite-

rion for atomic bond breaking has to be clarified for atomistic simulations.

In most studies, crack extension is detected either by observing the distance among atoms or by direct

inspection of the configuration of the atomic arrays. If the separation between a pair atoms exceeds a crit-

ical distance (call it rf), where the interatomic force drops close to zero, the bond between the atoms is

regarded as broken. Fig. 3(left) shows an 2-dimensional picture of a local area around a brittle crack

tip. Dots denote atoms, a crack is drawn with dashed lines. Fig. 3(right) shows the three atoms closest
to the crack tip. The separation between atom B and C is less than rf, which means the bond between them

remains unbroken. The separation between atom A and C in Fig. 3(right), on the other hand, is greater

than rf, so the bond between them is regarded as broken. It may be necessary in some investigations to iden-

tify the precise location of the crack tip (e.g., in deriving fracture toughness) which nevertheless is somewhat
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arbitrary at the atomic scale. One can definitely conclude in the above example that the crack tip is some-

where within the triangular region ABC since the crack extends to the right of atom A but falls short of

atom B, yet the exact position of the tip cannot be defined without making additional assumptions.

The above approach can be summarized as distanced-based detection, and is used widely in atomistic

studies of fracture [55,122–126], although not every study mentions the specific value of rf. Generally, a

good guess is that rf is associated with the cut-off distance (rc) of potential energy functions (refer to Section
3.1), since the cut-off distance is where the interatomic force drops close to zero.

Rebonding of atoms is important in simulations of formation of dislocations and healing of cracks.

Generally, rebonding is defined with the same method as bond breaking. For example, in the fracture

simulation of a-iron by Machova and Kroupa [123], the cut-off distance rc is as criteria for both crack

extending and healing. That is, when the distance between individual atoms r exceeds the cut-off distance

rc, the bond is regarded as broken; when r < rc the bond is regarded as healed. However, in a few cases,

particularly for studying dynamic fracture [83], rebonding is forbidden, basically to simplify the problem.

Other than crack extension and healing, the study of characteristic phenomena, especially defects, are
important for fracture studies. Energy-based detection methods can be used to monitor these important fea-

tures. Since the atoms at equilibrium position has lowest potential energy, atoms associated with defects or

crack surface are characterized by their high potential energies. Therefore, by monitoring potential energies

of individual atoms, it is possible to detect defects and crack surface [127]. For example, atoms with poten-

tial energies greater than 97% of the equilibrium value of the atomic potential energy (negative in this study)

are highlighted as atoms involved in a dislocation, microcrack or other imperfections in a study by Abra-

ham et al. [113]. The method has advantage especially when large number of atoms are involved, or when

ductile behavior is of special importance.

3.5. Extraction of relevant information

Atomistic simulation essentially tracks the time evolution of the positions and velocities of the atoms.

From this basic information and using relevant geometric and loading characteristics, further quantities

can be generated as described below.

The geometry of the crack tip, evolution of point defects, movement of dislocations, crack speed, vibra-

tion frequencies and modes, etc. can be obtained by directly monitoring the atomic positions and using the
methods of detecting fracture and defects discussed in Section 3.4.

Temperature of the system (Eq. (16)), forces, potential and kinetic energies of individual atoms, thermo-

conductivities, elastic modulus, fracture toughness, etc. can also be calculated from the basic information.

For example, in the simulation of carbon nanotube, the Young�s modulus and the Poisson�s ratio were cal-

culated, respectively, using the classical relations Ez ¼ rzz=e0zz and mzh ¼ �ehh=e0zz by [128], where rzz is the
axial stress, e0zz is the axial strain and ehh is the radial strain.

Stress calculation is often used in atomistic simulations of fracture. However, it is important to note that

the concept of stress is originally defined in the context of continuum mechanics. At the atomic level, force,
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rather than stress, is the more natural measure of mechanical interaction. To connect atomic systems with

continuum-based analysis, several methods of measurement of stress at the atomic scale are developed.

Stress has sometimes been computed using the classical result from thermo-mechanics as the strain deriv-

ative of the elastic strain energy (e.g., [129])
r ¼ 1

A
oES

oe

� �
ð17Þ
where ES is the elastic strain energy, e is the strain, A is the cross-sectional area. Another widely used stress
definition is based on a generalization of the virial theorem of Clausius [130] for gas pressure. The average

virial stress over a volume X around a particle i at position ri is
P ¼ 1

X
�mi _ui � _ui þ

1

2

X
j 6¼i

rij � f ij

 !
ð18Þ
where mi is the mass of atom i, ui is the displacement of atom i relative to a reference position, the super-

script dot indicates material time derivative (which is the Eulerian expression of the rate of change of any

property of a fluid particle as it moves through the flow field), rij = rj � ri and � denotes tensor product.
Applying the continuum equation of balance of momentum, Lusko [131] derived a similar expression

for stress in a form suitable for atomistic simulations. The stress expression has two parts, a kinetic part

depending on the mass and velocity of atomic particles, reflecting an assertion that mass transfer causes

mechanical stress to be applied on stationary spatial surfaces external to an atomic-particle system; and

a potential part, depending on interatomic forces and atomic positions, providing a continuum measure

for the internal mechanical interactions between particles. The virial expression of stress was originally

defined for gases and liquids, and was later extended to solids (mainly homogeneous solids in equilibrium).

Obviously, it cannot reflect the effects of local defects or deformations when their contributions are aver-
aged over the whole volume. Eq. (17) derived from strain energy suffers from the same problem. Tsai [132]

has shown that the virial stress definition can also be expressed by accounting of all the forces acting across

an appropriate surface
ri ¼
1

A

X
i

mijvij
Dt

þ
X
R

X ðj; kÞ ð19Þ
where A is the area of the surface, X(j,k) is the force exerting from one side of the surface to the other side, i

denotes atoms which cross the surface during Dt. This definition was proved to be the physically same as the

virial stress defined on a volume when applied to homogeneous bodies, and is favored generally for simu-

lation of solids since it can give the local stress variation in the region of an atomic-level inhomogeneity

[132–134]; see Zhou and Shi 2002 [135] for an example involving carbon nanotubes.
Although these methods (Eqs. (18) and (19)) are widely applied, according a recent paper by Zhou [136],

they contain weak points in (i) defining the concept of stress in systems with discrete nature and (ii) con-

fusing the material and spatial balance of momentum. Zhou claimed that the virial stress is actually not

a measure of mechanical stress. Instead, the interatomic force term itself in the virial form is a valid stress

measure and can be identified with the Cauchy stress. This study seems to be an important revision to the

measurement of stress in atomistic simulations for mechanical properties.

In the numerical example in Section 5, axial stress rzz is calculated as
rzz ¼
F z ð20Þ

A
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where Fz is the axial force measured on one end of the specimen, A is the cross-sectional area. This is

intended to measure the instantaneous far-field stress in the tensile specimen instead of a volume averaged

quantity. This approach has also been adopted by a few other studies [137–139].

Apart from mathematical calculations, good visualization techniques are not only helpful but also nec-

essary to effectively explore the fracture behaviors generated by simulations, especially as the number of
atoms increases to billions. Digital movies and virtual environments provide direct insight into the rich

diversity of fracture phenomena [83,112,113,140].
4. Recent advances in atomistic simulations of fracture

Section 2 highlighted some of the shortcomings of continuum based modeling of fracture and outlined

how atomistic simulation can be more attractive and powerful in investigating some aspects of the fracture
process in solids. We now review some of the recent advances in atomistic simulation of fracture, namely in

the studies of brittle, ductile, dynamic fracture mechanisms, in fracture occurring in different environments,

and in the area of multi-scale simulations.

4.1. General mechanism of fracture

As already mentioned, atomistic simulation was first applied to the study of static brittle fracture in the

early 1970s. With increasing computational power and advances in materials science, AS found its appli-
cation in more complex phenomena including ductile fracture and dynamic fracture. Since the early

1990s, a veritable explosion of AS results have been reported in the literature: on the one hand these include

predictions of new phenomena not supported by existing theories, and first-time ‘‘experimental’’ verifica-

tion of long-held analytical predictions on the other.

By the early 1970s it was known that special effects such as lattice trapping cannot be predicted by con-

tinuum models. The phenomenon of directional anisotropy (discussed in Section 2) that makes a crack

extend in a plane and in a direction not preferred by continuum theories has been studied more recently

with AS [52–55]. Another effect of lattice trapping, ‘‘meta-stable cracks’’ in which cracks take zig-zag paths
instead of smooth ones (that have the lowest surface energy) have also been studied by atomistic simulation

[141,142].

One of the most challenging topics in fracture mechanism is a given specimen�s preference between brittle

and ductile failure modes. Why does a material break in a brittle (or, alternately, ductile) way but not the

opposite? At what conditions does the brittle (or, ductile) behavior dominate? How does plasticity increase

the material toughness? In the atomic scale, the transition from brittle to ductile behavior occurs when dislo-

cations are emitted from the tip of an existing crack, and its movement causes crack blunting. A series of ana-

lytical studies have been carried out to model this process. In an early model (1974), Rice and Thomson [60]
used the elasticity solutions for a fully formed dislocation ahead of the crack tip, and introduced a core cut-off

radius to derive a force balance for the dislocation to move away. They gave the critical condition of the sta-

bility of the crack asGb/c = 7.5–10, whereG is the shearmodulus, b is the Burgers vector of dislocation and c is
the surface energy of the material. The shortcomings in this model were later pointed out by Rice in 1992 [62]:

(i) the core cut-off distance in [60] was poorly defined, and (ii) instead of the fully formed dislocation in [60],

only an incipient one actually existed prior to the instability ahead of the crack tip. In the improvedmodel [62],

Rice involved describing the incipient dislocation based on the atomic considerations within the framework of

the Peierls model. He compared the energetic ‘‘cost’’ of creating new surfaces within the crystal (the surface
energy cs) with the energy barrier that must be overcome to allow atomic planes to slip over one another (the

unstable stacking fault energy cus). Rice used fracture mechanics to perform a straightforward analysis, and

found that a critical ratio of these energies separates ductile from brittle behavior for a particular crystal-
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lattice type and orientation. This model has since been widely used; some drawbacks has recently been argued

in [143]. Rice�s Peierls model has been verified with AS in a limited way [127,144] since the reproduction of

dislocation emission at the crack tip and the blunting of crack tip involved in dynamic fracture required

the simulation of millions of atoms and requires vast computational power.

Nevertheless, quite a few studies have also showed that Rice�s Peierls model [62] is inadequate in explain-
ing the choice of brittle vs. ductile failure mode. For examples, Zhou et al. [145,146] found that Rice�s
model is quite accurate for Mode II fracture, but for Mode I fracture, the ductile–brittle crossover is inde-

pendent of cs, and is only determined by cus. Zhou et al. [127] also found that Rice�s Peierls model under-

predicted the critical load for dislocation emission. Based on their own simulations, Knap and Sieradzki

[147] claimed that the discrepancy between simulations and Rice�s Peierls model is due to the influence

of the surface stress. However, simulations conducted by Farkas [144,148] showed that cleavage can happen

after dislocation emission from the crack tip if the dislocations are not allowed to reach their equilibrium

positions. Farkas� simulation shows that the shielding effect of the emitted dislocations decreases the total
stress intensity factor at the crack tip but also causes a net decrease in the Mode II stress intensity factor

projected on the slip plane of the emitted dislocations. The lower stress intensity factor along the slip plane

limits the emission of new dislocations. That complex effect leads to a combined dislocation emission-crack

propagation failure process.

An alternative to Rice�s Peierls and Rice and Thomson�s models [60,62] was provided by Hirsch et al.

[61]. This analytical model states that dislocations are emitted by sources activated by the high stresses

at or near the crack tip and the rate at which they move away from the crack tip determines the material

toughness. Cleri et al. [109] calculated the corresponding energy release rate for cleavage, Gcleav and for dis-
location nucleation, Gdisl They found that Gdisl is much smaller than that calculated by the Rice�s Peierls
model based on cus, but quite close to the value predicted from the energy barrier of dislocation motion

which implies that the model of Hirsch et al. [61] can better explain the preference between brittle and duc-

tile failure modes.

Atomistic simulations have also confirmed that the plasticity of bulk bodies and the mechanism of brit-

tle-to-ductile transition are mainly controlled by the dislocation motion so that the interactions among dis-

locations and other defects are key factors. A model developed by Khantha et al. [149,150] explains that the

sudden transition is due to the cooperation of a large number of dislocations at the crack tip. Massive dis-
locations lower the effective moduli and give rise to more dislocations. Therefore, above a critical temper-

ature, Tc, the total energy of many loops becomes negative and a sudden unstable expansion of the loops

takes place. Thus yielding can occur at this stage even in crystals which are initially dislocation-free. How-

ever, we have not found any atomistic simulation examples related to this method, possibly because of the

massive computational demand to model a large number of dislocations.

In the area of dynamic brittle fracture, properties such as the critical load for dynamic crack initiation,

the dynamic fracture toughness, etc. have been studied by AS (e.g., [125], etc). More interestingly, atomistic

simulation has also been able to demonstrate a few phenomena that continuum theories did not predict.
For example, continuum theories typically assume that cracks are smooth, and the limiting speed for crack

propagation is the Rayleigh speed (which is the speed of sound on a solid surface) since the strain energy

release rate approaches zero at Rayleigh speed. However, a recent laboratory experiment shows that Mode

II crack can travel at a speed even greater than shear wave speed [151]. Moreover, laboratory experiments

report that Mode I crack is initially smooth, but begins to generate branches and become misty when the

crack propagates at a speed beyond 1/3 of the Rayleigh speed. Atomistic simulation [152] has shown that

the flattened spatial distribution of the stress at crack tip at 1/3 Rayleigh speed induced the above instabil-

ity. By artificially introducing a weak path, Abraham et al. [83] simulated the supersonic Mode II crack,
and showed that the forbidden zone beyond Rayleigh speed is overcome when a transonic ‘‘daughter

crack’’ is generated beyond the original crack, and a supersonic ‘‘granddaughter crack’’ is further generated

beyond the ‘‘daughter crack’’.
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Besides investigating the nature of fracture mechanisms, atomistic simulation is also particularly effective

for studying fracture when atomic-scale heterogeneous materials are present or when other physical/chem-

ical effects are involved. Examples include semiconductors subjected to a combination of mechanical and

electrical loads, materials subjected to radiation [153], metal embrittlement due to hydrogen and copper

[154,155], hydrogen storage of carbon nanotubes [135], etc. Such physical and chemical effects can be rep-
resented as interaction among atoms, ions, or molecules. For example, radiation damage initiation can be

simulated as a transfer of a very large kinetic energy to a single atom (primary knock-on atom) [153,156].

The effect of hydrogen embrittlement can be introduced by a potential model containing the effect of

hydrogen atoms, for example, a modified Morse potential for Fe–H was adopted in [154], and Brenner�s
bond order model was used to describe carbon–hydrogen interaction in [96]. A simulation of the oxidation

of aluminum nanoclusters has been performed [157] in which the interaction scheme can account for bond

formation and breakage and changes in charge transfer as atoms move and their local environments

are altered. Thus this model has potential for use in the simulation of fracture under corrosive
environments.

A simulation of the oxidation of aluminum nanoclusters has been performed by carefully choosing the

interaction scheme [157]. This scheme is capable of treating the bond formation and breakage and changes

in charge transfer as atoms move and their local environments are altered. Thus this model has potential for

use in the simulation of fracture under corrosive environments.

4.2. Computational advances

Besides the advances in materials science, the development of the computational aspects of atomistic

simulation is also quite notable. The widespread interest in AS in the 1990s was possible because of the

rapid development of computers, especially the parallel computing technique. Atomistic simulation is

inherently suitable for parallel computation [158]. The most time-consuming part of AS is the computation

of the interactive forces involving many particles which can be easily divided into many small groups and

assigned to individual processors working in parallel. Many general-purpose simulation programs include

parallel computation techniques, such as Moldy [159] and NAMD [160] and. Parallel computation methods

have also been used widely in atomistic simulation of fracture.
Although the number of atoms tackled in a given simulation keeps increasing each passing year (the limit

was about 109 in 2002 using parallel computation [112,113], this is still orders of magnitude lower than that

constituting a macroscopic representative volume element. Moreover, complicated phenomena such as

fatigue (dislocation nucleation and entanglement from an atomistic view) occur over periods of time that

are typically several orders of magnitude higher than the duration commonly simulated. It is therefore clear

that pure atomistic simulation, without the help of scale-bridging techniques, is still severely restricted by

available computational resources to model phenomena that occur over realistic intervals of space and

time, and will continue to be so for years to come.
To overcome this limitation in spatial scale, two general types of methods have been proposed to connect

continuum models with atomistic models. One can conduct simulation at the smallest scale of interest,

extract relevant quantities, then use them to determine the parameters of the next larger-scale model,

and in this way continue to integrate scales upward. Alternatively, one can describe the material process

with different models in separate regions, and link them through carefully set boundary conditions, in

the so-called ‘‘concurrent multi-scale simulation method’’. The latter approach is favored in fracture study

because by carefully crossing different scales, one can study the material behaviors at macro-scale, while

keeping the details at atomic scale where it is needed, such as crack tips. Various models have been used
for the atomic-scale region simulation, such as Green�s function and Monte Carlo simulation [161,162].

However, mainstream multi-scale simulation algorithms involve the coupling of finite element (FE) method

and atomistic simulation, and we focus on only this approach in this section.
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The key to multi-scale crossing is to deal with the information exchange between simulation regions at

different scales through an appropriately defined interface. This information exchange, according to Niemi-

nen [162], has to be ‘‘physically meaningful, mathematically consistent, and computationally efficient’’. To

be specific, a multi-scale simulation involving FE and AS should ideally have the following properties: (i)

The displacement at the interface connecting the two regions should coincide, this is usually done by scaling
the finite element down to the atomic scale and connecting the each element node with an atom. (ii) Energy

should be described correctly throughout the body, including the interface. One common method is to add

a pad of atoms outside the AS region, so that the atoms at the interface feel like bulk atoms but not surface

atoms. (iii) Forces for both models should be described correctly at the interface. A general problem in the

coupling of AS and FE regions is that the stress/force description in the atomic lattice is non-local but in

continuum model it is local [52,169,164]. In other words, at the interface of AS and FE regions, the motion

of atoms in the FE region (connecting with nodes) will affect the energy in the AS region since the inter-

atomic force has a finite range, but the motion of atoms won�t change the energy of FE region. This mis-
match in describing the potential energy usually causes unphysical forces (so-called ‘‘ghost forces’’) at the

interface. (iv) The interface should allow the vibration waves and defects to pass. (v) FE elements near the

interface should reflect the discrete nature of the lattice. Several popular coupling algorithms are discussed

below with emphasis on how well they meet the above challenges.

In 1991, Kohlhoff et al. [52] introduced a transition region between FE meshes on the continuum side

and an atomistic simulation region around the crack tip, in what is now referred to as the FEAt method.

The local/non-local mismatch was solved by describing the continuum region with Kroner�s non-local elas-
ticity theory [163]. In the transition region, finite elements are scaled down to the atomic scale; the atomic
lattice and the continuum overlap and each atom coincide with one element node. FE and AS regions pro-

vide displacement boundaries for each other, and the problem of the AS region and the FE region are

solved separately in the two regions in an iterative way in the original paper, although a simultaneous solu-

tion is also possible as pointed by other researchers [164]. This method has drawbacks that the energy for

the whole system is not conserved since the energy of atoms and the FE node they coincide with is calcu-

lated twice. The atomistic characteristics of the finite elements near the interface are not considered either.

Finally, defects such as dislocations cannot pass from one region to the other.

The quasi-continuum method (QC) [165–169] uses a transition region between the FE and AS regions
that conserves energy. The original QC method [165] chooses representative atoms (or ‘‘repatoms’’)

throughout the whole body, makes FE nodes coincide with them in the continuum region, and makes every

atoms in the AS regions as repatoms. In the continuum regions, the Cauchy–Born rule is applied, by which

the energy of an FE element can be approximated as the energy of a typical atom within the element mul-

tiplied by the number of atoms in the element, provided the deformation is uniform. Thus the energy of the

two regions can be unified and minimized at the same time. However, this approach suffers from the so-

called ‘‘ghost forces’’, introduced by local/non-local mismatch, as mentioned in the above paragraph. Also,

since the Cauchy–Born rule assumes that these atoms see uniformly deformed bulk environments, it cannot
accurately describe the energy where deformation gradients changes or on surfaces. In order to solve these

problems, the surface problem can be solved by making surface atoms non-local, and the ‘‘ghost forces’’

have later been corrected by adding counter-forces, as pointed by Shenoy [166].

However, Knap and Ortiz [168] later proposed a modified QC approach (fully non-local QC) which

inherently does not have the local/non-local mismatch problem. Their basic idea is to systematically coarsen

an atomistic description by the kinematic constraints provided by FE calculation. A number of FE nodes

are chosen from the real atomic lattice. Around each node, a small cluster of atoms is selected, and their

displacements are calculated by interpolating the displacements of the FE nodes. The atom clusters are used
to calculate the nodal forces or energies, which in turn are used to find the equilibrium of FE nodes. The

equilibrium of whole body is thus approached gradually. In the regions where details of atomic level are

needed, every atom is chosen as a node. This method discards the Cauthy–Born rule and truly realizes a
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seamless integration between the atomistic and continuum regions. However, it has several times more

degrees of freedoms than the local QC, it also has the problem of overestimating surface effects of energies

of elements. Miller and Tadmor [169] combined the original QC and the fully non-local QC by choosing the

repatoms to be local or non-local according to their deformation environments. A treatment of a non-local

treatment of a repatom is triggered by a significant variation in the deformation gradient on the atomic
scale in the repatom�s proximity.

Abraham and Broughton [170] included a quantum mechanics based ab initio simulation region at the

crack tip, combined it with the surrounding atomistic simulation region, and, in turn, embedded the atom-

istic simulation region in the FE mesh (named as ‘‘coupling of length scales’’ or CLS method). They intro-

duced two ‘‘hand-shaking’’ regions to connect the three regions. An example of fracture in silicon slab is

provided. Nakano et al. [112] also discussed the seamless combination of continuum mechanics, atomistic

simulation and quantum mechanics, and the applications to fracture simulation, using a similar hand-

shaking algorithm as Abraham and Broughton�s. Basically, their approaches follow the similar principle
with local-QC method, thus, they are expected to have the same nonphysical effects induced by local/

non-local mismatch.

All of the algorithms introduced above do not consider the defects after they pass into the continuum

region, nor do they consider the possibility of the movement of the defects back into the AS region. The

‘‘coupled atomistic and discrete dislocation’’ or CADD method [171] considered this problem by dividing

the continuum problem into two complementary problems: Problem I consists of discrete dislocations in an

infinite elastic continuum and is solved by superposition of the analytical elastic fields due to the individual

dislocations. Problem II is treated as a standard continuum-atomistic multi-scale simulation (using, say,
QC, FEAt or CLS, etc.), and when superimposed with Problem I, the desired boundary conditions imposed

on the continuum problem are satisfied exactly. Problem II thus consists of a linear elastic continuum with

no dislocations. A detection band is defined in the AS region close to the interface, monitoring the change

of strain. Once a dislocation is identified, it is passed into Problem I as a discrete dislocation. Although

certain problems exist in the original study [171], such as ghost forces and the extra energy by double count-

ing the overlapped material in transition region, this approach is unique in dealing with defect passing, and

its shortcomings can be easily solved by introducing the advances of other approaches for Problem II.

However, all methods listed above are inherently ‘‘static’’, without considering the effects of atomic
vibrations. CLS and QC methods have been extended to zero temperature dynamics, by interpolating

the velocities at the FE nodes, but they have intrinsic problems when extended to finite temperature. Dy-

namic simulation would be the new challenges of multi-scale simulation in coming years.

The time scale bridging is even more challenging. Ordinary atomistic simulations are usually limited to

nano-seconds or less since the time step in the simulation has to be small enough to guarantee accuracy.

Acceleration methods, such as Voter�s hyper-MD method [172,173], and the temperature-accelerated

dynamics (TAD) method [174] are developed from the transition state theory (TST) [175] which character-

izes the system dynamics as a sequence of infrequent transitions from one potential state to another, and the
states are divided by relative high energy barriers. The basic idea of hyper-MD is to modify the potential

energy surface, V(r), by adding a bias potential, D, to the true potential such that the potential surfaces near

the minima are raised and those near the barrier or saddle point are left unaffected. This is to enhance the

rate of state transition while keeping the ratio of transition to any two adjacent states unaltered. Therefore,

at an accelerated pace, the system evolves from state to state in a sequence representative of the exact

dynamics. The temperature-accelerated dynamics (TAD) method by Sorensen and Voter [174] is similar.

Instead of modifying the potential model, it starts with an atomistic simulation in some state at a higher

temperature to find transition pathways, and simultaneously records the statistics of waiting times of state
transitions at high temperature. According to the TST theory, the correct distribution of waiting times at

original temperature can be extrapolated. Then the whole procedure is repeated in the new state, and in this

way the system is moved from state to state. The major advantage of both methods is time economy. It is
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said that hyper-MD method can extend the simulation time scale by 2 or more orders of magnitude

[172,174]. However, both method are built on the TST theory, which assumes that each crossing of the

dividing surface corresponds to a true reactive event, in which the system passes from one state to another

and then loses all memory of this transition before next event [173]. The TAD method further assumes the

harmonic TST and thus is more approximate. In hyper-MD method, it is usually not easy to find a proper
bias potential that modifies the potential energy without affecting the transition state regions. Examples of

hyper-MD or TAD application to fracture simulations have not been encountered by the authors. How-

ever, a study by Wei [176] on strain-rate effects of nanotube fracture used the state transition theory concept

which is similar to the TAD method.
5. Fracture of carbon nanotubes: An example

In this section, we provide detailed numerical results on a set of atomistic simulations of tensile loading

over a range of strain rates at room temperature of carbon nanotubes leading to fracture. We consider a

nanotube that has a pre-existing Stone–Wales defect (described later) at mid-section; we then compare

the results with those from an initially defect-free nanotube. This numerical example demonstrates how

the methodology works and describes the key features of AS, namely, potential model, initial condition,

loading method, fracture criterion and extraction of information.

Carbon nanotubes (CNTs) have generated widespread interest since their discovery by Iijima in 1991

[177] due in part to their extraordinary mechanical properties. A substantial body of laboratory tests have
suggested that CNTs have high elastic modulus (order of 1 TPa), high strength (order of 100 GPa), good

ductility (up to 15% max strain), flexibility to bending and buckling and robustness under high pressure.

Thus, CNTs hold great promise in a wide variety of innovative applications, such as in small scale electro-

mechanical devices (gears, actuators, sensors, etc.), as nano-scale probes, as composite reinforcements, etc.

Consequently, characterization of mechanical properties including the fracture process of nanotubes is an

important element in the analysis and design of CNT-based materials and devices.

However, due to the small size of carbon nanotubes, laboratory experiments to measure their mechanical

properties, and particularly to observe the evolution of their structures under loading, are difficult and
potentially expensive at the current state of the art. This is particularly so when the effect of pre-existing

defects at specified locations (possibly introduced to enhance electronic and/or mechanical performance

of the CNT) needs to be investigated.

Nevertheless, elegant continuum approaches have also been used to study the mechanical properties of

carbon nanotubes. In the quasi-continuum approach (discussed in Section 4.2) of Arroya [178] and Zhang

et al. [179–181], the strain energy of the selected tube cell is calculated as the simple summation of all bond

energy of all atomic bonds in the cell according to the Cauchy–Born rule. Assuming the nanotube is de-

formed uniformly before the onset of fracture, an analytical form of the summation can be easily formu-
lated. Then mechanical properties (such as the elastic modulus) can be derived from the strain energy

density formula. Zhang et al. [179,181] constructed the equilibrium equation, constitutive equation and

boundary conditions for the nanotube; onset of fracture was treated as a bifurcation problem in the dis-

placement increment field. Another approach developed by Li and Chou [139,182,183] is to model the

atomic bonds as beams, so that the tube is modeled as a space frame. The stretching, bending and torsion

stiffness of the �beams� are determined by a set of interatomic potentials at zero strain. The nanotube is sim-

plified to an elastic static problem, and its mechanical properties can be easily found through structural

analysis, for example, the finite element method. These continuum approaches are computationally efficient
compared with atomistic simulation, however, they both have limitations. They apply well to the defect free

nanostructure; the quasi-continuum approach is especially preferred when the deformation is uniform, so

that a closed form strain energy can be derived and the mechanical properties can be solved analytically.
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And they are both intrinsically static (the kinetic energy of the atoms is not considered) making it more

difficult to study dynamic properties.

Atomistic simulation, if used properly, has been proved to possess good combined performance in accu-

racy, economy, time and versatility. It is a very attractive tool that can complement laboratory experiments

in studying the mechanical behavior and failure of carbon nanotubes. Therefore we choose simulation of
the fracture process of a carbon nanotube with a pre-existing defect under tensile loading as a numerical

example.

In this example, the structure subjected to simulation in this section is a (6,6) armchair single-walled car-

bon nanotube with a Stone–Wales defect at mid-section. A single-walled nanotube (SWNT) is formed by

rolling a sp2 graphene sheet (composed of hexagons of carbon atoms) into a cylinder along a direction de-

fined by the tube charility (m,n). SWNTs usually have diameters of ranging from less than 1 nm to tens of

nm. Multi-walled nanotube (MWNT) contains several coaxial cylinders, each cylinder being a single-walled

nanotube, with an interlayer distance of 0.34 nm. MWNTs usually have diameters of less then 100 nm, and
length in micrometers [177,184–186]. The chirality, (m,n), of a carbon nanotube is defined in terms of a chi-

ral vector Cn (Cn = ma1 + na2), which also determines the tube diameter d
d ¼ a0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðm2 þ n2 þ mnÞ

p
=p ð21Þ
The tube is built from wrapping a graphene sheet, in a direction defined by Cn, superimposing its origin

(0,0) on its end (m,n). a1 and a2 are unit vectors, shown in Fig. 4. The parameter in Eq. (21),

a0 = 1.42 Å, is the carbon–carbon bond length in equilibrium. In this example, m = n = 6, which gives a

so-called armchair chirality. A length of 20 hexagons is selected, so the tube is composed of 480 atoms,
length, l = 49.2 Å, d = 8.13 Å.

The Stone–Wales (SW) defect is composed two pentagon–heptagon pairs, and can be formed by rotating

an sp2 bond by 90� (SW rotation) (Fig. 4). It is found that under certain conditions, SWNTs respond to the

mechanical stimuli via the spontaneous formation of SW defect beyond an applied strain of around 5–6%

[187]. The formation of SW defects is accompanied by elongation of the tube structure along the axis con-

necting the pentagons, and shrinking along the perpendicular direction. More interestingly, the SW defect

can introduce successive SW rotations of different C–C bonds, which lead to gradual increase of tube length

and shrinkage of tube diameter, resembling the necking phenomenon in tensile tests at macro scale. This
process also gradually changes in chirality of the CNT, from armchair to zigzag direction. This whole

response is plastic, with necking and growth of a ‘‘line defect’’, resembling the dislocation nucleation

and moving in plastic deformation of crystal in many ways. Thus it is believed the SW defect has an impor-

tant influence in the deformation of carbon nanotubes [188–190]. In this example, the SW defect is gener-

ated in the middle of the tube. The initial configuration of the tube is shown in Fig. 5(a).

The initial atomic velocities are randomly chosen according to a uniform distribution (between the limits

�0.5 and 0.5) and then rescaled to match the initial temperature (300 K in this example, Eq. (16)). Since the
Fig. 4. Construction of a (6,6) armchair SWNT with a Stone–Wales defect.



Fig. 5. Illustration of a (6,6) armchair single-walled carbon nanotube. (a) Full view of the SWNT; highlighted atoms in squares B, C

show the angles to be monitored in the simulation; highlighted atoms at the ends are moved at constant speed during the simulations.

(b) and (c) Squares B and C, enlarged, showing the angles monitored in the simulation.
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temperature fluctuations in the subsequent simulations are within acceptable ranges, no temperature con-

trol is implemented.
The mechanical loading is applied through moving the atoms at both ends (highlighted at the ends of the

tube in Fig. 5(a)) away from each other at a constant speed without relaxing until fracture occurs.

A modified Morse potential model for carbon [138] is applied. The potential energy has the form
Ei ¼ Estretch þ Eangle ¼
X
j

Estretchði; jÞ þ
X
jk

Eangleði; j; kÞ ð22Þ

Estretchði; jÞ ¼ Def½1� e�bðr�r0Þ�2 � 1g ð23Þ

Eangleði; j; kÞ ¼
1

2
khðhijk � h0Þ2½1þ ksexticðhijk � h0Þ4� ð24Þ
This is the usual Morse potential except that the bond angle-bending energy has been added and the con-

stants are slightly modified so that it corresponds with the Brenner potential [96] for strains below 10%

[138]. Estretch in Eq. (23) is the potential energy due to bond strength, r is the length of the bond; Eangle

in Eq. (24) is the potential energy due to the bond angle-bonding, h is the current angle of the adjacent

bonds. The functions Estretch and Eangle are illustrated in Fig. 6. The lowest energy points correspond,

respectively, to the equilibrium distance of 1.42 Å and the equilibrium angle of 120� (2.094 rad). The po-
tential model parameters are r0 = 1.39 · 10�10 m, De = 6.03105 · 10�19 N m, b = 2.625 · 1010 m�1,

h0 = 2.094 rad, kh = 0.9 · 10�18 N m/rad2, ksextic = 0.754 rad�4. For computational convenience, time, dis-

tance and quantities representing velocity, energy, etc. are reduced to non-dimensional numbers during

the simulation; Table 2 shows the reduction of units. The Verlet algorithm (Eq. (3)) is applied for

integration.

As discussed in Section 3.4, the bond-breaking criterion is an important issue in the simulation of frac-

ture of solids. Most atomistic simulation studies adopt a distance-based criterion (rf) for this and adopt the

same cut-off distance (rc) used in potential models as the numerical value for this critical interatomic
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Fig. 6. Illustration of the bond strength part and bond angle part of the modified Morse potential.
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separation. Nevertheless, it is important to remember that the potential cut-off distance is purely an artifi-

cial quantity introduced to facilitate computation and an inappropriately defined bond-breaking criterion

may result in unrealistic results in fracture simulations. For example, the cut-off function in Brenner�s bond
order model is said to give rise to spurious forces and inaccurately large breaking strain [97,98,126]. Huht-

ala et al. [126] tested different cut-off distances for the bond order model, and found that although the

spurious force remains, different cut-off distances (1.7 Å and 1.9 Å) apparently didn�t change the critical

bond-breaking force. The study by Xia [191] used a critical distance as 1.71 Å for carbon–carbon bond

based on calculations of electron density around the breaking site. Dumitria et al. [192] used quantum

mechanics simulation to study the bond-breaking bifurcation of carbon nanotubes by comparing energies

of different breaking status at various strain levels. Their study showed that the carbon–carbon bond breaks

between 1.7 and 1.9 Å. Therefore, based on the above discussion, we adopt rf = rc = 1.77 Å in this example.
In the following, results from a series of atomistic simulation of tensile loading of the (6,6) armchair

SWNT with an initial Stone–Wales defect at midsection are described. Time histories of potential energy,

temperature, axial force and bond angle are extracted, and a series of snapshots detailing the progress of the

fracture process is also provided. The Young�s modulus (i.e., the initial slope of the force deformation



Table 2

Reduction of units for simulation

Quantity Reduced units Real units

Length 1 1 · 10�10 m

Energy 1 eV = 1.602 · 10�19 J

Mass 1 1.992 · 10�26 kg

Temperature 1 1.1609 · 104 K

Time 1 3.526 · 10�14 s

Force 1 1.602 · 10�9 N

Pressure 1 160.2 GPa

Speed 1 2.836 · 103 m/s

Potential model parameters Eqs. (23) and (24)

r.u. Real units

r0 1.39 1.39 · 10�10 m

De 3.7647 6.03105 · 10�19 N m

b 2.625 2.625 · 1010 m�1

h0 2.094 2.094 rad

kh 5.6180 0.9 · 10�18 N m/rad2

ksextic 0.754 0.754 rad�4
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curve, suitably normalized), ultimate strength (i.e., the maximum force in the force time history divided by

the nominal cross-sectional area), and ultimate strain (i.e., the engineering strain corresponding to the max-

imum force) of the tube are determined based on this information.

Fig. 7 shows the evolution of total energy, potential energy, temperature, displacements between the two

ends of the tube and forces acting at one end of the tube, over 1.2 million time steps (one time step = 0.01

r.u. = 3.5 · 10�16 s). The loading rate, v = 3.526 · 10�4 r.u. which produces a displacement of 3.5 · 10�6 Å

in one time step. As the displacement increases linearly with time, the force also increases in an approximate

linear manner initially up to about the half-way point (time of 6000 r.u.) although there appears to be no
clear yield point. The growth in force then decelerates up to the breaking point where an abrupt drop of

force occurs. The axial force Fz is calculated by summing the forces acting on the atoms (boundary atoms

highlighted in Fig. 5(a)) in axial direction at one end of the tube, and stress is calculated as rzz = Fz/A in the

following calculation. The cross-sectional area of the tube is taken to be 86.88 Å2, based on the commonly

adopted value of tube wall thickness of 0.34 nm [184] as stated above. For the purpose of comparison, the

two alternate methods of calculating virial stress, Eqs. (18) and (19), are also applied, as shown in Fig. 8.

The figure also shows the stress time history calculated using the current method (i.e., the sum of forces at

one end of the tube, Eq. (20)). All three methods show practically the same long-term trend as expected for
solids, but the force calculated from Eq. (18) has the least fluctuations since it is a volume averaged

quantity.

The potential energy and the total energy show a nonlinear relation with displacement in Fig. 7. Assum-

ing linear elastic behavior, the potential energy vs. displacement curve is expected to have a parabolic

shape, and this fact can be used to derive the Young�s modulus. The temperature can be seen to fluctuate

around the preset temperature of 300 K throughout the loading process. However, at the initiation of frac-

ture, the temperature increases abruptly and the potential energy drops.

For additional insight into the fracture process, time histories of two bond angles a and b are also plot-
ted in Fig. 7 (the positions of these two angles are shown in Fig. 5(b) and (c)). The two angles have similar

orientation but different locations. Angle a is the internal angle of an intact hexagon while angle b is an

internal angle of a pentagon of the SW defect. As shown in Fig. 7, the two angles increase gradually from

their equilibrium values (120� for angle a, and 108� for angle b) until the onset of fracture. At fracture,



Fig. 7. Time history of a simulation of fracture process of a (6,6) armchair SWNT with a pre-existing SW defect. All units are reduced

(refer to Table 2) except for temperature (in Kelvin).

Fig. 8. Comparison among different methods for calculating stresses.
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angle a drops abruptly and then fluctuates around its equilibrium value. Angle b drops too and fluctuates at
an even lower value.
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The detailed fracture process starting at around time 10786.6 r.u. and ending around time 10792 r.u. is

shown in Fig. 9 while the corresponding force time history is magnified in Fig. 10. A total of 10 snapshots

marked A–J have been identified and reproduced in Fig. 9, each of which corresponds to the breaking of

one or more atomic bonds. The same 10 points have also been indicated in the time history of Fig. 10.

The Young�s modulus and ultimate strength of the tube are now calculated from the force–displacement
data plotted in Fig. 7. A second-order polynomial fit is applied to the stress–displacement curve (Fig. 8a)

and the initial slope (multiplied with l/v) gives the Young�s modulus, E. The resulting value is E = 0.72 TPa

for the (6,6) armchair SWNT (at room temperature loaded at speed 3.526 · 10�4 r.u.). The ultimate

strength is calculated based on the maximum value of the force time history (about 43 r.u. occurring around

time 10800 r.u.) acting on the tube ends. The computed value is thus ru = 87.2 GPa. The engineering def-

inition of strain is adopted for this example (i.e., with respect to the original undeformed dimensions). The

ultimate strain is found to be 7.3%.

The effect of loading speed on mechanical properties of the nanotube is investigated (Table 3 and Fig.
11): five loading speeds have been selected for this purpose ranging from 3.526 · 10�6 to 3.526 · 10�2 r.u.

The ultimate strength is found to increase with increasing loading rate which agrees qualitatively with mac-

roscopically observed behavior of engineering materials. The Young�s modulus, on the other hand, appears

much less sensitive to loading rate although there is an increasing trend. Interestingly, the ultimate strain

displays a clearly increasing relation with loading rate which contradicts with that observed macroscopi-

cally for engineering materials. This particular behavior has significant potential for novel engineering

applications. The results by Yakobson et al. [193] and Wei et al. [176] may be used here for comparison,

showing that the breaking strain or yield strain increases as strain rate increases.
Fig. 9. Detailed fracture process; (A–J) snapshots taken as different time showing how bonds are broken and the crack develops.



Fig. 10. Magnified force time history from the initiation to completion of fracture.

Table 3

Loading rate effects on mechanical properties of defect-free (6,6) SWNT and a (6,6) SWNT with a pre-existing Stone–Wales defect

Initial elastic modulus (TPa) Ultimate strength (GPa) Ultimate strain (%)

Speed (r.u.) No defect With defect No defect With defect No defect With defect

3.526 · 10�2 0.818 0.845 95.0 81.7 9.89 6.34

3.526 · 10�3 0.868 0.789 103 84.1 11.7 6.97

3.526 · 10�4 0.829 0.722 106 87.2 12.3 7.34

3.526 · 10�5 0.859 0.817 109 89.5 13.4 7.63

3.526 · 10�6 0.865 0.837 110 95.9 14.3 9.50

Fig. 11. Effects of loading speed on ultimate strength, elastic modulus and ultimate strain of the armchair SWNT (both with and

without defect).
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Table 4

A survey of Young�s modulus of sing-walled carbon nanotubes

Ultimate

strength

(GPa)

Young�s
modulus

(TPa)

Diameter

(nm)

Length

(nm)

Source, method/comment

NA 1.25–0.35/+0.45 1.0–1.5 23.4–36.8 [195], Thermal vibration experiment

NA 0.97–1.20 0.4–3.4 10 [196], AS using EAM potential. Modulus increases significantly with

decreasing diameter and increase slightly with decreasing helicity

NA 0.8–1.22 0.8–2.0 NA [197], Ab initio calculation. Modulus depends on chiralities

NA 0.50–0.82 0.6–1.4 Infinitea [198], Ab initio calculation. Very little dependence on diameters and

chiralities

P45 ± 7 NA 1.1–1.4 >4000 [199], AFM bending test on SWNT ropes. Maximum strain is

measured as (5.8 ± 0.9)%, strength is calculated by assuming E is 1.25 TPa

NA 0.97 0.68–27 NA [92], Empirical force constant model

NA 0.4–0.8 2.4–3.3 NA [200], AS using Brenner�s potential, tensile loading

NA 0.50 0.4–2.2 Infinitea [201], AS using Brenner�s potential, tensile loading

NA 0.98 1.3 14 [202], Tight binding

NA 1.2 3.1 ± 0.2 NA [203], 3-point bending

NA 5.0 0.68 NA [204], Tight binding calculation, wall thickness 0.7 Å

NA 4.70 NA NA [205], Local density approximation model, wall thickness 0.75 Å

65–93 NA 1.6 NA [98], AS using modified Morse model, tensile loading

62.9 0.83–3.02 0.68 NA [191], Atomistic simulation and ab initio calculation, w/o defects

40–50 1.0 0.4–2.2 6–1000 [176], Theoretical analysis based on AS. Modulus, yield strain

and strength depend on loading rate. Yield strain depends on tube length

4.92 0.311 1.36 NA [129], Tight-binding simulation, maximum strain 22%. Poisson ratio 0.287.

Modulus slightly depends on diameters

a Simulating infinite long tube with periodic boundary condition.

Table 5

A survey of ultimate strength and Young�s modulus of multi-walled carbon nanotubes

Ultimate

strength

(GPa)

Young�s
modulus

(TPa)

Outer

diameter

(nm)

Length of

tube

(nm)

Method/comment

14.2 ± 8.0 1.28 ± 0.59 26–76 8.0 [206], Buckling stress is measured, which should be smaller than

tensile strength. No dependence of Young�s modulus on tube

diameter

100–150 NA 21 Buckling: 18.3–68

Bending: 800

[207], Both bending and buckling tests are conducted. The strength

is calculated from a maximum strain of 16% from bending

55 NA 8.4–16.6 46.2–436 [208], Critical buckling stress is measured

135–147 NA 19.6–56.2 Buckling length:

47–223.5

[209], Critical buckling stress is measured

11–63 0.27–0.95 13–33 6900–11000 [210], Strength measured through direct stretching. Failure happens

when the outermost layer is broken. No apparent dependence of

tensile strength on the outer shell diameter. 12% strain at failure

is measured

150 0.91 ± 20% <10 About 500 [211], Strength measured through direct stretching

NA 0.6–1.1 10–20 NA [212], Elastic modulus is measured through thermo-vibration method,

higher modulus is found for thinner tubes

NA 0.1–1.6 12–30 1500–6250 [213], Elastic modulus is measured through resonant vibration,

and found to decrease sharply with increasing diameter

NA <0.12 30–250 About 2000 [214], Elastic modulus is measured through resonant vibration,

and found to increase rapidly as diameter decreases

NA 0.67–1.1 4.8–16.0 ± 5% 240–420 [215], Elastic modulus is measured through beam deflection,

and found no significant dependence on diameter
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Finally, AS of tensile test of a defect-free (6,6) nanotube is also carried out at each of the above loading

speeds. The final results are listed in Table 3 for comparison. One can readily find that the pre-existing SW

defect significantly affects the mechanical properties. At all loading speeds, the tube with the defect (i) is

significantly weaker than the defect free tube, (ii) breaks at a much smaller elongation compared to the de-

fect free tube. As for the Young�s modulus, the defect-free tube is found to be stiffer except at the smallest
loading speed although the effect of the defect on stiffness is much less pronounced than in the case of the

other two parameters.

The above mechanical properties can also be compared with available data obtained from laboratory

and computational experiments conducted on carbon nanotubes of various sizes, chiralities, etc. Table 4

lists a collection of Young�s modulus and ultimate strength data on SWNTs while, for the sake of complete-

ness, Table 5 displays a similar collection for multi-walled nanotubes. It is clear that, while the results from

this example agree with those in the existing literature, there is significant variation in the published data

and it will be instructive to ascertain whether such variations arise from (i) atomic scale fluctuations includ-
ing presence of defects, (ii) use of different loading methods, (iii) measurement errors, (iv) different methods

of calculating cross-sectional areas and stresses, or a combination of these.
6. Summary and future needs

Broadly speaking, atomistic simulation is a powerful method to study fracture. Based on fundamental

principles and simple ideas, it reveals the physical nature of fracture and can provide insight into the struc-
tural evolution at atomistic scale. This paper underlined the increasingly important role that AS has started

to play in understanding the fracture process especially in aspects not served well by continuum mechanics.

The development of AS for fracture over the past several decades was sketched. The essential steps in the

methodology were detailed in terms of the potential model, initial conditions, loading method, temperature

control and information extraction. Recent advances in the areas of ductile vs. brittle fracture, dynamic

fracture and multi-scale simulation were detailed. Finally, a comprehensive example on the fracture simu-

lation of a single wall carbon nanotube with a pre-existing Stone–Wales defect was described. Time histo-

ries of energy, force, bond angle and temperature were studied. The step by step progress of the fracture
process was reproduced visually. Mechanical properties (Young�s modulus, ultimate strength and ultimate

strain) of the nanotube were determined and were compared with those of a defect-free nanotube; the effect

of loading rate on these quantities was also investigated.

In spite of the increasing importance of AS in fracture research and the promise it holds for the future,

this approach suffers from two significant shortcomings as outlined below.

(i) Relative inadequacy in description of the interaction between atoms compared with ab initio meth-

ods, especially when complex chemical effects are concerned. Currently classical atomistic simulations
are applied to study materials composed of only one or a few types of atoms. Developing more accu-

rate interatomic potential model and capable to deal with more types of atoms is a very important

though challenging task. Nevertheless, improvements in physics and materials science are gradually

eliminating this shortcoming. Ab initio calculations are used to develop more sophisticated potential

models and to verify the results generated by atomistic simulations. Future potential models are

expected to be more accurate in describing interatomic forces, more efficient in computation, more

compatible with complex structures, components and environments.

(ii) Limitation of computation capacity on both time scale and space scale of simulations, when com-
pared with continuum methods. Future work is expected to provide better integration methods to

cross-scales, more effective technique for data processing and the information extraction after the

computation. The work on the so-called multi-scale modeling method is far from complete. On the
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time scale, the discrete time step Dt used in the simulations must be small enough to represent

the movement of atoms correctly. However, the time scales of some characteristic phenomena (e.g.

the emission, movement and entanglement of dislocations) are many orders larger. The computation

cost to capture these effects satisfactorily is currently unacceptable. For the same reason, usually the

loading speeds in atomistic simulations have to be very high in order to reduce the time of the whole
loading process.

Improvements in small-scale imaging in recent years (neutron diffraction, X-ray diffraction, scanning

tunneling electron microscopy, atomic force microscopy, etc.) will help provide better understanding of

atomic structure and complement the results of atomistic simulation. More powerful computation tech-

niques including parallel procession and data management will largely increase the capacity in both space

and time scale of simulations. Better visualization techniques will provide vivid insight into rich diversity of

the evolution of structure at small scales. It is hoped that accurate atomistic simulations of fracture at
macro scales of space and time, subjected to realistic geometry, loading and environments, will be possible

in the coming decades.
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