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Crook’s fluctuation theorem (CFT) and Jarzynski equality (JE) are effective tools for obtaining free-energy
difference �F (λA → λB,T0) through a set of finite-time protocol driven nonequilibrium transitions between two
equilibrium states A and B [parametrized by the time-varying protocol λ(t)] at the same temperature T0. Using
the generalized dimensionless work function �WG, we extend CFT to transitions between two nonequilibrium
steady states (NESSs) created by a thermal gradient. We show that it is possible, provided the period over which
the transitions occur is sufficiently long, to obtain �F (λA → λB,T0) for different values of T0, using the same set
of finite-time transitions between these two NESSs. Our approach thus completely eliminates the need to make
new samples for each new T0. The generalized form of JE arises naturally as the average of the exponentiated
�WG. The results are demonstrated on two test cases: (i) a single particle quartic oscillator having a known
closed form �F , and (ii) a one-dimensional φ4 chain. Each system is sampled from the canonical distribution
at an arbitrary T ′ with λ = λA, then subjected to a temperature gradient between its ends, and after steady state
is reached, the protocol change λA → λB is effected in time τ , following which �WG is computed. The reverse
path likewise initiates in equilibrium at T ′ with λ = λB and the protocol is time reversed leading to λ = λA and
the reverse �WG. Our method is found to be more efficient than either JE or CFT when free-energy differences
at multiple T0’s are required for the same system.
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Consider a thermomechanical system whose equilibrium
state is defined by its temperature T0 and an external protocol
λ fixed at λA (for example, the position of a confining potential
[1], the position of the last molecule of a protein chain [2], etc.).
A large class of problems in biological and chemical physics
(such as transition between conformations of proteins, folding
and unfolding of proteins, enzyme-ligand binding, hydration,
etc.) concerns the change in free energy, �F (λA → λB,T0),
of this system as its configurational space evolves under λ(t)
in a finite time τ corresponding to the final value λ = λB

and the system eventually relaxes to a new equilibrium at the
same temperature T0. Several methods have been proposed
for computing �F (λA → λB,T0): thermodynamic integration
[3], umbrella sampling [4], steered molecular dynamics [5],
and nonequilibrium work relations [6–11].

The development of Jarzysnki’s equality (JE) [6–8] and
Crooks’ fluctuation theorem (CFT) [9,10,12] has dramatically
improved our ability to calculate free-energy differences
[13–16] of real systems [2,17] through finite-time irreversible
processes between two equilibrium states at the same temper-
ature, T0. Nevertheless, the task remains daunting because of
the requirement of extensive sampling of the configurational
space. In addition, �F (λA → λB,T0) thus computed is valid
only for the particular temperature at which the samplings
are performed, and if �F (λA → λB,T ′ �= T0) is needed, then
resampling of the entire data set is necessary at T ′.

In this work we generalize CFT and JE by proposing
a new fluctuation relation that enables us to calculate
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�F (λA → λB,T0) with good accuracy for a range of T0

values using a single set of sampling data, thereby completely
eliminating the need to generate new samples for each new
T0. The proposed fluctuation relation utilizes the transition
between two nonequilibrium steady states, and T0 features in
the equation as a scaling parameter.

Let us now look at details of the problem. For a system in
canonical equilibrium, the Helmholtz free energy is

F (T0,λ) = −kBT0 ln

(∫
exp [−β0E(�,λ)]d�

)
, (1)

where kB is the Boltzmann constant and β0 = (kBT0)−1. The
system’s energy E(�,λ) depends upon the microstate � and
varies parametrically over time according to E(�(t),λ(t)) =∑

p2
i /2m + �(x1,x2, . . . ,xN ,λ(t)), where pi and xi are the

momentum and the position of the ith particle, and �(· · · )
is the potential energy of the system. In CFT, the system is
initially in equilibrium state A with λ = λA. At time t = 0, λ

starts to evolve until t = τ , and stays fixed at its new value λB .
During this period work WF = ∫ τ

0 λ̇∂E/∂λdt is performed.
The superscript F denotes the forward transition A → B.
Over time, the system relaxes to a new equilibrium state
B with λ = λB . Being irreversible, the work WF depends
upon the initial microstate �(0) of the system (and its
surroundings), and therefore, an exhaustive sampling of the
initial microstates provides the probability density of forward
work, P (WF = w). Now consider the same system evolving
in a reverse manner. The system begins at equilibrium state
B where λ = λB , and over 0 � t � τ, λ traces itself back
from λB → λA. Eventually the system reaches the equilibrium
state A. Repeated sampling of this reverse transition provides
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P (WR = −w) for the reverse work. CFT relates the ratio of
these two densities with �F (λA → λB,T0):

P (WF = w0)

P (WR = −w0)
= exp {−β0[w0 − �F (T0,λ)]}. (2)

The validity of (2) requires the dynamics to be ergodically
consistent, i.e., if and only if a microstate has a nonzero
probability in equilibrium state A, it evolves to a microstate that
has a nonzero probability in equilibrium state B. Integrating
(2) gives JE [18]. However, since T0 is implicit in the sampling
dynamics, the probability densities obtained cannot be used to
calculate �F (T ′,λ) if T ′ �= T0. In order to employ a single set
of sampling data for calculating �F (T ′,λ) corresponding to
a range of temperature T ′, the dependence of sampling data
on T0 must be removed. We set out to do this by looking at
the cumulative work and heat exchange during the transition
between two nonequilibrium steady states.

Rather than beginning at equilibrium, we begin at a
nonequilibrium steady state SS1 obtained by imposing a
temperature difference (TH − TC) at the two ends of the
conductor, where TH and TC are the temperatures of the
hot and cold ends. This steady state originated from some
primordial arbitrary equilibrium state A characterized by λA

and T0 by employing suitable temperature constraints. For all
practical purposes, the system reaches a steady state when
the relevant time-averaged macroscopic observables become
stationary. TH , TC , and T0 are related to each other through
TH = T0 + �TH and TC = T0 − �TC . Thus, depending upon
�TH and �TC , the two not necessarily being equal, one
can think of starting from arbitrarily different canonical
equilibrium states. Note that this allows us to choose any
arbitrary T0.

After SS1 is achieved, at t = 0, λ starts to evolve from λA

until time t = τ when λ = λB and work is performed. This
external work does not result in any phase-space compression.
Given sufficient time, the system reaches a new steady
state SS2. Upon removing the temperature constraints and
bringing both ends in contact with T0, the system eventually
reaches the equilibrium state B, defined by λB and T0. The
reverse transition can likewise be accomplished under the
time-reversed protocol. Such transition between steady states
has been studied before in a different context [19]. The
underlying principle governing our approach is the relaxation
of a nonequilibrium state to an equilibrium state [20].

In state A (state B), the system follows the canonical
distribution parametrized by λA (by λB):

feq,A(�) = 1

ZλA

exp [−β0E(�,λA)]. (3)

The density function of the nonequilibrium state and the
Jacobian are given by Liouville’s equation [21]:

fSS1 [�(t)] = feq,A[�(0)] exp

{
−

∫ t

0
dt ′[
H (t ′) + 
C(t ′)]

}
,

d�(t) = d�(0) exp

{∫ t

0
dt ′[
H (t ′) + 
C(t ′)]

}
, (4)

where 
 = [∂�̇/∂�] denotes the phase-space compression
factor, with H (C) denoting the hot (cold) region. The
intermediate region does not contribute to 
 (owing to

Hamilton’s equation of motion). The normalizing constant
corresponding to SS1 is the same as the partition function
for A. The phase-space compression factors are related to the
heat flow [22–25] from the thermostats through

〈Q̇H 〉t = kBTH 〈
H 〉t t, 〈Q̇C〉t = kBTC〈
C〉t t . (5)

Here 〈· · · 〉t denotes the time-averaged quantities. For the sake
of compactness, we will drop t from the density functions and
cumulative heat flows later. Next, we bring the generalized
dimensionless time-integrated work function, �WG(t) [26],
into the picture, which can relate two microstates [�(0) and
�(t)], neither of them necessarily in equilibrium:

exp [�WG(t)] = f1[�(0)]d�(0)Zλ0

f2[�(t)]d�(t)Zλt

. (6)

The initial microstate �(0) evolves to �(t) in time t . f1[�(0)]
(or f2[�(t)]) is the probability density of �(0) [or �(t)]
corresponding to an associated equilibrium state 1 (or 2). We
conjecture that such an association is possible after the system
undergoing nonequilibrium transition loses its memory. Zλi

denotes the partition function at λi . Now we bring the
superscripts F (for the forward transition A → SS1 → SS2 →
B) and R (for the reverse transition B → SS2 → SS1 → A).
The forward transition takes �(0) → �(t), while the reverse
transition takes �∗(0) → �∗(t), where �∗(0) is related to �(t)
through time-reversal mapping. The generalized work function
during A → SS1 is (see Sec. I of the Supplemental Material
[27])

�WF
G,A→SS1

= 1

T0

∫ t

0

[
�TH

TH

Q̇F
H − �TC

TC

Q̇F
C

]
dt ′. (7)

Proceeding analogously (see Sec. III of the Supplemental
Material), the generalized work function during A → SS2 is

�WF
G,A→SS2

= 1

T0

∫ t+τ

0

[
�TH

TH

Q̇F
H − �TC

TC

Q̇F
C + ẆF

]
dt ′.

(8)

Therefore, the work function during SS1 → SS2 can be
obtained by subtracting (7) from (8):

�WF
G,SS1→SS2

= β0W
F + 1

T0

[
�TH

TH

QF
H,τ − �TC

TC

QF
C,τ

]
,

(9)

where the heat flows are for the time duration τ over which
λ changes. In a similar manner, we can compute the work
function during the reverse transition SS2 → SS1:

�WR
G,SS2→SS1

= β0W
R + 1

T0

[
�TH

TH

QR
H,τ − �TC

TC

QR
C,τ

]
,

(10)

Now we make the important assumption of the ergodic
consistency being valid during the transition SS1 → SS2, and
therefore, using (6) we can write

exp
[
�WF

G,SS1→SS2

] = feq,A

[
�SS1 (0)

]
d�SS1 (0)ZλA

feq,B

[
�SS2 (τ )

]
d�SS2 (τ )ZλB

. (11)

The subscripts SSi emphasize that the points are on trajec-
tories whose evolution is described by equations of motion
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that take the ensemble of states from SS1 at 0 to SS2 at
τ . Because of the deterministic nature of the dynamics,
�WF

G,SS1→SS2
= −�WR

G,SS2→SS1
. For simplicity, we now drop

all subscripts except G. Assuming that the differences between
the equilibrium density and the initial density under thermal
gradient can be ignored for large τ , the probability densities of
the forward and reverse work functions can be related as (12)
(similar to as shown in Sec. III of the Supplemental Material):

P
[
�WR

G = −k
] = e−k ZλA

ZλB

P
[
�WF

G = k
]
. (12)

A rearrangement results in the proposed fluctuation relation:

P

{
β0W

F + β0

[
�TH

TH

QF
H − �TC

TC

QF
C

]
= k

}

P

{
β0WR + β0

[
�TH

TH

QR
H − �TC

TC

QR
C

]
= −k

} = e[k−β0�F ],

(13)

which is the main result of this Rapid Communication
(henceforth, referred to as GCFR). Since the samplings are
performed at TH and TC , the effect of T0 is inherently absent
in them, and β0 is simply a scaling parameter. Depending
upon the temperature at which �F is to be calculated, we can
compute the forward and reverse densities of the work function
simply by substituting the desired value of T0. The generalized
JE may be obtained by averaging:〈

e{−β0W
F −β0[(�TH /TH )QF

H −(�TC/TC )QF
C ]}〉 = e−β0�F . (14)

A second law type inequality can be recovered by applying
Jensen’s inequality to (14):

〈WF 〉 + 〈
QF

H

〉�TH

TH

− 〈
QF

C

〉�TC

TC

� �F. (15)

We reiterate that Eqs. (12)–(15) are not exact relationships,
and hold true only for large τ . Taking τ large enough, while
fixing the time required to reach the steady state, ensures
that the contributions arising from phase-space compressions
become negligible.

We now test the effectiveness of (13) on a one-dimensional
φ4 chain of N particles. Its energy function is

E =
N∑

i=1

p2
i

2mi

+
N−1∑
i=1

U (xi,xi+1) +
N∑

i=1

V (xi). (16)

Here U (xi,xi+1) = 0.5k1(|xi+1 − xi | − d)2 represents the
quadratic nearest neighbor interparticle interaction, while
V (xi) = 0.25k2(xi − xi,0)4 represents the quartic tethering
potential with xi,0 being the equilibrium position of the ith
particle. We have kept k1 = 1.0 and mi = 1.0. k2 plays the
role of λ:

k2 = 0.25 ∀t < 0

= 0.25(1 + 10t/τ ) ∀0 < t � τ

= 2.75 ∀t > τ. (17)

Test case 1. The first test case involves a single particle
system (subscript 1 dropped) having a known analytical
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FIG. 1. Comparison of �F obtained using theoretical and pro-
posed approaches in test case 1. Notice, that the proposed approach
provides a good approximation to the theoretical results.

solution for �F :

�F = −kBT0 ln

(∫
e[−β011x4/4]e[−β0p

2/2]dxdp∫
e[−β0x4/4]e[−β0p2/2]dxdp

)

= kBT0/4 ln(11). (18)

We compare this known �F with our results. We subject the
single quartic oscillator to a position-dependent temperature
field,

T (x) = 1 + 0.1 tanh(x), (19)

to bring it away from equilibrium. Temperature is controlled
by a Hoover-Holian thermostat [28]. The system is simulated
for 100 000 time steps (each time step = 0.001) under this
temperature field through which it reaches SS1. k2 is changed
over the next τ = 10 000 time steps according to Eq. (17).
�WG in this case is

�WG = β0W + β0

∫ τ

0
Q̇dt ′ −

∫ τ

0
β(x)Q̇dt ′, (20)

where β(x) = 1/kBT (x) and Q̇ = −ηT (x) − 3p2ξT (x).
η and ξ are the Hoover-Holian thermostat variables.
W = H(τ ) − H(0), where H(t) = p2/2 + V + ∫

[ηT (x) +
3p2ξT (x)]dt ′. Probability densities of generalized work are
constructed using 60 000 random initial points. Figure 1 shows
�F due to the evolution of k2 as a function of temperature:
GCFR is able to reproduce the theoretical results accurately
for a range of temperatures without the need to resample at
every new T0.

Test case 2. We now consider a larger system (N = 25). The
system is initialized with xi = xi,0 = i and random particle
velocities. The equations are integrated using the classic
Runge-Kutta algorithm with an incremental time step of
0.01. Post initialization, a temperature gradient is imposed
on the system by keeping the two end particles at TH and TC

using two Nosé-Hoover (NH) thermostats [29]. Subsequently,
after 1 × 106 time steps (steady state is assumed to have
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FIG. 2. Forward and reverse probability densities of generalized
work function at T0 = 0.29 calculated using 5000 forward and reverse
trajectories using two sets of (TH ,TC): (red) = (0.27,0.23) and (green)
= (0.30,0.20). The intersection of forward and reverse �WG densities
gives �F , and is not affected by the choice of TH ,TC . �F calculated
using proposed fluctuation relation compares well with that of JE and
CFT. Results obtained using the same data set for other T0 values are
similar, and agree well with CFT.

been reached), k2 is made to evolve in τ = 100 000 time
steps. The cumulative heat flow from the hot thermostat is
QH = − ∫ t

0 THηHdt ′ (likewise for the cold), where ηH (ηC) is
the hot (cold) NH variable. The work done due to the change
in tethering potential during time τ is W = H(τ ) − H(0)
where

H(t) =
∑ p2

i

2
+ � +

∫ t

0
ηCp2

Cdt ′ +
∫

ηHp2
Hdt ′. (21)

Here pH (pC) denotes the hot (cold) particle’s momentum,
and � = ∑

U + ∑
V . �WF

G and �WR
G are sampled using

5000 trajectories each. Figure 2 shows probability densities of
the forward and reverse generalized work functions P (�WF

G )
and P (�WR

G ) at T0 = 0.29. Two pairs of (TH ,TC)—red for
(0.27,0.23) and blue for (0.30,0.20)—are chosen. The points
of intersection of the forward-reverse pair gives β0�F (13)
which should be independent of (TH ,TC) for the same T0

as evident from the figure. Importantly, these same 10 000
samples can be used to compute �F at any T0. Table I shows

TABLE I. Comparison of free-energy differences using JE, CFT,
and GCFR for seven different values of T0. GCFR results are for two
different steady states: TH = 0.27,TC = 0.23 and TH = 0.30,TC =
0.20. Notice that the �F obtained using GCFR matches closely with
those from JE and CFT. It is interesting to note that the case of TH =
0.27,TC = 0.23 is able to approximate the equilibrium free-energy
differences even for the states as far as T0 = 0.21 and T0 = 0.29. The
results indicate that one can use a single set of data obtained during a
transition between two NESSs and employ GCFR to calculate free-
energy differences for a range of temperatures.

GCFR GCFR

T0 JE CFT (TH ,TC) = (0.30,0.20) (TH ,TC) = (0.27,0.23)

0.21 1.39 1.35 1.40 1.39
0.22 1.48 1.50 1.49 1.46
0.24 1.64 1.60 1.67 1.62
0.25 1.73 1.70 1.75 1.69
0.26 1.81 1.79 1.83 1.78
0.28 1.98 1.97 2.02 1.97
0.29 2.07 2.00 2.10 2.07

seven such T0 values, computed using both sets of (TH ,TC).
Not only is �F at a given T0 independent of (TH ,TC) as it
should be, it is clear that T0 does not even need to be within
the range of (TH ,TC) for the method to work.

Finally, Table I lists �F computed using JE and CFT
at the seven different temperatures. While GCFR is able
to identify �F as accurately as CFT and JE, it does so
with only one set of samples. CFT and JE would require a
new set of samples for each T0, thereby imposing a severe
computational or experimental burden on the analyst. As stated
above, these transitions need to be carried out slowly. Our
efforts to calculate �F using only τ = 100 steps did not yield
�F values commensurate with those shown in Table I.

To summarize, in this work generalized versions of CFT
and JE have been presented. The proposed extensions present
a suitable method through which equilibrium free-energy
differences can be extracted from the information embedded
within the nonequilibrium steady states. The augmented
equations bear a remarkable similarity with those of CFT and
JE with additional contributions arising due to heat flowing
from the reservoirs. GCFR has been tested using two different
cases, with each of them suggesting that GCFR is a suitable
alternative to CFT and JE when evaluating �F at multiple
temperatures.
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