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Heat pump without particle transport or external work on the medium achieved by differential
thermostatting of the phase space
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We propose a mechanism that enables heat flow from a colder region to a hotter region without necessitating
either particle transport or external work on the conductor, thereby bypassing the compressor part of a classical
heat pump cycle. Our mechanism relies on thermostatting the kinetic and configurational temperatures of the
same particle differently. We keep the two ends of a conductor, which in the present study is a single dimensional
φ4 chain, at the same kinetic temperature T0, but at different configurational temperatures—one end hotter and
the other end colder than T0. While external energy is needed within the thermostatted regions to achieve this
differential thermostatting, no external work is performed on the system itself. We show that the mechanism
satisfies the statistical form of the second law of thermodynamics (the fluctuation theorem). The proposed
mechanism reveals two interesting findings: (i) contrary to traditional thermodynamics where only the kinetic
temperature is thought to govern heat conduction, configurational temperature can also play an important role, and
(ii) the relative temperature difference between the kinetic and configurational variables governs the direction
of heat flow. The challenge, however, is in developing experimental techniques to thermostat the kinetic and
configurational variables of the same particle at different values.
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I. INTRODUCTION

Any useful work extracted from an engine in a finite
time, as is true of any real process natural or engineered,
must involve a net flow of heat taking place away from
equilibrium. Of the four laws of macroscopic thermodynamics,
three have a direct bearing on thermal conduction away from
equilibrium. The zeroth law helps define thermal equilibrium,
the first law quantifies the dissipated heat, and the second
law sets the direction of heat flow. The second law, however,
is statistical in natures [1,2], and assumes its classical form
in the thermodynamic limit. There is a finite probability of
heat to flow from a colder region to a hotter region that
decreases exponentially with system size and time duration [3].
Consequently, even for small scale systems, observed over a
sufficiently long duration, heat would flow in the usual manner.
Classically, heat pumps involve particle transport (“working
fluid”), and require external work to be performed on the
working fluid itself [4]. At small scales particle transport may
be eliminated [5] but so far external work on the medium
itself has not been avoided [5–8]. In the present work, we
propose a heat pump that eliminates both particle transport and
external work on the medium. The pumping action is achieved
by selective thermostatting of the configurational and kinetic
variables, in a manner that a difference is created only between
the configurational temperatures at the two thermostatted ends
(keeping the kinetic temperatures equal). The thermostats
need energy to maintain the selective temperature differences,
however, no work is done on the medium itself. The proposed
mechanism, as we will show later, is consistent with the second
law of thermodynamics, and due to the elimination of the
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external work on the medium, can lead to the development of
newer energy efficient devices.

Until now, either of the kinetic (TK ) or the configurational
temperature (TC),

TK =
〈

p2
i

2mi

〉
e

, TC = 〈|∇x�(x)|2〉e〈∇2
x�(x)

〉
e

, (1)

has been controlled in simulations through one of the many
non-Hamiltonian thermostats [9–12]. In (1), xi , pi , and
mi represent the position, momentum and mass of the
ith particle, �(x) represents the total potential energy of
the system and 〈.〉e represents the average computed over
all the particles of the system. In traditional molecular
dynamics, “temperature” is used interchangeably with
kinetic temperature. However, recent simulation studies
have shown that controlling the configurational temperature
has advantages over the kinetic temperature control in
certain nonequilibrium cases like shear flow [13]. In fact
for dense fluids the configurational part of temperature is
more important [14]. Recent measurement of configurational
temperature using experimental setups [15–17] suggests
that its applicability lies beyond the confines of theoretical
statistical mechanics. But experimental techniques have not
matured enough to control the configurational temperature.

It has recently been shown that a heat flow can be
induced using only non-Hamiltonian thermostats [18], and that
Hamiltonian thermostats (both kinetic and Landau-Lifshitz
isoconfigurational [19]) fail to generate a nonequilibrium
steady state [19]. It must be noted, however, that the application
of these non-Hamiltonian thermostats results in the “usual”
heat flow, and they cannot simultaneously control both the
kinetic and configurational temperatures at different values.
Controlling one temperature leads to an automatic adjustment
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of the other and hence, a temperature difference between the
kinetic and configurational variables cannot be established.
The contributions of kinetic and configurational temperatures
towards nonequilibrium thermal conduction has remained an
open problem until now [14]. This question can be answered
only by thermostatting the kinetic and configurational temper-
atures at different values.

In the present study, we are able to differently thermostat the
kinetic and configurational variables due to the thermostat (PB
thermostat) recently developed by us [20]. The PB thermostat
utilizes all degrees of freedom for controlling the temperature
of the system. This paper is organized as follows: we first
highlight the PB thermostat and its ability to differently
thermostat the kinetic and configurational variables. Next, we
detail the mechanism for obtaining heat flow from a relatively
colder region to a hotter region. Subsequently, we present our
results on the one-dimensional φ4 chain.

II. PB THERMOSTAT

The PB thermostat enforces the simultaneous control of
both the kinetic and configurational temperatures, shown
in (1) [20]. It is both deterministic and time reversible. The
governing equations of motion are

ẋi = pi − ξ∇xi
�, ṗi = −∇xi

� − ηpi,
(2)

η̇ = 1

Mη

3N∑
i=1

(
p2

i − TK

)
, ξ̇ = 1

Mξ

3N∑
i=1

((∇xi
�

)2 − TC∇2
xi
�

)
,

where Mi is the mass of the ith reservoir (i = ξ,η) and
N is the number of particles in the system. We have
assumed that the particles have unit mass and kB = 1. The
Nosé-Hoover [9] kinetic (NH) thermostat and the Braga-
Travis [11] configurational (BT) thermostat can be obtained
from equations of motion (2) by substituting ξ = ξ̇ = 0 and
η = η̇ = 0, respectively. Thus a PB thermostat may be viewed
as the coupling of a NH and a BT thermostat using two
independent reservoirs. The equations of motion have been
derived by solving the Liouville’s continuity equation in the
extended [(6N + 2)-dimensional] phase space assuming that
the dynamics is ergodic, and the extended phase space follows
a canonical distribution.

Augmented with switching functions, these equations (2)
can simulate a thermal conduction process. Rather than two,
the equations of motion now need four thermostat variables:

ẋi = pi − SL
i ξL∇xi

� − SR
i ξR∇xi

�,

ṗi = −∇xi
� − SL

i ηLpi − SR
i ηRpi,

η̇L = 1

Mη

∑ (
SL

i p2
i − T L

K

)
,

η̇R = 1

Mη

∑ (
SR

i p2
i − T R

K

)
,

ξ̇L = 1

Mξ

∑ (
SL

i

(∇xi
�

)2 − T L
C ∇2

xi
�

)
,

ξ̇R = 1

Mξ

∑ (
SR

i

(∇xi
�

)2 − T R
C ∇2

xi
�

)
. (3)

Here, SL
i (or SR

i ) denotes the left (or right) switching function
which takes up a value of 1 when the ith particle is in the
left (or the right) thermostatted region, and is zero otherwise.
A traditional thermal conduction could be simulated by
keeping T L

C = T L
K = T L > T R

C = T R
K = T R . The significance

of this thermostat is in its ability to set the targets T i
C and

T i
K independently and arbitrarily at any pair of equal or

unequal values unlike in the other thermostats where we do
not have explicit control of thermostatting the kinetic and
configurational variables differently. This ability of the PB
thermostat enables us to study the relative contributions of
the kinetic and configurational variables, as well as engender
thermal transport along the temperature gradient without
necessitating external work.

III. MECHANISM AND SIMULATION MODEL

Let us describe the simulation model adopted in the
present study. The system chosen is the prototypical
one-dimensional φ4 thermal conduction model [21–23],
which is a nonintegrable system [24], obeys Fourier’s law,
and has a finite temperature-dependent thermal conductivity
of κ = 2.83/T 1.35 [18]. In the absence of any thermostatting,
the particles of this one-dimension chain are governed by the
Hamiltonian

H =
N∑

i=1

p2
i

2mi

+
N−1∑
i=1

U (xi,xi+1) +
N∑

i=1

V (xi). (4)

U (xi,xi+1) represents a quadratic nearest neighbor
interparticle interaction and is given by U (xi,xi+1) =
0.5k1(|xi+1 − xi | − 1)2, while V (xi) represents the quartic
tethering potential and is given by V (xi) = 0.25k2(xi − xi,0)4,
with xi,0 being the equilibrium position of the ith particle.
Here, we choose k1 = k2 = 1.0 and mi = 1.0. To study
thermal conduction, the left end of the chain is kept at a
higher temperature and the right end is kept at a lower
temperature. As stated above, in this “traditional model,” the
kinetic and configurational temperatures are kept such that:
T L

C = T L
K = T L and T R

C = T R
K = T R . The traditional model

of thermal conduction has been studied by several researchers
(with and without explicit configurational temperature
control) [18,20,24–26]. For example, Hu et al. [24] have
studied a φ4 chain comprising of 1600 particles, with the
leftmost particle kept at a kinetic temperature of 0.3 and
the rightmost particle kept at a kinetic temperature of 0.2.
The results are similar when (i) the PB thermostat (with both
kinetic and configurational temperature control) and (ii) the
NH thermostat [obtained from (3) by substituting ξ i = ξ̇ i = 0]
are employed to study the thermal conduction. The results
are shown in Fig. 1. The equations of motion are solved for
200 000 000 time steps, with each time step being equal to
0.01. The kinetic temperature profiles due to the NH and PB
thermostats from our code reproduce the kinetic temperature
profile of Hu et al. Next, we compare the thermal conductivity
obtained from these cases. The theoretical thermal
conductivity is [27] κ = 2.83/T 1.35 = 2.83/0.251.35 = 18.39.
Thermal conductivity due to our own simulations are
κNH = 16.87 and κPB = 18.69, and due to Hu et al. is
κ = 15.50 (approximately). Since in the traditional model
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FIG. 1. Simulation results verification: we compare the kinetic
temperature profile due to the NH and PB thermostats with that
obtained from Hu et al. (uses NH thermostat) [24]. The leftmost
particle is thermostatted at a temperature of 0.3, while the rightmost
particle is thermostatted at a temperature of 0.2. Overall, there are
N = 1600 particles in the system. The kinetic temperature profiles
from our simulation codes reproduce the kinetic temperature profile
due to Hu et al. [24] in a good manner.

of thermal conduction we cannot control the kinetic and
configurational temperatures differently, the traditional model
cannot be used to separately identify the importance of kinetic
and configurational variables in thermal conduction.

In the present study, rather than keeping T L
C = T L

K and
T R

C = T R
K in Eq. (3), we keep the kinetic and configurational

temperatures different at each thermostatted end, i.e., T L
C �=

T L
K and T R

C �= T R
K . For sake of simplicity, we refer to this as the

differential thermal conduction model. No previous study has
attempted to understand the differential thermal conduction
model on any system. The differential thermostatting scheme
adopted in this study is shown in Fig. 2. The two ends of

the chain are under the influence of two PB thermostats. The
intermediate region (comprising of NI particles) is not under
any temperature control and the particles evolve through the
usual Hamilton’s equations: ẋi = pi,ṗi = Fi . We thermostat
the left region (comprising of NL particles) at a configurational
temperature T L

C , and at a kinetic temperature T L
K . Likewise

the right region (having NR particles), is thermostatted at T R
C

and T R
K , respectively. A temperature difference is then created

across the chain in a manner that T L
C > T L

K = T0 = T R
K > T R

C ,
i.e., a temperature difference is imposed only amongst the con-
figurational variables. In the present study, 2T0 = T L

C + T R
C .

We solve the 2N + 4 equations of motion [shown in (3)]
using the classical fourth order Runge-Kutta method for differ-
ent values of N . The equations of motion (with Mξ = Mη =
1/1000) are solved for 500 000 000 time steps, each of size
0.01. The system is first equilibrated at a temperature of 1 for
10 000 000 time steps. Averages are calculated using the last
250 000 000 time steps. Simulations have been performed for
N = 50 to 1000 particles, and �T = 0.5(T L

C − T R
C ) = 0.05

to 0.30. For cases with N > 500, we limit ourselves to �T =
0.10,0.20,0.30 because of computational requirements. The
kinetic temperatures at both the thermostatted ends are kept
at 1, i.e., T L

K = T R
K = 1. The configurational temperatures at

the thermostatted ends follow the relation: T L
C = 1 + �T and

T R
C = 1 − �T . 20% of the total particles at each end are under

the influence of the thermostats.
To show that the heat flows from right (relatively colder

region) to left (relatively hotter region) we will utilize the facts
that (i) the heat flux J < 0 for heat flow from the hotter region
to the colder region, and J > 0 otherwise, and (ii) a net heat
is supplied by the right thermostatted region, which is then
extracted by the left thermostatted region.

Let us now look at how we can calculate these ther-
modynamic variables. The average energy current from the
(i − 1)th particle to the ith particle for the ones present in the
intermediate region is [25,26]

〈ji,i−1〉t =
〈

1

2
(vi + vi−1)

∂U (xi−1,xi)

∂xi

〉
t

. (5)

FIG. 2. Proposed simulation scheme—kinetic and configurational variables at each thermostatted end are kept at different temperatures,
that is, the regions L and R are under the influence of two PB thermostats. The kinetic temperatures are kept the same at both thermostatted
regions (T L

K = T R
K = T0). The left thermostatted region has a higher configurational temperature T L

C than T0, while the right thermostatted
region has a configurational temperature T R

C lower than T0. In steady state, QR amount of heat flows from the reservoir R to the system, which
is extracted by the reservoir L. In steady state, QR ≈ QL.
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FIG. 3. Kinetic (dotted lines) and configurational (solid lines)
temperature profiles due to N = 400 and 1000. 20% of the particles
thermostatted at each end. The results are for �T = (T L

C − T R
C )/2 =

0.20 and T0 = 1. The averages are computed using the last 250 million
time steps. The configurational temperature drops in the intermediate
region, as expected. In contrast, the kinetic temperature, despite being
maintained at 1 at both ends, bulges up in the intermediate region.
Both kinetic and configurational temperature profiles are asymmetric.
The asymmetry increases with increasing system size. It is evident
that the left end, on an average, is hotter than the right end.

〈.〉t indicates long time averaged value. In steady state, the
energy current between any two neighboring particles must be
the same, and the heat flux may be written as

J = 1

NI

〈
NL+NI∑
i=NL

ji,i+1

〉
t

. (6)

The cumulative heat exchange with the hot and cold
thermostatted reservoirs, denoted by QL and QR , respectively,

can be calculated by integrating the rate [28],

Q̇i = Q̇i
K + Q̇i

C = −
⎡
⎣ Ni∑

j=1

ηip2
j +

Ni∑
j=1

ξ i

(
∂�

∂xj

)2
⎤
⎦, (7)

with i = L,R depending on the region and � = U + V .
Associated with J < 0 is QL > 0 and QR < 0, while for
J > 0, we have QL < 0 and QR > 0. The latter implies that
the heat is supplied from the right thermostatted region, which
is then extracted by the left thermostatted region.

IV. RESULTS AND DISCUSSIONS

A. Temperature profiles

Let us first establish that (i) the differential thermostatting
model puts the system out of local thermodynamic equilib-
rium, and (ii) the left end is at a higher temperature than the
right end. To show (i) we plot the particlewise kinetic and
configurational temperature profiles in Fig. 3 for �T = 0.10
and 0.30 with N = 400 and 1000. The temperature profile
has a high dependence on N . Regardless, a common feature
can be observed for all cases—in the unthermostatted middle
region, TK and TC are not equal locally no matter how small
�T and the value of N are. Thus our mechanism puts the
system out of local thermal equilibrium. The violation of local
thermodynamic equilibrium becomes more pronounced when
�T increases.

An in-depth look at the temperature profile dependence
on N can be seen from Fig. 4. Like before, we observe a
significant difference between TK and TC locally. Moreover,
this difference decreases with increasing N .

The average temperature [i.e., 0.5(TC + TK )] indicates that
the left end is hotter than the right end, as may be expected.
The configurational temperature drops in the intermediate
region which also is expected since a gradient has been
imposed in TC , and its trend follows the average temperature
profile. Interestingly, although TK is kept the same at both
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FIG. 4. Dependence of temperature profiles on system size N . These results are for �T = 0.20. The asymmetry we saw in the previous
figure can be seen clearly in this figure. It is interesting to know that the difference between the kinetic and configurational temperatures locally
decreases with increasing N .
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TABLE I. Difference between heat transfer entropy production 〈Q̇j

i 〉t and phase-space volume loss 	
j

i due to the individual four thermostats
for �T = 0.20. The results suggest that the difference is negligible, and the equality (9) holds true. Similar results were obtained for all other
cases as well.

N 〈Q̇L
K/T L

K − 	L
K〉t 〈Q̇L

C/T L
C − 	L

C〉t 〈Q̇R
K/T R

K − 	R
K〉t 〈Q̇R

C/T R
C − 	R

C〉t

50 −1.00×10−7 −3.40×10−7 7.91×10−7 −5.38×10−8

100 2.27×10−8 2.13×10−7 −5.52×10−7 −2.56×10−7

200 8.33×10−7 2.09×10−6 4.72×10−7 −3.76×10−7

400 −2.02×10−8 3.35×10−9 −8.70×10−8 −6.19×10−7

600 −3.25×10−8 2.46×10−8 6.15×10−7 4.38×10−7

800 5.26×10−7 −5.67×10−9 −1.49×10−7 1.15×10−7

1000 −3.25×10−6 3.81×10−7 9.65×10−8 −5.03×10−7

ends, it bulges up in the middle, suggesting that the absolute
velocities of the particles at this region are higher than at
the ends. More interestingly, the profile of neither temperature
is symmetric across the conductor. In the presence of the
asymmetry and increased velocity of the middle particles, the
heat flux turns out to be positive—that is, heat flows from
the lower configurational temperature region to the higher
configurational temperature region, which is the central finding
of this paper.

B. Equivalence of entropy production
and phase-space compression

One of the important properties of the traditional model of
thermal conduction is the equivalence of the thermodynamic
dissipation as described by (i) heat transfer entropy production
(Ṡ) and (ii) the phase-space volume loss (	) [29]:

〈Ṡ〉t ≡
〈
Q̇L

T L
+ Q̇R

T R

〉
t

=
〈
∂ẋ

∂x
+ ∂ṗ

∂p

〉
t

≡ 〈	〉t , (8)

An important finding of the present work is the validity of (8)
but now with individual terms arising due to each thermostat:

〈Ṡ〉t ≡
〈
Q̇L

K

T L
K

+ Q̇R
K

T R
K

+ Q̇L
C

T L
C

+ Q̇R
C

T R
C

〉
t

= 〈	〉t , (9)

where the heat flows Q̇
j

i are according to (7) and 	 is given
by

	 ≡ 	L
K + 	R

K + 	L
C + 	R

C

= −NLηL − NRηR −
NL∑
j=1

ξL ∂2φ

∂x2
j

−
NR∑
j=1

ξR ∂2φ

∂x2
j

. (10)

In a stricter sense, the equality holds true for every individual
term as well: 〈Q̇j

i /T
j

i 〉t = 〈	j

i 〉t . Numerically, the difference
between the two dissipations is negligible, of the order of 10−6

or smaller (see Table I).
The equivalence of Eqs. (9) and (10) reaffirms the fact that

the thermostats do not perform any work on the system, and are
involved only in supplying or withdrawing heat from it, unlike
some thermostats [30]. It is remarkable that the equality holds
true despite the violation of local thermodynamic equilibrium
at both the thermostatted and unthermostatted regions.

We next turn our attention to showing that the heat in the
differential thermostatting scheme flows from right to left, i.e.,
from the relatively colder to the hotter region.

C. Heat flux and heat flows

The proposed scheme allows the heat to flow from the colder
region to a hotter region, which can be proved numerically
by looking at (i) the sign of QL and QR , and (ii) the sign
of J . Regardless of the model of thermal conduction (either
traditional or differential), for a system to be in steady state,
the heat supplied by one of the thermostats must get extracted
by the other thermostat, implying that QL + QR ≈ 0. Thus
QL ≈ −QR , and so we study only QL. Before going through
the results of differential thermostatting scheme, let us take a
look at the heat flows during traditional thermostatting scheme
with T L

K = T L
C = 1.20 and T R

K = T R
C = 0.80. The results are

shown in Fig. 5.
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FIG. 5. Cumulative heat flow from the left thermostatted region
for different N under traditional thermostatting with T L

K = T L
C =

1.20 and T R
K = T R

C = 0.80. The results are for last 250 million time
steps. The linear nature of the graph indicates that a steady state has
been reached. It is interesting to note that as the system size increases,
the heat flow from the thermostat decreases. This is consistent with the
nondiverging characteristic of JN for a φ4 chain. The positivity of QL

suggests that the heat is supplied from the “hotter” left thermostatted
region to the system.
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FIG. 6. Cumulative heat flow from the left thermostatted region
for different N under differential thermostatting with T L

K = T R
K =

1.0, T L
C = 1.20, and T R

C = 0.80. The results are for last 250 million
time steps. The heat flows are almost linear in nature suggesting that
the system is in steady state. Like before, we observe that the heat
flow from the thermostat decreases with increasing N . Notice that
the sign of QL is negative, which suggests that the relatively “hotter”
left thermostatted region “siphons” heat from the system.

The φ4 chain has a finite thermal conductivity, which
suggests that JN a finite value [19,21,22]. In Fig. 5 we observe
that the heat flowing from the hot thermostat progressively
decreases with N . This is consistent with the finite thermal
conductivity in φ4 chain. If we had observed that QL increases
with increasing system size, it would have implied that J

also increases with N , which in turn would make the thermal
conductivity divergent. We also bring to attention that QL is
positive which implies that the hotter left end supplies heat to
the remainder of the system.

Now, let us look at the differential thermostatting model
with T L

K = T R
K = 1.0, T L

C = 1.20, and T R
C = 0.80. We remind

the readers that in an averaged sense the left end of the
chain is hotter than the right end. The central finding of this
paper is QL < 0, as shown in Fig. 6, contrary to the normal
expectation of QL to be positive. The cumulative heat flows
are almost linear in nature with no detectable periodicity (the
noise appears to be random), suggesting that the system is in
steady state. Like before, we observe that the heat flow from the
thermostat decreases with increasing N . The implication of QL

being negative is that the relatively “hotter” left thermostatted
region withdraws heat from the system in the same manner
as a siphon mechanism. Interestingly, this behavior is seen
irrespective of the system size and �T = 0.5 × (T L

C − T R
C ).

This persistent flow of heat from the “colder” to the “hotter”
region indicates that the proposed mechanism can serve as a
heat pump. The significance of our work lies in the fact our
heat pump does not require any particle transport and external
work on the medium.

The numerical results show that, for the region R, the
kinetic reservoir (which is hotter) supplies heat: QR

K > 0, and
the configurational reservoir (which is colder) extracts heat:
QR

C < 0. The cumulative heat flows, however, are different
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FIG. 7. −JN for traditional thermostatting scheme with different
values of �T and N . Notice that J < 0, indicating a heat flow from
the hotter left to the colder right region. |JN | remains nearly constant
with increasing N , as expected.

(|QR
K | �= |QR

C |), and the supply is more than the extracted
amount (|QR

K | > |QR
C |). Hence a net heat flows into the system

from the right. We attribute this to the slow relaxation of the
configurational variables in comparison to the kinetic ones, and
as a result, a part of the heat supplied by the kinetic reservoir
gets transmitted to the chain before it can get extracted by the
configurational reservoir. For the region L, the kinetic reservoir
is colder, and extracts heat from the system: QL

K < 0, while
the configurational reservoir is hotter, and supplies heat to the
system: QL

C > 0. The extraction is more than supply for L, and
hence net heat flows out of the system from L. At steady state,
the net heat from L and R are equal and opposite in magnitude
(QL ≈ −QR).

The heat available for flowing into the system from the
thermostat in differential thermostatting scheme is almost
an order of magnitude smaller than the one available in
the traditional thermostatting scheme. The reason may be
attributed to the heat flow between the hotter and colder
variables within the thermostatted regions in the differential
thermostat scheme. As a consequence, only a part of heat
is available for flowing into the system. In the traditional
thermostatting scheme, because of absence of such heat
flow between the kinetic and configurational variables at the
thermostatted regions, a considerably larger amount of heat is
available for flowing into the system.

Now let us compare the heat flux obtained from the
traditional model and the differential model. The heat flux for
different values of �T and N with traditional thermostatting
are shown in Fig. 7. As expected, J is negative suggesting that
heat flows from the left hotter region to the right colder region.
The heat flux remains fairly constant with increasing N . This
is consistent with our previous finding that QL decreases with
increasing N .

The heat flux arising due to differential thermostatting
are shown in Fig. 8. Notice that J is positive, unlike in
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FIG. 8. JN for differential thermostatting scheme with different
�T and N . Notice that J is positive, suggesting a consistent heat
flow from the relatively colder right region to the relatively hotter left
region.

the traditional thermostatting scheme. The results indicate a
persistent heat flow from the relatively colder right region to
the relatively hotter left region. For the majority of the cases
the absolute heat fluxes due to the differential thermostatting
is an order smaller than the traditional thermostatting. This is
because the heat available the thermostatted region (see Figs. 5
and 6) is significantly smaller.

D. Satisfies fluctuation theorem for heat flow

The results are consistent with the second law of ther-
modynamics. We use the fluctuation theorem (FT) for heat
flow [3,28,31] to demonstrate the second law of thermody-
namics in this case:

P (〈
〉t = A)

P (〈
〉t = −A)
= exp (At), (11)

where 〈
t 〉 is the time averaged dissipation function defined
through

〈
〉t t =
∫ t

0

(s)ds = log

(
f (�(0),0)
f (�(t),0)

)
−

∫ t

0
	(s)ds. (12)

In (12), f (�(0),0) and f (�(t),0) denote the density functions
of two trajectories that begin at the microstates �(0) and �(t),
respectively. Assuming ergodic consistency, i.e., a trajectory
and its time-reversed conjugate trajectory are associated with
nonzero probability, it can be shown that the time averaged
dissipation function (〈
〉t ) for our mechanism becomes

〈
〉t = 1

t

�T

T0

∫ t

0

(
ξR
C

∑
NR

∂2φ

∂x2
i

− ξL
C

∑
NL

∂2φ

∂x2
i

)
dt

= �T

T0

(〈
αR

C

〉
t
− 〈

αL
C

〉
t

)
. (13)

In (13), 〈αi
C〉t are time averaged values of the integrals. In this

particular setup the kinetic phase-space compression factors
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FIG. 9. Variation of 〈αR
C 〉 − 〈αL

C〉(≡ 〈
t 〉T0/�T ) with �T and
N . It is evident that (i) 〈αR

C 〉 − 〈αL
C〉 > 0, (ii) increases with N , and

(iii) increases with �T . Thus the properties of fluctuation theorem
are satisfied and, hence, the second law.

play no role in the dissipation function (since �T for kinetic
variables is zero), and hence (13) is devoid of these terms.
However, it must be pointed out that the kinetic phase-space
compression factors are nonzero, and they play an important
role in the heat flow process, as has been highlighted in
Sec. IV B. Recasting (11) in terms of 〈α〉, the fluctuation
theorem becomes

P
(〈
αR

C

〉
t
− 〈

αL
C

〉
t
= A

)
P

(〈
αR

C

〉
t
− 〈

αL
C

〉
t
= −A

) = exp (At�T/T0). (14)

Thus for the fluctuation theorem to be satisfied over a long time
duration the following must hold true: (i) 〈αR

C 〉t − 〈αL
C〉t > 0,

(ii) 〈αR
C 〉t − 〈αL

C〉t must increase with N , and (iii) 〈αR
C 〉t −

〈αL
C〉t must increase with �T . The results shown in Fig. 9

confirm all these points.
In traditional steady-state heat flow, the hotter thermostat

supplies heat to the system causing a phase-space volume
expansion, and the colder thermostat must withdraw the same
amount of heat causing a phase-space volume compression. It
is known however that the steady-state system collapses on an
average to a dimension lower than the phase-space dimension,
causing a divergence of Gibbs’ entropy to negative infinity. It
can occur only if the phase-space volume compression due to
the colder thermostat exceeds the volume expansion due to the
hotter thermostat. Thus, in our problem, for the Gibbs’ entropy
to diverge: 〈	〉t = 〈	L

K + 	L
C + 	R

K + 	R
C〉t = −〈∑α

j

i 〉t < 0.
Table II shows that 〈	〉t < 0 for different N and �T .

E. Switching the role of kinetic and configurational
temperatures

To judge the relative importance of the different temper-
atures, we interchange the roles of the configurational and
kinetic temperatures in Fig. 2 (i.e., a temperature difference is
created only in the kinetic variables). We observed a traditional
heat flow (not shown) in this case (i.e., the heat flows from the
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TABLE II. Divergence of Gibbs’ entropy: each term of the table
denotes 〈	〉t . Notice that 〈	〉t < 0 which suggests that the Gibbs’
entropy diverges, a criteria must for nonequilibrium states. Similar
values occur for other N and �T .

N �T = 0.10 �T = 0.20

200 −0.0140 −0.0605
400 −0.0146 −0.0653
600 −0.0177 −0.0796
800 −0.0218 −0.1032
1000 −0.0279 −0.1420

hotter left region to the colder right region). It is interesting
to note that the heat flux in this case is almost an order
of magnitude higher than the one observed for differential
thermostatting scheme, suggesting the dominant role of the
kinetic variables in thermal conduction.

V. CONCLUSIONS

In this work, we introduce the differential thermostatting
scheme where the kinetic and configurational variables at a
thermostatted region are kept at different temperatures. Two
such differentially thermostatted regions at the two ends of
a chain allow the heat to flow from the relatively colder
region to the relatively hotter region, without requiring any
additional work to be performed on the system. Our results
suggest that the relative temperature difference between the
kinetic and the configurational variables (at each thermostatted
end of the conductor) determines the direction of heat flow,
exploiting which heat pump may be developed. Using this
approach, we are able to show the potential importance of
configurational variables towards thermal conduction. The
challenge, however, is in developing experimental techniques
to control the kinetic and configurational temperatures of the
same particle at different values.
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