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Zeroth Law investigation on the 
logarithmic thermostat
Puneet Kumar Patra & Baidurya Bhattacharya

The Zeroth Law implies that the three systems, each separately in equilibrium and having the same 
temperature, must remain so when brought in pairwise or simultaneous thermal contact with each 
other. We examine numerically the conformity of the logarithmic thermostat with the Zeroth Law of 
thermodynamics. Three specific scenarios, with different heat reservoirs, are investigated. For each 
scenario, the system of interest, S1 – a single harmonic oscillator, is coupled with two heat reservoirs, 
S2 and S3. S2 and S3 are variously chosen to be from the Nosé-Hoover, the Hoover-Holian, the C1,2 and 
the logarithmic thermostats. In the scenarios involving logarithmic thermostat, we observe a violation 
of the Zeroth Law of thermodynamics, in computationally achievable time, at low to moderate 
coupling strengths: (i) the kinetic and configurational temperatures of the systems are different, (ii) 
momentum distribution of log thermostat is non-Gaussian, and (iii) a temperature gradient is created 
between the kinetic and configurational variables of the log thermostat.

The Zeroth Law of thermodynamics defines an equivalence relation for systems in mutual thermal equilibrium, 
rendering possible the calibration of thermometers and the measurement of temperature1,2. Let the condition of 
thermal equilibrium between two systems, S1 and S2, be given by the unique relation θ θ =F ( , ) 012 1 2  where θ J is 
the complete set of thermodynamic variables necessary to define the equilibrium state of system J(J = 1, 2, 3). The 
Zeroth Law states that3

θ θ θ θ θ θ= = ⇒ =F F F( , ) 0 and ( , ) 0 ( , ) 0 (1)12 1 2 23 2 3 13 1 3

This transitivity of thermal equilibrium helps establish a common temperature of the three systems and forms 
the basis of thermometry.

The universality of the Zeroth Law has made it a prerequisite for understanding thermodynamics in the con-
text of both classical and statistical framework. Within the statistical framework, it plays a defining role in deriv-
ing the canonical distribution in both the traditional (Gibbs’) treament4 as well as the informational theoretic 
approach5. To make the last statement more clear, consider an isolated system comprising of two subsystems, 
denoted by subscripts 1 and 2. Let the energy of two subsystems be: E1 and E2. Let the corresponding entropy be 

1  and 1 . In canonical ensemble, one maximizes the total entropy under the constraint that total energy of the 
isolated system is constant i.e.:

 + =
+ = =E E E
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While writing these equations, we have assumed that the interaction energy between the two systems is small 
enough to be neglected. Taking the total differentials of the two6 we get:
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Dividing the two equations we get  = =′ ′ ′ ′E E T/ / 1/1 1 2 2 . This situation can be generalized to a case where 
there are N subsystems within the system. The fact that the entire system is in equilibrium implies that the subsys-
tems are also in equilibrium with each other. Zeroth law enables the partition of the space of thermodynamic 
states of the subsystems into classes of equivalence. These classes are defined as isotherms, each of which is asso-
ciated with a unique “empirical temperature”, T7. Thus, although mutual thermal equilibrium is a prerequisite for 
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the Zeroth Law, the thermodynamic definition of temperature relies on the Zeroth Law of thermodynamics as 
empirical temperature is defined through it.

In Jaynes’ informational theoretic approach, the Zeroth Law comes into picture through the Lagrangian mul-
tiplier associated with the average energy constraint5,6,8 and is solved by invoking the argument that the temper-
ature of S1 is the same as S2 Interested readers are referred to5 for more details. It has recently been shown that an 
initially nonequilibrium system in contact with a heat bath moves, on an average, towards equilibrium, suggesting 
the validity of the Zeroth (as well as the Second) Law of thermodynamics for thermostatted molecular dynamics9.

As is evident from the discussion so far, the Zeroth Law is intrinsically connected to heat reservoirs. An ideal 
heat reservoir possesses infinite heat capacity so that the energy transferred by the reservoir does not alter its tem-
perature. Such a reservoir is usually assumed to be extremely large. Despite recent advances in computing, we still 
lack the ability of simulating a system beyond a few billion particles whereas even a mole comprises of 1023 parti-
cles. In order to get around this limitation, computational models utilize synthetic techniques, called thermostat 
algorithms, in order to capture the essence of ideal heat reservoirs In simple terms, thermostat algorithms10–16, 
are mathematical constructs to mimic ideal heat reservoirs so that energy exchange processes occurring in real 
systems may be studied computationally. Regardless of being deterministic or stochastic, the thermostats, when 
coupled with a system must ensure a constant temperature environment for the system as they play the role of a 
heat-bath1,17–20. However, simply ensuring constant temperature computationally does not guarantee that these 
algorithms will not violate established thermodynamic principles. In fact, the merit of a good temperature control 
algorithm should not only be determined by how well it controls the temperature but also whether it conforms to 
different thermodynamic and dynamical-systems principles21. In this context, the Zeroth Law of thermodynamics 
is amongst the most fundamental principles of thermodynamics that must be satisfied.

Beginning with conceptually simple velocity rescaling techniques10, where velocities are scaled to obtain the 
desired temperature, we now have several stochastic11,22 and deterministic13–16,23 algorithms that can sample the 
dynamics from correct equilibrium distributions while satisfying different thermodynamic properties. These 
algorithms control either the kinetic temperature13–15 defined by,

=
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or the configurational22–24 temperature defined by,
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or both of them together16. Here, Φ(.) denotes the potential energy of the system and ▽ is the gradient operation 
with respect to the phase-space variables. The control is typically achieved by modifying the Hamiltonian, or 
equivalently the Newtonian, evolution equations in different ways. However, most of these modifications come 
with a price – the Hamiltonian formalism is lost. A breakthrough has been provided recently25,26 which is the sub-
ject of this paper: the logarithmic thermostat with an infinite heat capacity has a Hamiltonian basis. In the present 
work, we analyze the compatibility of the logarithmic thermostat with the Zeroth Law of thermodynamics.

In the next section, details of the logarithmic thermostat are presented, followed by a brief description of the 
different non-ergodic and ergodic thermostats employed in the present study. The subsequent sections detail the 
methodology employed in this study, and the main conclusions drawn from it.

The logarithmic Thermostat
The logarithmic thermostat, also known as the log oscillator or the log thermostat, is a deterministic thermostat 
that controls the kinetic temperature, (4), of the system. The name arises due to the logarithmic nature of its 
Hamiltonian:
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where, s and ps denote, respectively, the position and velocity of the thermostat with mass ms, and b represents an 
arbitrary constant with dimensions of length squared (taken as unity in the present study). It is a standard practice 
to add constant δ in the equations for preventing the singularity of the potential energy at origin. Upon invoking 
the virial theorem under the assumption δ ≪ s2, the following holds true:
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A consequence of (7) is that the kinetic temperature of the thermostat (or in other words, average kinetic 
energy) is always equal to kBTK, regardless of the total energy of the thermostat. It is also easy to check that the 
momentum of the logarithmic thermostat is distributed normally26. Thus, we see that the logarithmic thermostat 
can mimic the behavior of an ideal heat reservoir.
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Unlike Nosé’s original thermostat13, the logarithmic thermostat theoretically generates canonical dynamics 
without necessitating the use of any time scaling parameter. The thermostatted dynamics can be obtained through 
Hamiltonian equations directly. For example, when a system with Hamiltonian = Φ + ∑H q p m( ) /2i

2  is coupled 
to the logarithmic thermostat through an interaction, h(q, s), the total Hamiltonian of the composite system is 
given by

∑ δ= Φ + + + + + .
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The resulting equations of motion are:
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and the phase-space distribution of the system is sampled according to:
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Here, H* is the potential of mean force associated with the system phase-space variables27. When the interaction 
is weak, the system follows Gibbs’ distribution ρ β∝ Hexp( ). In absence of the interaction term, h, the system and 
the logarithmic thermostat may be thought of as separated by an adiabatic wall. The nature of interaction, as we 
will show later, plays an important role determining the thermodynamic consistency of the logarithmic thermo-
stat. It is important to note that the equations of motion (9) require ergodicity in the extended system for a proper 
sampling from a canonical distribution26. While a highly non-linear coupling enhances the ergodicity of the log-
arithmic thermostat26, it comes at the cost of losing Gibbs’ distribution.

However, a logarithmic thermostat cannot be used as a temperature control mechanism in molecular dynam-
ics simulations because of the fundamental deficiencies identified by researchers. The equilibration time, even for 
small systems, has been estimated to be too large28, rendering the numerical implementation unfeasible. Further, 
the log thermostat does not perform the role of a computational “thermostat” since it does not equilibrate small 
atomic clusters29 and has negative configurational temperature in one dimensional systems. Neither does it allow 
a heat flow even in presence of a large temperature gradient30. Under strong coupling, the log thermostat addi-
tionally violates both equipartition and virial theorems31.

In the present work, we demonstrate that the logarithmic thermostat violates the Zeroth Law of thermody-
namics in computationally achievable time in several scenarios, and relate it to the existing deficiencies high-
lighted before. Our system of interest, S1, is a single harmonic oscillator (cf. (1)). In the first scenario, S1 is coupled 
with an ergodic heat reservoir, S2, at kBTK/C = 1 (TK/C denotes controlling either kinetic or configurational tem-
perature). Simultaneously, S1 is also coupled with an NH thermostatted oscillator, S3, also kept at kBTK = 1. In this 
scenario, the ergodic heat reservoir, S2, is chosen either as a Hoover-Holian thermostat21 (HH) or the higher order 
configurational thermostat24 (C1,2). As an NH thermostatted oscillator is known to be non-ergodic, it serves as the 
base test case with which other results are compared. In the second scenario, S3 becomes a logarithmic thermo-
stat. In the third scenario, both S2 and S3 are chosen as logarithmic oscillators.

The three thermostats - NH, HH and C1,2 are discussed next.

A nonergodic and two ergodic thermostats
Nosé-Hoover thermostat. The pioneering work of Nosé13 was simplified by Hoover14 to give the Nosé-
Hoover (NH) equations. NH thermostat revolutionized the field of constant temperature molecular dynamics 
simulations. It controls the kinetic temperature, (4), by means of a friction-like variable that has its own evolution 
equation. When coupled with a single harmonic oscillator of unit mass and stiffness at temperature kBTK = 1, the 
NH thermostatted equations become:

ζ ζ= = − − = − .



q p p q p p, , 1 (11)2

Here, ζ represents the effects of the entire heat reservoir. However, the Nosé-Hoover algorithm suffers from the 
problem of being nonergodic for a single harmonic oscillator32. Only 6% of the trajectories are chaotic while the 
remaining 94% lie on tori33.

Hoover-Holian thermostat. The issue of nonergodicity can be tackled by simultaneously controlling the 
first two moments of kinetic energy21. The resulting Hoover-Holian (HH) thermostat (kept at kBT = 1) when 
coupled with a single harmonic oscillator (with unit mass and stiffness constant) becomes:
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Here, η and ξ denote the thermostat variables that control the first and the second moments of the kinetic energy, 
respectively. Note that the system is thermostatted at a temperature of unity. Hamiltonian corresponding to the 
HH equations, (12), remains unknown so far. It is easy to check that the equations of motion represented by (12) 
satisfy the extended phase-space distribution33,

η ξ ∝ η ξ− + + +f q p e( , , , ) , (13)
p q

ex

1
2 [ ]2 2 2 2

which is a product of four independent standard normal random variables. The dynamics samples the phase-space 
in accordance with (13), and unlike the Nosé-Hoover algorithm, results in an ergodic thermostat21,33.

C1,2 thermostat. The higher-order configurational thermostat (C1,2 thermostat) is the configurational ana-
logue of the HH thermostat24. It controls the first two orders of the configurational temperature using two ther-
mostat variables. The equations of motion of a C1,2 thermostatted single harmonic oscillator, with unit mass and 
stiffness, are:
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= − = − .
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Here, η and ξ denote the thermostat variables that now control the first two orders of configurational temperature, 
respectively. The equations of motion, (14), is able to overcome the nonergodicity of the deterministic first-order 
configurational temperature based thermostat23. The extended phase-space density due to (14) is similar to that 
shown in (13). It has been shown that, like the HH thermostat, the C1,2 thermostat has no “holes” in the dynamics, 
and generates a phase-space distribution that is consistent with the Gibbsian prediction for a single harmonic 
oscillator.

Zeroth Law investigations
Zeroth Law is concerned with the mutual thermal equilibrium of three bodies. It implies that three systems, 
each separately in equilibrium and having the same temperature, must remain so when brought in pairwise or 
simultaneous thermal contact with each other. In the present work, we create a similar scenario (see Fig. 1) – the 
system of interest, S1, which is a single harmonic oscillator, is simultaneously coupled to two heat reservoirs, S2 
and S3, both kept at the same temperature. Different scenarios are investigated: in the first scenario, S2 is one of 
the two ergodic thermostats (HH or C1,2) and S3 is an NH thermostatted oscillator, in the second scenario, S3 is 
changed to a logarithmic oscillator while keeping other details the same as in the first scenario, and in the third 
scenario, both S2 and S3 comprise of logarithmic oscillators.The choice of S2 in the first two scenarios as ergodic is 
deliberate so that when S1, the single harmonic oscillator, is coupled to it, equilibration of S1 occurs according to 
Gibbsian canonical ensemble. Selecting a non-ergodic thermostat may pose problems for thermal equilibration.

For all cases considered here, S1, the single harmonic oscillator is fully thermalized and has reached an equi-
librium state. S1 is neither subjected to any flux of mass nor energy. The flux of mass may be determined by look-
ing at the average velocity, 〈p1〉 of the oscillator. Likewise, energy flux may be determined by 〈 + 〉q p p1

2
1 1

3 , where 
〈…〉 denotes the time average. For all the different cases investigated in this study, 〈p1〉 ≈ 0 and 〈 + 〉 ≈q p p 01

2
1 1

3 .

First Scenario – Zeroth Law for the NH thermostat. In this section, the results of the first scenario are 
discussed. Two specific cases are considered – (i) Case A1: S2 as the HH thermostat, and (ii) Case A2: S2 as the C1,2 
thermostat. In both these cases, S3 is an NH thermostatted harmonic oscillator.

Case A1: S2 = HH Thermostat, S3 = NH Thermostat. The temperature of both heat reservoirs are such that 
kBT = 1. While coupling between the HH thermostat and the single harmonic oscillator is inherent (see (12)), the 
coupling between the single harmonic oscillator and the NH thermostatted single harmonic oscillator is taken to 
be harmonic. The combined equations of motion of the system may be written as:
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Here (q1, p1) represent the system variables (S1), (η, ξ) represent the HH thermostat (S2), (q3, p3, ζ) represent the 
NH thermostatted oscillator (S3) and k = 0.01, 0.10, 1.00 represents the interaction strength between S1 and S3. 

Figure 1. Setup for testing the Zeroth Law. The system, S1, comprises a single harmonic oscillator. Heat 
Reservoir S2 is one of the three thermostats – HH, C1,2 or the logarithmic thermostat, and the Heat Reservoir S3 
is either the NH thermostatted single harmonic oscillator, or the logarithmic thermostat.
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The equations of motion are solved using classic Runge-Kutta for 100 billion time steps, with each time step being 
equal to Δt = 0.001. All variables are initialized at unity. Kinetic temperature, TK, of S1 and S3 are given by: 〈 〉p1

2  
and 〈 〉p3

2 , respectively, while the configurational temperature, TC, of S1 and S3 are given by:

=
〈 + − 〉
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=
〈 + − 〉
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Since both reservoirs are kept at the same temperature, given sufficient time, TK of S1, S2 and S3 must agree with 
each other according to the Zeroth Law, and so must TC. Not only that, being in equilibrium necessarily means 
that TK and TC must be the same for each system. All these equalities are demonstrated in Table 1, the maximum 
difference from the desired values being smaller than 0.6%. Later on, we will see that these essential features are 
not retained when S3 is replaced by a logarithmic thermostat.

An additional consequence of the Zeroth Law is the canonical nature of the momentum distribution function 
for each of S1, S2 and S3, which in this case implies a standard normal distribution. Such a distribution is possible 
for S3 only when the NH thermostatted oscillator displays ergodicity. The marginal momentum distributions, 
shown in Fig. 2(a), are in agreement with the standard normal distribution irrespective of coupling strength. 
Note that a more complete proof of canonical nature involves looking at joint probability distribution functions34. 
Other ergodic oscillators, when coupled with the HH oscillator also show similar features33. As would be seen 
later, such conformity is typically absent for the logarithmic thermostat at low to moderate coupling interaction 
(see Fig. 2(c)). A failure to demonstrate the correct momentum distribution would have indicated a deviation 
from canonical nature, which in turn would have implied a lack of equilibrium, and hence would have violated 
the Zeroth Law.

Case A2 : S2 = C1,2 Thermostat, S3 = NH Thermostat. This case presents an interesting situation – the C1,2 ther-
mostat controls only the configurational temperature by acting upon the configurational variables, while the 
NH thermostat controls only the kinetic temperature by altering the momentum evolution equations. Equality 
of configurational (as well as kinetic) temperatures throughout the composite system provides a mechanism for 
checking if the Zeroth Law holds true in this case. The equations of motion solved in this case are:
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where, F = −[q1 + k(q1 − q3)] and U = k(q1 − q3)2. The expressions of TK and TC for both S1 and S3 remain the same 
as in case A1. For TC to be equal for S1 and S3, the following must hold true:

〈 + − 〉 = 〈 + − 〉

⇒〈 〉 = 〈 〉.

q k q q q k q q

q q
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It is easy to check that for the composite system (assuming ergodicity), 〈q3〉 = 〈q1〉 = 0. Thus, in this case, 
apart from the equality of kinetic and configurational temperatures, we perform additional tests on the equality 

k

Case A1 Case A2 Case B1 Case B2 Case C1

TK TC TK TC TK TC TK TC TK

S1 S3 S1 S3 S1 S3 S1 S3 S1 S3 S1 S3 S1 S3 S1 S3 S1 S3

0.0 — — — — — — — — — — — — — — — — 1.003 1.000

0.01 0.997 1.002 1.006 1.004 1.001 1.002 1.004 1.011 1.000 1.047 1.000 2.726 0.999 0.944 1.000 1.052 1.979 1.986

0.1 1.003 1.000 1.001 1.000 1.001 0.997 0.998 1.001 0.999 1.020 1.000 1.284 1.001 0.966 1.000 0.986 2.000 1.996

1.0 1.001 1.001 1.005 1.000 0.999 1.000 1.000 0.999 1.001 0.999 0.999 0.993 1.000 1.000 1.002 0.999 2.009 2.010

Table 1. Time averaged value of kinetic and configurational temperatures, TK and TC, respectively, for the 
various cases investigated in this study. The desired temperature is unity. Notice, the difference between 
TK and TC for cases B1 and B2 that involve log thermostat as S3. S1, the single harmonic oscillator, displays 
correct temperature. In these cases, a temperature gradient is not only created between S1 and S3, but also 
within the configurational and kinetic variables of S3. For case C1, where S2 and S3 are log thermostats, the 
instant a coupling is introduced, the temperature of the system goes haywire. Please note that the temperature 
corresponding to S2 were found to be statistically indifferent from that of S1 (except in case C1), and hence not 
listed for the first two cases.
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of the first and the second moments of the variables q1 and q3. The equations of motion are solved using classic 
Runge-Kutta for 100 billion time steps, with each time step being equal to Δt = 0.001.

The results for this case, shown in Table 1, are found to be essentially the same as that of case A1: (i) TK of S1 
and S3 agree with each other, (ii) TC of S1 and S3 agree with each other, and (iii) TK and TC of each system agree 
with each other. 〈 〉q1

2  and 〈 〉q3
2  are found to be equal as are 〈q1〉 = 〈q3〉 = 0 are demonstrated numerically in Table 2. 

The marginal momentum distribution functions for S3 and S1 are shown in Fig. 2(b) and its right inset, respec-
tively. Both the NH oscillator as well as S1 show a remarkable conformity with the standard normal distribution, 
just like in case A1. The inset on the left shows the phase space plot of the NH oscillator, (q3, p3), highlighting its 
ergodic nature.

Second Scenario – Zeroth Law for the logarithmic thermostat. We now investigate what happens 
when NH thermostat of the first scenario is replaced by a logarithmic thermostat (cases B1 and B2). The equations 
of motion with a log-thermostat are “stiff ”, and require smaller time-step for numerical integration. As a result, an 
integration time-step of Δt = 0.00025 is used. The equations of motion are solved for 800 billion time steps with 
classic 4th order Runge-Kutta algorithm. All variables are initialized at unity, unless otherwise specified.

Figure 2. Momentum distributions of S3 and S1 (right inset) for the different cases analyzed in the work: (a) 
Case A1 with S2 = HH thermostat and S3 = NH thermostat, (b) Case A2 with S2 = C1,2 thermostat, S3 = NH 
thermostat, (c) Case B1 with S2 = HH thermostat and S3 = Log thermostat, and (d) Case C1 with both S2 and 
S3 = Log thermostat. For each case, S1 is a single harmonic oscillator. Cases with S3 = NH thermostat have the 
correct standard normal distribution of momentum irrespective of the system. For Case B1, correct momentum 
distribution of S1 is obtained at all coupling strengths, however, S3 has the correct momentum distribution only 
at high coupling. For case C1, the computed temperature is double that of desired temperature. Conformity of 
the velocity distributions with each other and with a standard normal distribution suggests that the Zeroth Law 
is satisfied only for cases A1 and A2.

k 〈q1〉 〈q3〉 〈 〉q1
2 〈 〉q3

2

0.01 −0.001 0.002 0.995 1.006

0.1 0.001 0.000 0.959 0.958

1.0 −0.001 0.000 0.816 0.815

Table 2. Case A2: Verification of 〈q1〉 = 〈q3〉 = 0 and 〈 〉 = 〈 〉q q1
2

3
2  which is a consequence of ergodicity.
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Case B1: S2 = HH Thermostat, S3 = Log Thermostat. In this case, the single harmonic oscillator (S1) is coupled 
with the ergodic HH thermostat (S2) and the logarithmic thermostat (S3). The coupling between S1 and S3 is taken 
as harmonic, with spring constant k. The equations of motion are:
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Variables q3 and p3 denote the logarithmic thermostat’s position and momentum, respectively. We keep δ = 0.01, 
and consider three values of the spring constant k = 0.01, 0.1 and 1.0, denoting, respectively, the cases of weak, 
moderate and strong interaction with the system. TK for S1 and S3 are: 〈 〉p1

2  and 〈 〉p3
2 , respectively. The expressions 

for TC for S1 and S3 are:
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The existence of a single unique temperature of a system is necessary for the Zeroth Law of thermodynamics 
to hold true35. Further the different measures of temperature are necessarily equal for a closed equilibrium sys-
tem7,36,37. In fact, extending the Zeroth Law for non-equilibrium situations is problematic because of the absence 
of a unique value of temperature38,39 of a system. TK and TC of the different oscillators for this case are shown in 
Table 1. Unlike in the first scenario, here we observe that at low to moderate coupling strengths, TK of the loga-
rithmic thermostat does not reach the desired value of unity during the simulation run – a deviation of 2% to 5% 
is observed, which is significant compared to the cases A1 and A2. TC, on the other hand, deviates from the desired 
value even more – 28% to 172%. Further, TC ≠ TK for the logarithmic thermostat – a clear violation of the Zeroth 
Law. Interestingly, the single harmonic oscillator, S1, faithfully reproduces the desired kinetic and configurational 
temperatures. Further, at weak and moderate interaction strengths, the dynamics of the logarithmic thermostat 
is substantially different from that of the single harmonic oscillator (see Fig. 3). Although the dynamics of the 
logarithmic thermostat appears to be phase-space filling, a majority of the trajectory points are confined within a 
small region. This problem is predominant at small and moderate interaction strengths. In fact, for k = 0.01, there 
is an evidence of a hole in the dynamics.

The information embedded in the momentum distribution functions is more detailed than just its second 
moment. In canonical ensemble, in addition to the standard deviation of momentum distribution being equal 
to the temperature, the entire distribution must also be Gaussian. Utilizing this, in the previous scenario, we 
argued that the NH thermostatted oscillator displays a good thermalizing behavior. However, in the present case, 
the velocity distribution function, shown in Fig. 2(c), shows a marked deviation from Gaussianity at low and 
moderate coupling. In other words, the phase-space of the logarithmic thermostat does not get sampled from a 

Figure 3. Phase space trajectory of S3 in case B1 due to: (a) weak interaction at k = 0.01, (b) moderate 
interaction at k = 0.10 and strong interaction at k = 1.0. The inset figures at top (in red) represent the phase-
space trajectory of the S1 at the corresponding interaction strengths. The inset figures at bottom (in blue) a 
provide a zoomed-in view of the trajectory of S3. Notice the difference in the phase-space trajectories between 
the logarithmic thermostat and the single harmonic oscillator at a particular interaction strength. The 
zoomed-in inset views show a hole in the dynamics at weak interaction and improper sampling around origin at 
moderate interaction.
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canonical ensemble as evidenced from Fig. 3. At strong interaction, however, the velocity distribution improves, 
and the deviation ceases to exist, but this comes at a cost: the dynamics now samples from (10) instead of the 
standard canonical distribution function. The single harmonic oscillator, on the other hand, always demonstrates 
faithfully a Gaussian velocity distribution. The improved behavior of the log thermostat at strong coupling makes 
us conjecture that instead of S3 thermalizing S1, it is the other way around.

Thus, in this case we observe that, in computationally achievable time, – (i) there are significant differences 
between the temperatures (both TK and TC) of S1 and S3 in equilibrium, (ii) a temperature difference is created 
between the momentum and the configurational variables of S3, violating the principles of equilibrium thermo-
dynamics, (iii) at low to moderate coupling, the phase-space of S3 does not get sampled from a canonical distribu-
tion, rendering the momentum distributions different from a standard normal distribution.

Case B2: S2 = C1,2 Thermostat, S3 = Log Thermostat. In this case, the HH thermostat is replaced with the C1,2 
thermostat as S2. The equations of motion to be solved are:

η ξ
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where, F = −[q1 + k(q1 − q3)] and U = k(q1 − q3)2. The expressions of TK and TC remain the same as in case B1.
Time averaged values of TK and TC of S1 and S3, for this case, are shown in the Table 1. Like in case B1, the 

situation does not improve here at low and moderate interaction strengths. While S1 again faithfully demon-
strates the correct kinetic and configurational temperatures, such is not the case for the logarithmic thermostat. 
The inequality of TK and TC for the logarithmic thermostat, at low and moderate interaction strengths, suggest 
a non-unique temperature of the system, and effectively creates a temperature gradient between the kinetic and 
configurational variables, unlike in case A2. Thus, again a violation of the Zeroth Law, in computationally achiev-
able time, is observed.

Third Scenario – Zeroth Law with two coupled logarithmic thermostats. Case C1: S2 = Log 
Thermostat, S3 = Log Thermostat. We now investigate the third scenario where two logarithmic thermostats are 
coupled to S1 harmonically, but with different strengths, k and k*. A similar situation was investigated before in 

(a) (b)

Figure 4. (a) Instantaneous Relative Error in Energy and (b) Cumulative Relative Error in Energy for case C1 
with k = 0.01.

Case S1 S2 S3 Findings

A1

SHO

HH thermostat

NH thermostat

For all coupling strengths in case A:

A2 C1,2 thermostat
1. TK and TC of S1, S2 and S3 are in agreement with each other.

2. Momentum distribution follows a standard normal distribution

B1

SHO

HH thermostat

Log thermostat

At low to moderate coupling strengths:

1. TK and TC of S1, S2 and S3 are different from each other

B2 C1,2 thermostat
2. Momentum distribution of S3 is not standard normal.

At larger coupling strengths, Gibbs’ canonical sampling is lost.

C1 SHO Log thermostat Log thermostat Momentum distribution is not standard normal and temperature control fails

Table 3. Summary of findings. SHO = single harmonic oscillator.
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nonequilibrium30 – S1 comprised of a φ4 chain, and a temperature difference was created between the two ends of 
the chain through two logarithmic thermostats. However, no heat flow was observed. In the present scenario, the 
temperatures of the two thermostats are kept at unity. The harmonic coupling between the thermostats is taken 
such that the evolution equations are:
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k* is chosen as 1.0, while three values of k are used: 0.01, 0.1, 1.0 with δ equaling 0.01. The initial conditions are 
taken as: (q2, p2, q1, p1, q3, p3) = (1, 2, 2, 3, 3, 4). This third scenario corresponds to a situation where one can 
define a Hamiltonian. However, we still employ the non-symplectic 4th order Runge-Kutta method for solving 
the equations of motion to maintain consistency. The fluctuations in total energy of the system is of the order of 
10−7, the relative error (in %) is of the order of 10−5, and the cumulative error is of the order of 10−3 as shown in 
Fig. 4. Since our objective is not to study the energy conserving nature of the log thermostat, using the 4th order 
Runge-Kutta method for solution does not have any significant bearing. We remind the readers that the equations 
of motion (22) correspond to the case where the temperature is set at unity. As a consequence, the velocities of the 
logarithmic thermostats for all cases must sample from a standard-normal distribution. The velocity distributions, 
which are both non-gaussian, are shown in Fig. 2(d).

Despite 800 billion integration time steps, at small values of >k 0, we observe TK of the two oscillators to be 
different (see Table 1). While the Zeroth Law is satisfied for the moderate and strong interaction, it is disconcert-
ing to see that TK is twice the desired temperature in every case. Note that TK has been computed as 〈 〉pi t

2 , the 
time-averaged value of second moment of velocity. The results are around 2  instead, if the temperatures were 
computed as 〈(pi − E[pi])2〉t, the second moment of velocity around its mean. Interestingly, when k = 0, i.e. S3 is 
decoupled, the log-thermostats behave expectedly, with temperature commensurate with the desired temperature 
of unity, and the values are independent of the nature of second moment (central or non-central). It has been 
previously argued that the details of the thermal contact are not important40, however, we find system tempera-
ture to change with changing values of k.

Summary and Conclusions
Zeroth Law helps us to identify the temperature of a statistical-mechanical system, and forms a cornerstone of 
thermodynamics. Recently, it has been shown mathematically that a non-isothermal system relaxes to canonical 
equilibrium conditions, with all components of the system having the same temperature41. Therefore, if two ther-
mostatted systems (at same temperature) are coupled to each other, each of them must individually satisfy the 

Figure 5. Time evolution of averaged temperatures for S3 under different cases. Note that in cases A1 and A2, i.e. 
with the NH thermostat as S3, convergence to the desired value of unity is achieved very quickly. On the other 
hand, for cases B1 and B2, such convergence is typically absent throughout. The results are plotted with k = 0.1.
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Zeroth Law. In this article, we explore numerically if the Zeroth Law is satisfied for the logarithmic thermostat. 
The summary of findings are shown in Table 3.

The temporal evolution of TK and TC for S3 in cases A1, A2, B1 and B1 for k = 0.1 are shown in Fig. 5. Note that 
in cases A1 and A2, i.e. with the NH thermostat as S3, convergence to the desired value of unity is achieved very 
quickly. On the other hand, for cases B1 and B2, such convergence is typically absent throughout. The picture 
does not change with k = 0.01. Our results indicate that coupling an ergodic system with the logarithmic thermo-
stat does not guarantee a canonical distribution for the logarithmic thermostat at small to moderate interaction 
strengths, and consequently it may display an incorrect temperature. When two logarithmic thermostats are cou-
pled, the combined system goes haywire – the temperature of all components shoot up to twice the desired value. 
kinetic temperature of both the logarithmic thermostats is almost twice the desired value.

Violation of the Zeroth Law by the logarithmic thermostat in computationally achievable time is a conse-
quence of the flaws demonstrated previously by other researchers28–31. In view of the large equilibration time of 
the log thermostat28 and its inability to engender heat flow30, the heat flow within the single harmonic oscillator 
is approximately zero despite the differences in TK and TC of the single harmonic oscillator and the logarithmic 
thermostat. Coupling to a “good” thermostatted system improves the phase-space sampling of the logarithmic 
thermostat in some cases, however, the improvement is not sufficient to make its TK = TC primarily because of its 
poor thermalizing behavior29. At strong coupling, we find that the improvement in the performance comes at the 
cost of violating the equipartition and virial theorems31.

Lastly, the method outlined in this paper may serve as a test for the goodness of other thermostats as well.
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