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Materials design may be defined as designing materials as dynamic multilevel-structured systems with
integrated and specific process/structure/performance/property relationships. The main objective of the
work is to design structural materials based on inter-atomic potentials – the so-called ‘‘inverse problem”
– to explore materials of high strength to weight ratio with a thermodynamically stable structure. Since
the aforementioned objectives are contradicting each other it leads to a Pareto-optimal problem which is
eventually solved by the multi-objective genetic algorithms solver NSGA-II. The material behavior is
modeled using Lennard–Jones type interatomic potential function. The Pareto-optimal front provides a
series of hypothetical materials which are then compared and contrasted with existing materials as
and when possible.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

A study of mechanical properties of materials in terms of given
interatomic potentials is of considerable interest since it provides a
direct connection between the atomic structure and macroscopic
behavior of the solid. This comes under the class of ‘‘forward prob-
lems”. A more interesting problem – and more challenging, is to
come up with the ideal interatomic potentials that will give rise
to a set of desirable material properties. This is the so-called ‘‘in-
verse problem” and is a relatively new approach to material design.
The solution of the inverse problem has important implications in
the control of self-assembly of many particle systems: through
optimization one can create new materials that perhaps have not
yet been reached in nature [1].

The present work is aimed at establishing a framework to de-
sign materials with a number of desirable qualities that are con-
flicting in nature. The idea is to come up with a procedure
general enough to be extended to any set of mutually conflicting
properties in a crystalline system. Mathematically this leads to a
multi-objective problem [2], where in recent times the employ-
ment of evolutionary and genetic algorithms [3,4] have provided
an excellent insight to a large number of problems in the mate-
ll rights reserved.
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rials domain [5–10]. The details of the optimization problem
and the genetic procedure adopted in this work are detailed
below.
2. The optimization problem

The aim of this study is to design some structural materials that
are stiff, light and at the same time thermodynamically stable. The
idea is to come up with the best possible tradeoffs between these
conflicting requirements. The optimum solution in such a situa-
tion, as it is rather well established now [2], need not be unique.
Rather a family of optimized solutions, formally known as the Par-
eto frontier [2] becomes the optimum here. Each member of this
Pareto-set is an individually optimized solution of the same rank
[3] as the others, and out of these available alternates the decision
makers [2] should be able to pick one or more, based upon their
own requirements.

In this study we have considered a three dimensional array of
atoms following a prescribed crystallographic structure. All the
three objectives here are modeled using the Lennard–Jones (L–J)
potential function [11] – we acknowledge that this isotropic pair
potential is selected mainly for its simplicity and the resulting
mathematical tractability, and that the L–J potential may not be
adequate for modeling most crystalline materials. Considering
the requirements of the problem the three objectives are taken as:
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� Maximize Young’s modulus, i.e., stiffness.
� Maximize the volume of the system with a requirement that the

mass remains constant, i.e., maximize lightness or minimize
density.

� Minimize the potential energy of the system so as to make it
thermodynamically stable1.

Two natural constraints are also prescribed: the Young’s modu-
lus must be non-negative and the L–J potential must be negative.

It should be intuitively clear that these objectives are be mutu-
ally conflicting. For example, equilibrium energy and density:
starting from the most stable configuration of a lattice, a lower
density can be achieved only by increasing the inter-atomic dis-
tance and thereby increasing the energy of the system. Likewise,
stiffness, which is the second derivative of the internal energy with
respect to strain, can increase as the lattice is strained if the shape
of the potential well is sharper than that of a square parabola. The
cost is a higher energy as we go up the potential well.

Since Lennard–Jones potential governs all the three objectives,
it is briefly discussed below for the convenience of the readers at
large.

2.1. The Lennard–Jones potential

Neutral atoms and molecules experience two distinct forces in
the limit of long and short distances – an attractive van der Waals
force at long ranges, and a repulsion force, the result of overlapping
electron orbitals, referred to as Pauli repulsion at short distances.
The Lennard–Jones potential (also referred to as the 6–12 potential
or, less commonly, 12–6 potential) is a simple mathematical model
that represents this behavior:

ELJ ¼ 4e0
r
r

� �a
� r

r

� �b
� �

; ð1Þ

where e0 is the depth of the potential well and r is the (finite) dis-
tance at which the potential is zero. The commonly accepted values
of the exponents a,b are 12, 6 respectively.

3. Modeling details

This study has been carried out for two common crystal sym-
metries, namely the body centered cubic (BCC) system with eight
nearest neighbors and face centered cubic (FCC) system with 12
nearest neighbors. The number of unit cells considered for each lat-
tice system is 8 and the number of atoms depends on the lattice
structure considered. The temperature at which the properties
are calculated is 0 K.

The systems were first modeled with all three parameters, a,b
and r as decision variables. To keep the computational cost within
limits, only nearest neighbor interaction was considered between
the atoms (instead of an atom interacting with all its neighbors
within the cutoff radius of 2.5r). However, this approach led to
some unacceptably low volumes and high stiffnesses. An alternate
strategy was therefore tried out.

In the alternate approach both a,b in the L–J potential function
are kept constant at their standard values of 12 and 6 and r re-
mains the only decision variable. First, only nearest neighbors are
1 Commonly in the materials literature thermodynamic stability is assessed
through the value of Gibbs free energy (G). It remains a simple thermodynamic
exercise to demonstrate that in the absence of any mechanical work, G becomes
synonymous with Helmhotz’s free energy (A). The value of A on the other hand is only
slightly influenced by the entropy (S) contribution, in case of solids. Furthermore, as T
equals 0 K, the situation considered here for the ease of computation, A becomes
identical to the internal energy (U), which has been approximated by the L–J potential
in this study.
considered interacting with an atom; subsequently, all atoms
within the cutoff radius (2.5 Å) are included. The following rela-
tionship between e0 and r0 (the equilibrium distance), derived from
real material properties [12,13], is used:

e0 ¼
aþ bf ðr0Þ
cþ de�Xu : ð2Þ

Values of the parameters a,b,c,d and u [12] are provided in Table
1. X denotes the number of atoms under consideration.

The cutoff radius depends on the assumed lattice symmetry
(FCC, BCC) as the number and distance of nearest neighbors varies
with lattice symmetry. Young’s modulus, the first objective, was
derived from some basic considerations detailed in Appendix I.

For nearest neighbor interaction model the Young’s modulus is
expressed as

Y ¼ 1
V0
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For a multiple atom interaction model it varies with the lattice
structure based upon the number of nearest neighbors in each lat-
tice structure. The expressions for BCC and FCC lattices are as
follows:

For BCC lattice,

Y ¼ 1
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For FCC lattice,

Y ¼ 1
V0
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For atomic volume, the second objective, that we have at-
tempted to maximize for a constant mass was simply calculated as

V ¼ a3
L for multiple atom interaction model

r3
0 for single atom pair interaction model

(
; ð6Þ

where the mass of the atom is assumed to be constant and aL is the
lattice parameter which has a structure dependent relationship
with the equilibrium interatomic spacing r0.

For FCC, aL ¼
ffiffiffi
2
p

r0 and for BCC it is aL ¼ 2=
ffiffiffi
3
p

r0.
Potential energy, the third objective was directly evaluated

from Eq. (1).

3.1. Optimization strategy

In this study the tri-objective optimization has been carried out
using the Non-dominated Sorting Genetic Algorithm II (NSGA II)
[3] which applies the so called ‘(l + k) � ES type of strategy’ [3]
Table 1
Values of constants in Eq. (2)

Crystal lattice BCC FCC

a (eV) 1.37139 � 10�21 3.75391 � 10�21

B (eV) 1.54495 � 10�31 1.17524 � 10�31

c 1.09467 0.43991
d �8.378421 �0.4745
/ 1.05169 0.372879
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in a multi-objective environment keeping the parent population
size l equal to the child population size k. To eloborate further: a
parent population of size l is mixed with an offspring population
of the same size, and only half of them are kept for the next gener-
ation following some specialized evolutionary strategies (ES) con-
sisting of a crowding distance tournament selection, and in its later
versions, a procedure for controlled elitism, both of which are aimed
at preserving the population diversity, which are now adequately
detailed in the literature [3].

A real coded simulated binary crossover – SBX [3] is used here
with a probability of crossover 0.9. The mutation probability is ta-
ken as 0.5, the population size is fixed at 500 and the numbers of
generations run are 10,000. All the computations are performed
in a Windows XP environment.

4. Results and discussion

The major findings of this study are presented and analyzed be-
low. The generated results are plotted and compared with real
material properties which can give an initial idea for design of
new materials.

Due to the problems with three variable approach mentioned
earlier, further studies have been carried out with constant values
of a = 12 and b = 6 for the L–J potential: r is the only decision
variable.

Figs. 1–4 show the Pareto frontiers and the corresponding en-
ergy contour plots for BCC and FCC structures. As indicated before,
(i) both nearest neighbor interactions and (ii) all possible atomic
interactions within the cutoff distance, have been considered.
These results are compared with available information on a num-
ber of real materials [13], which are marked on the figures. All
the real materials quite expectedly fall on the lower energy levels
of these plots owing to their stable structures. The Pareto frontiers,
however, seem to extend beyond these to lower energy levels, sug-
gesting the possibility of designing new materials with even better
thermodynamic stability and density-stiffness combinations. A
material designer can, in addition to these three objectives, impose
other constraints like cost to come up with a material of choice.

The findings are analyzed below in separate subsections.

4.1. Objectives based on nearest neighbor interactions

Both BCC and FCC symmetries were studied in this case. The re-
sults show a good agreement with the real material properties
Fig. 1. (a) Pareto frontier for BCC structure with variable r and nearest neighbor interac
neighbor interaction model. The energy levels are color coded.
[13]. The data for Vanadium, Molybdenum and Tungsten are
superimposed over the computed results plotted in Fig. 3a and b.
Among these three elements Tungsten appears to be superior in
terms of its stiffness and lightness but being situated in the higher
energy band, it is however inferior in terms of the thermodynamic
stability compared to the other two. To design a material with bet-
ter stiffness and lightness than Tungsten, one would require mov-
ing higher up in the energy level, so thermodynamic stability
might be a potential problem. On the other hand Molybdenum is
strategically located in a region surrounded by further lower en-
ergy levels and its lightness is of the same order as that of tungsten.
The nature of the Pareto frontier in Fig. 3b shows the possibility of
designing a material with the lightness comparable to Molybde-
num but of stiffness and energy values better than it. This demon-
strates a typical efficacy of the current evolutionary procedure in
coming up with newer and better materials.

Fig. 2a shows the Pareto frontier for FCC lattice and the data for
Gold, Copper, Platinum and Nickel are superimposed on the energy
contour plot shown in Fig. 2b. It seems that all the four materials
are at nearly comparable low energy states, Gold having the least
stiffness. Since the low energy contours spread well beyond Gold,
it seems quite possible to come up with a material with less stiff-
ness and more lightness than Gold at a very comparable energetic
stability. Once again this demonstrates how the current procedure
could help in designing some newer materials with tailor-made
properties. Though the L–J potential is relatively inaccurate for
modeling metallic systems, these preliminary simulations show
good agreement with real material properties as shown in Figs.
1–4.

4.2. Objectives involving all possible atomic interactions in a lattice

The results in Fig. 3a show the Pareto frontier for the BCC lattice
structure and those in Fig. 3b show the real material properties
superimposed on the contour plot of energy. These results are gen-
erated with the interaction of an atom with all its neighbors within
a prescribed cut-off radius of 2.5r beyond which the forces tend to
become insignificant. Although more sophisticated interactions are
considered here, the results essentially show the same trends as in
the previous case, suggesting that the nearest neighbor interac-
tions essentially drive the materials properties in the present con-
text and configurations.

The Pareto frontier for the FCC lattice is shown in Fig. 4a and the
elements plotted in the energy contour plot shown in Fig. 4b dem-
tion model and (b) energy contour plot (in eV) for BCC with variable r and nearest



Fig. 2. (a) Pareto frontier for FCC structure with variable r and nearest neighbor interaction model and (b) energy plot (in eV) for FCC with variable r and nearest neighbor
interaction model. The energy levels are color coded.

Fig. 3. (a) Pareto frontier for BCC structure with variable r and cutoff radius interaction model and (b) energy plot (in eV) for BCC with variable r and cutoff radius interaction
model. The energy levels are color coded.

Fig. 4. (a) Pareto frontier for FCC structure with variable r and cutoff radius interaction model and (b) energy plot (in eV) for FCC with variable r and cutoff radius interaction
model. The energy levels are color coded.
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onstrates that the lowest energy contour actually extends to a low-
er stiffness level than what has been originally found considering
just the 2-body interaction shown in Fig. 4b, demonstrating the
possibility of designing materials less stiffer than gold for example,
but with perhaps better lightness and stability.

4.3. Property correlations between BCC and FCC lattices

Fig. 5 describes the individual relationship between any two
objectives when the third objective has a fixed set of values. The
conflicting nature of the objectives has been clearly brought out
Fig. 5. Two objective correlations at
in these figures. For example, it is clear that at a given lightness,
optimal stiffness can be increased only at the expense of increasing
optimal equilibrium energy (Fig. 5a and b). Likewise, at fixed equi-
librium energy, optimal stiffness can be increased only at the ex-
pense of decreasing optimal lightness (Fig. 5c and d). Finally,
optimal equilibrium energy can be reduced and optimal lightness
can be increased simultaneously without bound, but only at the
cost of decreasing stiffness asymptotically towards zero (Fig. 5e
and f). The optimized energy contours however show some signif-
icant local fluctuations, particularly at the lower energy level, as
evident from Figs. 3b and 4b. Therefore, truly monotonic reduction
fixed levels of another objective.
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of energy might not be possible at all stiffness and lightness levels.
Furthermore, a material could very well belong to a higher energy
level compared to another and still be a legitimate member of the
Pareto frontier, since a tradeoff needs to be worked out between all
the three objectives. The relative positions of various elements
shown in Fig. 5c and d corroborate these observations.

Fig. 5a and b shows the energy vs. stiffness relationship at sim-
ilar volume scales, which clearly shows the higher stiffness of BCC
materials over FCC materials. Molybdenum which belongs to the
category of BCC materials has higher stiffness over Copper with
FCC lattice structure at similar volume and energy levels plotted
in Fig. 5c and d. Similarly the comparison between BCC-Tungsten
and FCC-Platinum shows the same trend as described in the previ-
ous case. Fig. 5c and d clearly shows that BCC materials attain sim-
ilar stiffness with FCC materials at a higher volume. The stiffness
profiles in Fig. 5e and f show that at very similar energy levels,
stiffness is higher for BCC materials at any volume considered.
5. Concluding remarks

The success of an inverse approach towards materials design
with conflicting criteria is demonstrated here through the simple
L–J potential. Since r remains the only decision variable, the mate-
rial design procedure for any target property combinations would
just involve an adjustment of the lattice parameter of a particular
cubic symmetry, rendering the material development task rather
simple. The advantage of using a multi-objective genetic algorithm
for this purpose is quite overwhelming. A logical extension of this
work would be to try out some more sophisticated potentials and
extend the procedure to materials of other categories, ionic melts
and materials for example.

Appendix I. Derivation of an expression for the Young’s
modulus

The derivation of Young’s modulus is carried out separately for
different crystal lattices to include the structure dependence of the
property.

The elastic tensor of a body is given by

Cijkl ¼
1

V0

o2E
oeijoekl

; ðA1Þ

where V0 is the reference volume, E is the total potential energy of
the body and eij is the strain tensor. The term Young’s modulus, Y,
stands for C1 1 1 1 for an isotropic and linearly elastic material. For
a nonlinear elastic material, we can take Y to be the initial slope
of the axial stress vs. axial strain plot.

For a two-body interaction model the Young’s modulus calcula-
tion is done as follows:

Y ¼ 1
V0

o2ELJ

oe2
ij

 !
; ðA2Þ

where Y is the Young’s modulus of the material, ELJ is L–J potential
as given in Eq. (1) and eij is the axial strain with respect to displace-
ment from equilibrium interatomic distance r0.

From Eq. (A2)

o2ELJ

oe2
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Assuming small displacements from the equilibrium position,
the axial strain can be given as

eij ¼
r � r0

r0
: ðA4Þ
Hence Eq. (A2) becomes

Y ¼ 1
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: ðA5Þ

The reference volume V0 can be considered as the volume of a
cube with sides r0 in the free space between the two free atoms un-
der consideration [14]. Thus the Young’s modulus expression for a
nearest neighbor interaction case can be expressed as

Y ¼ 1
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When multiple atom interaction is considered as discussed in
Section 3 separate expressions for BCC and FCC lattices have to
be derived. The axial direction is taken to be [010]. The cut-off ra-
dius for the interatomic potential is considered to be 2.5r in this
work.

For an FCC lattice where each atom has 12 nearest neighbors
the interaction potential is the summation of all interactions and
hence can be given as

ETotal ¼
X12

i¼1

ELJ ¼
X12

i¼1

4e0
r
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� �12

� r
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� �6
" #

; ðA7Þ

Where Etotal is the summation of potentials due to all the interac-
tions within the cut-off radius.

Considering the four-way symmetry
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The strain along the plane perpendicular to the stress plane be-
comes zero and the other two planes undergo different strains. Un-
der these varying strains along different directions the following
expression has been formulated for the Young’s modulus of an
FCC lattice as follows:

Y ¼ 1
V0

o2ETotal

oe2
ij

 !
r¼r0

¼ 4e0

aL

156r12

r14
0

� 42r6

r8
0

� �

¼ 4e0ffiffiffi
2
p

r0

156r12

r14
0

� 42r6

r8
0

� �
: ðA9Þ

Similarly for a BCC lattice with eight nearest neighbors,

Y ¼ 1
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