This file has been cleaned of potential threats.

If you confirm that the file is coming from a trusted source, you can send the following SHA-256 hash value to your admin for the original file.

7537c9b8981bd9f27716af968dabb0deb703c8bca2e56c072845f11c0fb16623

To view the reconstructed contents, please SCROLL DOWN to next page.
Effect of randomly occurring Stone–Wales defects on mechanical properties of carbon nanotubes using atomistic simulation

Qiang Lu and Baidurya Bhattacharya

Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, USA

E-mail: bhattacharya@ce.udel.edu

Received 13 October 2004, in final form 26 January 2005
Published 25 February 2005
Online at stacks.iop.org/Nano/16/555

Abstract

The remarkable mechanical properties of carbon nanotubes (CNTs) have generated a lot of interest in recent years. While CNTs are found to have ultra-high stiffness and strength, an enormous scatter is also observed in available laboratory results. This randomness is partly due to the presence of nanoscale defects, heterogeneities etc, and this paper studies the effects of randomly distributed Stone–Wales (SW or 5–7–7–5) defects on the mechanical properties of single-walled nanotubes (SWNTs) using the technique of atomistic simulation (AS). A Matern hard-core random field applied on a finite cylindrical surface is used to describe the spatial distribution of the Stone–Wales defects. We simulate a set of displacement controlled tensile loadings up to fracture of SWNTs with (6, 6) armchair and (10, 0) zigzag configurations and aspect ratio around six. A modified Morse potential is adopted to model the interatomic forces. We find that fracture invariably initiates from a defect if one is present; for a defect-free tube the crack initiates at quite random locations. The force–displacement curve typically behaves almost linearly up to about half way, although there is no obvious yield point. Three mechanical properties—stiffness, ultimate strength and ultimate strain—are calculated from the simulated force and displacement time histories. The randomness in mechanical behaviour resulting only from initial velocity distribution was found to be insignificant at room temperature. The mean values of stiffness, ultimate strength and ultimate strain of the tube decrease as the average number of defects increases, although the coefficients of variation do not show such a monotonic trend. The introduction of an additional defect has the most pronounced effect on the randomness in mechanical properties when the tube is originally defect free. We also find that, for a given mean number of defects in the tube, the zigzag configuration has less strength and less ultimate strain on average, but more uncertainty in its stiffness and ultimate strain, compared with the armchair tube.

(Some figures in this article are in colour only in the electronic version)
1. Introduction

1.1. Randomness in the mechanical properties of CNTs

The report by lijima [1] of the existence of helical carbon microtubules triggered widespread interest in this special structure of carbon, now called carbon nanotubes (CNTs). Later, Ebbesen and Ajayan [2] reported the bulk synthesis of CNTs using a variant of the standard arc-discharge technique for fullerene synthesis under a helium atmosphere. Hamada et al [3] and Saito et al [4, 5] calculated the electronic properties of individual nanotubes. The Young modulus was measured by Treacy et al [6], Wong et al [7] and Falvo et al [8]. An interesting statistic by Terrones [9] has shown an exponential growth of the number of publications on CNTs: from fewer than 50 in 1993 to more than 1500 in 2001. The study of the carbon nanotube (CNT) has been motivated largely due to its extraordinary electronic and mechanical properties. The CNT is found to be among the most robust materials: it has high elastic modulus (order of 1 TPa), high strength (up to 150 GPa), good ductility (up to 15% max strain), flexibility to bending and buckling and robustness under high pressure [10–13]. The combination of these properties makes the carbon nanotube a potentially very useful material and CNTs are now used as fibres in composites, scanning probe tips, field emission sources, electronic actuators, sensors, Li ion and hydrogen storage and other electronic devices. Also, CNTs can be coated or doped to alter their properties for further applications [9].

A survey of recent studies on the elastic modulus and strength of single-walled and multi-walled carbon nanotubes (SWNTs and MWNTs) is listed in tables 1 and 2. The collected data clearly show a few features:

(i) the Young modulus of SWNTs is found to range from 0.31 to 1.25 TPa and the Young modulus of MWNTs ranges from 0.1 to 1.6 TPa;
(ii) the Young modulus may depend on chiralities;
(iii) experiments roughly show a trend that Young’s modulus drops quickly as the diameter of tubes increases;
(iv) the strength varies a lot from about 5 to 150 GPa;
(v) last but not least, these mechanical properties (elastic modulus, strength and failure strain) reported from experiments and analysis show significant variation.

Such variation has also been noticed by a few recent studies [14, 15]. As detailed in the next section, some of the factors that give rise to randomness in mechanical properties affect CNT electronic properties as well. An analytical understanding of these variations, their sources and how they can be controlled is essential before CNTs and CNT-based products can be considered for widespread use across industries.

The huge scatter in these properties is possibly due to the variation in tube sizes (diameter and length), chiralities, random defect distribution, local fluctuations in energies, variations in the chemical environment, errors in measurements and even different ways of defining the cross-sectional area. Effects of sizes and chiralities of nanotubes on their mechanical properties have been studied [7, 16, 17]; however, their roles are still not very clear. Tables 1 and 2 also show that the elastic modulus measured from tubes with similar diameters varies quite significantly. Although experimental measurement techniques vary in sophistication, it is still doubtful that measurement errors are fully responsible for the huge variation. The lack of consensus in defining the cross-sectional area [18, 19] can be rectified with a simple multiplicative factor and is not likely to be a major source of the randomness. Therefore, a substantial part of the random effect is believed to occur from random defects and/or local energy fluctuations. In this study, we focus on the role of randomly occurring defects, particularly Stone–Wales defects, in the mechanical properties and fracture of CNTs.

1.2. Effects of defects on the mechanical properties of CNTs

Defects such as vacancies, metastable atoms, pentagons, heptagons, Stone–Wales (SW or 5–7–7–5) defects, heterogeneous atoms, discontinuities of walls, distortion in the packing configuration of CNT bundles etc are widely observed in CNTs [40–44]. Such defects can be the result of the manufacturing process itself: according to an STM observation of the SWNTs’ structure, about 10% of the samples were found to exhibit stable defect features under extended scanning [45]. Defects can also be introduced by mechanical loading [46, 47] and electron irradiation [40]. It is reasonable to believe that these defects are randomly distributed in CNTs.

Studies have shown that defects have significant influence on the formation as well as on the electronic and mechanical properties of CNTs [11, 43, 46]. It has also been suggested that oxygen sensitivity may be an effective metric of defect concentration in carbon nanotubes [48]. Pentagon and heptagon defects are believed to play key roles in the formation and deformation of CNTs. For example, with the help of pentagon and heptagons, one can build special structures based on the original hexagon lattice, such as capping, intramolecular junctions, variation in diameter or chirality, welding, coalescence, x-junction etc [43].

The Stone–Wales (SW) defect, which is the focus of this paper, is composed of two pentagon–heptagon pairs, and can be formed by rotating a sp² bond by 90° (SW rotation). SW defects are stable and commonly present in carbon nanotubes [49], and are believed to play important roles in the mechanical [15, 50], electronic [51], chemical [52], and other properties of carbon nanotubes. For example, Chandra et al [15] found that the SW defect significantly reduced the elastic modulus of single-walled nanotubes. Mielke et al [53] compared the role of various defects (vacancies, holes and SW defects) in fracture of carbon nanotubes, and found that various one- and two-atom vacancies can reduce the failure stresses by 14 to 26%. The SW defects were also found to reduce the strength and failure strain, although their influence was less significant than vacancies and holes.

It has been found that SWNTs, under certain conditions, respond to the mechanical stimuli via the spontaneous formation of SW defects beyond a certain value of applied strain around 5%–6% [47]. Atomistic simulations showed that these SW defects are formed when bond rotation in a graphic network transforms four hexagons into two pentagons and two heptagons, which is accompanied by elongation of the tube structure along the axis connecting the pentagons, and shrinking along the perpendicular direction. More interestingly, the SW defect can introduce successive SW
rotations of different C–C bonds, which lead to a gradual increase of tube length and shrinkage of tube diameter, resembling the necking phenomenon in tensile tests at the macro-scale. This process also gradually changes the chirality of the CNT, from the armchair to the zigzag direction. This whole response is plastic, with necking and growth of a ‘line defect’, resembling the dislocation nucleation and moving in plastic deformation of the crystal in many ways. Yakobson [54] thus applied the dislocation theory and compared the brittle and ductile failure paths after the nucleation of the SW defect.

The formation of SW defects due to mechanical strains has also been reported by other groups of researchers. In their atomistic simulation study, Liew et al. [50] showed that SW defects were formed at 20–25% tensile strain for single-walled and multi-walled nanotubes with chirality ranging from (5, 5) to (20, 20). The formation of SW defects explained the plastic behaviour of the stress–strain curve. They also predicted failure strains of these tubes to be about 25.6%. A hybrid continuum/atomistic study by Jiang et al. [55] reported the nucleation of SW defects both under tension and torsion.
The reported SW transformation critical tensile strain is 4.95%, and critical shear strain is 12%. The activation energy and formation energy of the SW defect formation are also studied and related to the strength of the nanotube [56–58]. The nucleation of SW defects was found to depend on the tube chiralities, diameters and external conditions such as temperature.

It is important to mention here that the above studies [47, 50, 54, 55] are all based on the bond order potential model. Two recent studies critical of the bond order model must also be mentioned in this context. Dumitrica et al [59] argued that the energy barrier for SW defect formation at room temperature is high enough to inhibit stress-induced SW defect formation, and showed that direct bond breaking is a more likely failure mechanism for defect-free nanotubes. A quantum mechanical study [60] from the same group pointed out that the results in [47] and related works were not reliable since the potential model they used (i.e., the bond order model) was not capable of correctly describing breaking of the bond connecting the two pentagons in the SW pair. They [60] further found that pre-existing SW defects caused successive bond breakings instead of bond rotations as reported by [47, 50, 54, 55]. Nevertheless, irrespective of how SW defects are formed and grow, it is clear that they can have significant effects on the mechanical properties of carbon nanotubes.

In conclusion, it is clear that

(i) defects are commonly present in CNTs,
(ii) these defects may have significant effects on the mechanical and other properties of CNTs, as summarized in tables 1 and 2,
(iii) a wide scatter has been observed in the mechanical properties of carbon nanotubes.

Yet, surprisingly little work has been directed in the available literature toward studying the randomness in these defects and the influence of such randomness on CNT mechanical properties in a systematic and probabilistic way. Here in this paper, we try to build toward this missing link by selecting the assumptions on the random nature of the SW defects and, through the technique of atomistic simulation, quantify the effect of such randomness on (i) the fracture process of SWNTs at the atomic scale and (ii) three representative mechanical properties, namely, the elastic modulus, ultimate strength and ultimate strain of SWNTs.

2. Modelling of random Stone–Wales defects

An ideal modelling of material defects would require a real 3D random field model. However, since each SW defect on an SWNT is a local rearrangement of carbon atoms on the tube wall, we can treat the SW defects as discs with a fixed area that are randomly distributed on the 2D surface. This way, it is sufficient to consider two characteristics of the defect distribution: (i) the location of the points relative to the study area, and (ii) the location of points relative to each other.

To our knowledge, there are few published works to date that study the effects of random defects, especially of the Stone–Wales kind, on the mechanical properties of CNTs. The study by Saether [44] investigated the transverse mechanical properties of CNT bundles subject to random distortions in their packing configuration. This distortion, quantified by a vector describing the transverse displacement of the CNTs, may be caused by packing faults or inclusions. The magnitude and direction of the vector were both uniform random variables. The transverse moduli of CNT bundles were found to be highly sensitive to small distortions in the packing configuration. In another instance, Belavin et al [61] studied the effect of random atomic vacancies on the electronic properties of CNTs. Each of the \(N_a \) atoms in the ‘unit cell’ was assigned (using an unspecified numbering scheme) a unique id in the range \([1, N_a]\). A first estimate of the number of atoms to be removed was made by generating a uniform deviate, \(n_a \), in the interval \([1, N_a]\). It is not apparent how the \(n_a \) atoms to be removed were identified. However, the atoms in this set were removed from the unit cell provided the cell was left with atoms with coordination numbers of two or three. That is, (i) the removal of an atom did not give rise to an additional dangling bond, or, (ii) if it did, the additional removal of the candidate’s neighbour rectified the situation. Belavin et al’s model is simple and effective for generating vacancies, but its physical basis as a 2D spatial random field model is not clear and it cannot be extended to areal defects involving more than one atom such as a SW defect.

Since there is not enough information in the experimental literature to provide a clear picture of statistical properties of the defects, it is reasonable to start with the assumption that the defects occur in a completely random manner, which implies an underlying homogeneous Poisson spatial process. We also incorporate the fact that the SW defect is not a point defect but has a finite area and there should be no overlap between neighbouring defects. Therefore, we adopt a Matern hard-core point process [62] for the defect field. A Matern hard-core process is simply a thinned Poisson point process in which the constituent points are forbidden to lie closer than a minimum distance \(h \).

The intensity (i.e., rate of occurrence) of the Matern hard-core process is \(\lambda_b = p_b \lambda \), where \(\lambda \) is the intensity of the underlying homogeneous Poisson point process and \(p_b \) is the probability that an arbitrary point from the underlying Poisson process will survive the Matern thinning. The average number of SW defects on an area \(A_r \) is thus \(\lambda_b A_r \). For a finite tube of length \(b \), the probability \(p_b \) can be computed as

\[
p_b = \frac{1}{b} \int_0^b \frac{1 - e^{-\lambda A(y)}}{\lambda C(y; h)} \, dy
\]

(1)

where \(C \) is the area over which a Poisson point at \((x_0, y_0)\) searches for its neighbours [63].

In this study, we fix \(h \) at 8.0 Å, and use a set of reasonable values for \(\lambda \). The algorithm for generating SW defects is outlined in figure 1. An application of the algorithm is illustrated on a graphene sheet in the following. In this particular example, the graphene sheet is 49.2 Å long and 25.5 Å wide and is used to create a (6, 6) armchair SWNT. The SWNT ends up with six SW defects.

Random points are generated uniformly on the graphene sheet with rate \(\lambda \) per unit area (to conform to a Poisson spatial process) and the points are assigned integer ids in the order
they are generated (figure 2(a)). Eight Poisson points are generated in this example. The distance between every pair of points is checked. If a pair of points is less than \(h \) apart, the point with the smaller id in that pair is marked (figure 2(b)). Once all pairs are compared, the marked points are deleted, thus producing a Matern hard-core field. In this example, two points (numbers 4 and 5) are deleted to produce the hard-core field. For each surviving point, the closest carbon–carbon bond on the graphene sheet, \((\mathbf{a}, \mathbf{b})\) is located (figure 2(c)) and the bond is rotated by 90° to form an SW defect (figure 2(d)). The initial atomic positions are obtained by wrapping a cylinder along the chiral vector \(\mathbf{C}_l = m \mathbf{a}_1 + n \mathbf{a}_2 \) such that the origin \((0,0)\) coincides with the point \((m, n)\). The distance between neighbouring carbon atoms on the graphene sheet, \(d_0\), is 1.42 Å, which is the C–C \(sp^2 \) bond length in equilibrium. The tube diameter is thus obtained as \(d = d_0 \sqrt{3(m^2 + n^2 + mn)/\pi} \).

The initial atomic velocities are randomly chosen according to a uniform distribution (between the limits \(-0.5 \) and \(0.5\)) and then rescaled to match the initial temperature \(300 \, \text{K}\) in this example. We assume that the nanotube is in vacuum or in air, and the heat conduction between the tube and the environment is relatively small compared to the heat accumulation from the mechanical loading at high speeds. From test runs, the temperature fluctuations in the simulations are found to be within acceptable ranges. Therefore, no temperature control is implemented in this study. The mechanical loading is uniaxial and displacement controlled: it is applied by moving the atoms at either end (12 atoms at each end, as shown in figure 4) in the axial direction away from each other at constant speed (10 m s\(^{-1}\)) without relaxing until the occurrence of fracture.

Three mechanical properties are calculated from the simulated force and displacement time histories:
Figure 2. Generation of Stone–Wales defects on a graphene sheet. (a) Poisson points are generated on a plane. (b) Pairs of points less than \(h \) apart are identified. (c) The Matern hard-core field is produced by thinning the Poisson field. (d) SW defects are generated by rotating the C–C bond.

Figure 3. (a) Graphene sheet with six SW defects; (b) the corresponding (6, 6) SWNT.

(i) the Young modulus is calculated as the initial slope of the force–displacement curve;
(ii) the ultimate strength is calculated at the maximum force point, \(\sigma_u = F_{\text{max}} / A \), where \(F \) is the maximum axial force, \(A \) is the cross section area, assuming the thickness of tube wall is 0.34 nm;
(iii) the ultimate strain, which corresponds to the ultimate strength, is calculated as \(\varepsilon_u = \Delta L_u / L \), where \(L \) is the original tube length.

Figure 4. Mechanical loading is applied through moving the outermost atoms at both ends (highlighted at bond ends).

Other important information can also be obtained through the simulation of tensile tests of SWNTs, such as the time histories of energies and bond angles, dependence of mechanical properties on diameter, chirality and loading rate etc [17–19, 21, 32, 64].

Examples of the force–displacement relations of a (6, 6) SWNT are shown in figure 5, with the same initial velocity distribution in each case but with different numbers of SW defects (0, 2, 4, 6, respectively). The displacement controlled loading rate is 10 m s\(^{-1}\). The reduced units (ru) used in this and subsequent figures have the following physical equivalents: 1 time ru = 0.03526 ps; 1 force ru = 1.602 nN; 1 displacement ru = 1 Å.

It is clear from figure 5 that defects can have significant impact on mechanical behaviour of nanotubes: SWNTs with more defects are likely to break at smaller strains and have less strength as well. The force–displacement curve in each case in figure 5 behaves almost linearly up to about half way, although there is no obvious yield point. The slope then begins to decrease up to the breaking point where an abrupt drop of force occurs. The effect of defects on the Young modulus, however, appears much less pronounced.

Eight snapshots taken from the fracture process of a defect-free (6, 6) armchair SWNT are shown in figure 6(a), illustrating the detailed crack evolution from the first bond breaking to the
Effect of randomly occurring Stone–Wales defects on mechanical properties of carbon nanotubes using atomistic simulation

Figure 5. Force–displacement curves of nanotubes with various average numbers of defects.

Figure 6. Fracture process of a defect-free (6, 6) SWNT: (a) crack initiation and propagation (A–H); (b) corresponding force time history.

The effects of randomness in the spatial distribution of SW defects on mechanical behaviour are now investigated for both the armchair and zigzag SWNTs. The tube length in each case is 49.2 Å while the displacement controlled loading rate is constant at 10 m s$^{-1}$. For each tube, we start with the defect-free case ($\lambda = 0$) and carry out 50 simulations leading to fracture. From these 50 samples we determine the statistics of the SWNT mechanical properties as shown in table 3. The only source of randomness here is in the distribution of the initial atomic velocities. The resultant coefficient of variation (c.o.v.) of Young’s modulus ($\sim 1\%$ for armchair and $\sim 2\%$ for zigzag) as well as that of ultimate strength (about 2% for either configuration) are negligible. The cov of ultimate strain, though higher at around 5%, is still rather small. Hence it is clear that, at the given temperature of 300 K, the randomness resulting from initial velocity distribution is insignificant.

We then move on to studying four cases with randomly occurring SW defects corresponding to four different mean field values, starting from an average of 0.9 defects per tube.
Table 3. Young’s modulus, ultimate strength and ultimate strain of SWNTs with different SW defect intensities.

<table>
<thead>
<tr>
<th>Mean Poisson points λ_A_i</th>
<th>Mean Matern discs $\lambda_h A_i$</th>
<th>E^a (TPa)</th>
<th>σ_{ua}^a (GPa)</th>
<th>$\varepsilon_{\text{ua}}^a$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean μ</td>
<td>V (%)</td>
<td>Mean μ</td>
<td>V (%)</td>
<td>Mean μ</td>
</tr>
<tr>
<td>(6, 6) armchair</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.851</td>
<td>1.01</td>
<td>105.5</td>
</tr>
<tr>
<td>1.0</td>
<td>0.925</td>
<td>0.793</td>
<td>5.50</td>
<td>89.71</td>
</tr>
<tr>
<td>2.0</td>
<td>1.716</td>
<td>0.771</td>
<td>6.25</td>
<td>83.11</td>
</tr>
<tr>
<td>4.0</td>
<td>2.970</td>
<td>0.738</td>
<td>7.77</td>
<td>76.29</td>
</tr>
<tr>
<td>6.0</td>
<td>3.889</td>
<td>0.716</td>
<td>6.76</td>
<td>74.56</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(10, 0) zigzag</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1.0</td>
</tr>
<tr>
<td>2.0</td>
</tr>
<tr>
<td>4.0</td>
</tr>
<tr>
<td>6.0</td>
</tr>
</tbody>
</table>

a Based on statistics of 50 samples; μ = mean; V = coefficient of variation (c.o.v.), E = Young’s modulus, σ_{ua} = ultimate strength, ε_{ua} = ultimate strain (strain at max force).

Figure 7. Fracture process of a (6, 6) SWNT with three SW defects: (a) crack initiation and propagation (A–I); (b) corresponding force time history.

Figure 8. 2D spatial distribution of crack initiation site in defect-free (6, 6) SWNT (99 samples).
Effect of randomly occurring Stone–Wales defects on mechanical properties of carbon nanotubes using atomistic simulation

The zigzag tube differs from the armchair one in two ways. For a given mean number of defects per tube, (i) the zigzag configuration has less strength and less ductility on average than the armchair tube although the mean stiffness is about the same; and (ii) the zigzag configuration shows more uncertainty in its stiffness and ultimate strain compared with the armchair tube although the strength has roughly the same c.o.v. in either configuration. The fact that the zigzag tube has less ultimate strain has been reported by a few studies [46, 56] and the widely observed fact that the brittle fracture mode is more sensitive to random defects has been corroborated by the above findings.

No dislocations similar to what was reported in other simulations [46, 47] were observed in our simulations. This may be due to the difference in the potential models and/or the loading modes: our tensile loading is continuous and monotonic at room temperature and we used a modified Morse potential, while Nardelli et al [47] used a bond order potential model and allowed unloading and relaxation at high temperature.

4. Summary and conclusions

Carbon nanotubes are known to have ultra-high stiffness and strength, yet a wide scatter has been observed in the mechanical properties of carbon nanotubes. It is likely that defects, which are commonly present in CNTs, may have significant effects on the mechanical and other properties of CNTs. In this paper we have considered the random nature of Stone–Wales (SW or 5–7–7–5) defects in CNTs and, through the technique of atomistic simulation, demonstrated that randomly occurring defects can have a significant influence on the fracture process and mechanical properties of SWNTs. A Matern hard-core random field applied on a finite cylindrical surface was used to describe the spatial distribution of the Stone–Wales defects.

We simulated a set of displacement controlled tensile loadings up to fracture of SWNTs with (6, 6) armchair and (10, 0) zigzag configurations. The force–displacement curve typically behaved almost linearly up to about half way, although there was no obvious yield point. The stiffness, strength and ultimate strain were calculated from the simulated force and displacement time histories. We found that fracture invariably initiated from a defect if one was present and the crack grew irregularly. For a defect-free tube, the only source of randomness was in the initial velocity distribution of the atoms, and the crack initiated at quite random locations on the tube surface.

The effects of randomness in the spatial distribution of SW defects on mechanical behaviour were investigated. Along with the defect free-case, we studied four cases with randomly...
occurring SW defects starting from an average of 0.9 defects per tube up to 3.9 mean defects per tube. The randomness resulting solely from the initial velocity distribution (i.e., the defect free case) was rather insignificant at the operating temperature of 300 K. The mean values of stiffness, strength and ultimate strain of the tube decreased as the average number of defects increased. However, the uncertainty associated with each property did not show such a monotonic trend in each case. The introduction of an additional defect had the most pronounced effect when the tube was originally defect free than when one or more defects were already present. The zigzag tube was found to be more brittle and to exhibit more uncertainty in its mechanical properties than the armchair one.

Future work should be extended to more types of defects such as vacancies, heterogeneous atoms etc and more complicated structures. Experimental studies on the statistical distribution of such defects and of mechanical properties of nanotubes are also required for validation purposes.

Acknowledgment

A set of preliminary results from this work was presented at the 17th ASCE Engineering Mechanics Conference held at the University of Delaware, Newark, DE, USA, in June 2004.

References

Effect of randomly occurring Stone–Wales defects on mechanical properties of carbon nanotubes using atomistic simulation

[29] Tu Z-c and Ou-Yang Z-c 2002 Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young’s modulus dependent on layer number *Phys. Rev. B* **65** 233407

[54] Yakobson B I 1998 Mechanical relaxation and ‘intramolecularplasticity’ in carbon nanotubes *Appl. Phys. Lett.* **72** 918

[56] Zhao Q, Nardelli M B and Bernholc J 2002 Ultimate strength of carbon nanotubes: a theoretical study *Phys. Rev.* **B** **65** 144105

[63] Lu Q 2005 Influence of randomly occurring defects on mechanical behavior of carbon nanotubes *PhD Thesis* Civil and Environmental Engineering Department, University of Delaware, Newark, DE

[64] Lu Q and Bhattacharya B 2005 The role of atomistic simulations in probing the small-scale aspects of fracture—a case study on a single-walled carbon nanotube *Eng. Fracture Mech.* at press

