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ABSTRACT 

Historically, bridges are evaluated using allowable stress and load factor rating methods.  Load rating 
made in these traditional methods does not correspond to any standard and quantifiable measure of safety 
and the resulting ratings are often quite conservative.  The newly emerging AASHTO load & resistance 
factor rating (LRFR) method can lead to consistent and uniform safety.  But its factors are derived from 
conservative traffic and multiple presence assumptions, and not based on site-specific information 
(although the LRFR manual does discuss the derivation of live load factors based on WIM data).  This 
paper presents a live load probabilistic model based on site-specific data, which allows the elimination of a 
substantial portion of live load effect modeling uncertainty, as well as a substantial portion of structural 
analysis modeling error.  Random occurrence rate of peak loads and Bayesian updating of measurement 
uncertainties are considered.  Gumbel distribution is found to fit the projected maximum live load very 
well.  Sensitivity studies show the projected maximum live load is not sensitive to the threshold strain 
above which events are recorded, as long as the threshold is sufficiently high.  Based on the new live load 
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model, the instrumented bridge is evaluated for specified service period and target reliability.  This 
proposed In-Service Load & Resistance Factor Rating (ISLRFR) method is illustrated using a slab-on-steel 
girder bridge on I-95.  Site-specific bridge response data (peak live load strain) are collected using an 
In-Service Bridge Monitoring System (ISBMS) developed at the Center for Innovative Bridge Engineering 
(CIBrE) at the University of Delaware.   

Keywords: Bridge Rating, LRFR, Reliability, Conditional Probability, In-Service Data 

INTRODUCTION 
Highways play a significant role in the nation’s economy.  Bridges are a very important part 

of the highway system.  As transportation needs increase and the bridges continue to age and 
deteriorate, while maintenance and repair operations are deferred due to limited budgets, more 
and more bridges are classified as structural deficient.  To optimize the allocation of the limited 
fund, methods for accurately assessing a bridge’s true load carrying capacity are needed.   

There are three existing rating methods: Allowable Stress Rating method (noted ASR in the 
following), Load Factor Rating method (noted LFR in the following), and Load & Resistance 
Factor Rating method (LRFR).  ASR and LFR methods do not correspond to standard and 
quantifiable measure of safety.  Reliability analysis shows that the steel girders, reinforced 
concrete T beams, and prestressed concrete girders designed by AASHTO (1992) show 
considerable variation in the reliability indexes (Nowak et al., 2000).  The safety criteria in 
LRFR are consistent and uniform.  But the load and resistance factors are derived from 
conservative truck traffic and multiple presence assumptions.   

Also, bridge rating is different from bridge design.  When bridges are designed, the behavior 
of the as-built bridge, as well as the nature of the site-specific traffic, can only be estimated.  
Bridge design is by necessity conservative, and many secondary sources of stiffness and strength 
are either neglected in design, or are too difficult to compute.  When load rating a bridge, 
however, the best model is the bridge itself.  Existing rating methods use simple analytical 
models and deterministic parameters.  The model parameters come from original design 
specifications, and in some cases input from visual inspections.  Not surprisingly, these 
parameters are often conservative.  The actual performance of many bridges is better than 
theory predicts due to better load distribution, unintended composite action, unintended 
continuity, participation of secondary members, etc.  When a structure's computed theoretical 
safe service live load capacity is less than desirable, it may be beneficial to take advantage of 
some of the bridge's inherent extra capacity if it is available.   

In theory, to accurately rate a bridge, we need to take into account two things:  one is a good 
bridge analysis model, the other is the site specific truck traffic.  It is time-consuming and 
expensive to get the necessary information.  The existing methods (ASR, LFR, LRFR) can 
hardly take both into account.  A load test can result in a good bridge analysis model, but it has 
nothing to do with the truck traffic.  WIM data can result in a good truck traffic model, but it is 
irrelevant to the bridge model.  Therefore a new method – In-Service Load & Resistance Factor 
Rating (ISLRFR) will be proposed in this paper.  It can lead to more accurate bridge rating.   

PROPOSED LIVE LOAD MODEL 
In-Service Bridge Monitoring System (ISBMS) is used to collect the in-service bridge 

response data.  This system is developed at the Center for Innovative Bridge Engineering 
(CIBrE) at the University of Delaware.  Detail information is shown in the work by Holloway 
(1999).  Bridge 1-791 on I-95 is used to illustrate the proposed method.  This bridge is a 
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3-span continuous, slab-and-steel-girder that consists of 2 traffic lanes and one breakdown lane 
and carries a large amount of traffic between Philadelphia, PA and Wilmington, DE.  It was 
designed with the approach spans being non-composite and the center span being composite.  
Figure 1 shows the bridge in plan view.  It is oriented at a slight 8-degree skew.  The span 
lengths of the approach spans are identical at 35' and the span length of the center is 58' (Reid, 
1996).   

 

FIG. 1. Plan view of bridge 1-791 (Courtesy of Holloway) 

 
From the collected in-service data, it is found that girder G3 controls.  Its collected 

in-service data is shown in Figure 2.  Only the strains above the threshold 85µε are recorded.  
In 11 days, 533 peak strains are collected.   

 

 

FIG. 2. Peak live load strain from G3 in bridge 1-791 

 
Next, Peaks Over Threshold (POT) method is used to check the extreme value distribution 

corresponding to the collected peak strains.  The expression for the Generalized Pareto 
Distribution (GPD) is:  

 G(y) = Prob [Y≤y] = 1- {[1+(cy/a)]-1/c}, a > 0, [1+(cy/a)] > 0 (1) 
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Equation 1 can be used to represent the conditional cumulative distribution of the excess Y = 
X - u of the variate X over the threshold u, given X > u for u sufficiently large.  The cases c > 0, 
c = 0, and c < 0 correspond (respectively) to Frechet (type II extreme value), Gumbel (type I 
extreme value), and Weibull (type III extreme largest values) distributions (Pickands, 1975, 
Castillo, 1988).   

The de Haan estimation method (de Haan, 1994) for the estimate of c and a is shown in 
Equations (2) - (4).  Let the number of data above the threshold be denoted by k, so that the 
threshold u represents the (k+1)th highest data points.  The highest, second, …, kth, (k+1)th 
highest variates are denoted by Xn,n, Xn-1,n, Xn-(k+1),n, Xn-k,n ≡ u, respectively.  Compute the 
quantities 
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where, 0,1;0,1 11 ≤−=≥= ccc ��� ρρ .  The calculated c�  is shown in Figure 3.   
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FIG. 3. Estimated c�  at different thresholds FIG. 4. Normal fit for random 
occurrence rate 

 
It can be seen that c�  varies around 0, showing the peak live load is most likely Gumbel 

distributed.  Next a different method will be used to verify the results of POT analysis and to 
estimate the distribution parameters.   

To continue our analysis, we have the following assumptions: 
• The occurrence rate Λ of the collected peak strains is a random variable.   
• For a fixed value of Λ, the point process N(t) is a Poisson process. 
• The peak strains are identically distributed and statistically independent of each other with 
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CDF FL(�). 
The � and FL are not precisely known and can be estimated from the in-service data.  The 

CDF of the maximum peak strain during an interval of length t can be obtained from Equation 
(5) – (6).   
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It is found from probability fitting (Fig. 4) that for 1 day Λ
�

 is normal distributed with mean 
48.5 and COV 59%.  And )(lFL

�
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(Bhattacharya, 2004).  Monte-Carlo simulation is used to solve the Equation (5).   

Gumbel and Frechet probability fittings are shown in Figure 5.  Weibull distribution is 
limited at the right side.  So it is not a good candidate.  Obviously Gumbel distribution fits the 
data points very well.  From Figure 5(a), we can also get the distribution parameters 
u=3.284/0.0201=163.4, α=0.0201 for 1 day.  The projected live load for 2-year is shown in 
Table 2.   

 

  

FIG. 5.   (a) Gumbel probability fitting (b) Frechet probability fitting 

 
The choice of the nominal live load is arbitrary.  However, we need to choose the nominal 

live load in a manner that is acceptable to the bridge community.  The choice of the predicted 
two-year return period load effect, L2yr seems most reasonable in this regard.  By definition L2yr 
is exceeded on an average once every two years (the usual inspection interval) and is equal to the 
median annual maximum.  It is also very close to 1-year mean live load.  The 1-year median 
value is 475.7 µε.   

There is a key assumption in the above calculations.  The collected peak strains are assumed 
to be an iid (independent and identically distributed) sample.  Three tests (Turning Point Test, 
Difference-Sign Test and Rank Correlation Test) are performed to investigate this assumption.  
These three tests are briefly described in Appendix.  The results are shown in Table 2, which 
clearly shows this iid assumption cannot be rejected at 95% confidence levels.   
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Table 2  Non-Parametric Tests for Independence 

Sample n=533(511) X µ σ |X-µ|/σ 
Turning Point Test 353 339.3 9.5 1.44 

Difference Sign Test 252 255 6.5 0.46 
Rank correlation Test 63307 65152 5784 0.32 

95% Confidence Limit Φ1-0.05/2=1.96 
 

RATING FACTOR FOR THE INSTRUMENTED BRIDGE 
If we neglect the deterioration during inspection period, the limit state equation will be: 

g(t) = R – D - L(t) (7) 
where, R = the bridge resistance, D = the dead load and L(t) = the maximum live load during 
inspection period t.  The bridge rating equation is:  

nL

nDn

L
DR

RF
γ

γφ −=  
 

(8) 

where, φ = resistance factor, γD= dead load factor, γL= live load factor, Rn=nominal resistance, 
Dn= nominal dead load and Ln=nominal live load with impact.   

Since we do not have test data on the resistance and dead load for this instrumented bridge, 
the statistical parameter assumed in the LRFD codes calibration (NCHRP 454, 2001) will be used 
in the following calculation.  Strain instead of truck weights or moment is collected.  So strain 
will be used to evaluate this bridge.   

The steel grade of bridge 1-791 is A36.  Its yield strain is 1241 µε.  To take into account the 
extra capacity after the yield, the ultimate nominal resistance (εu) is taken as the yield strain (εy) 
multiplied by the ratio of inelastic moment (Minelastic) and yield moment (Myield), shown in 
Equation 9.  Minelastic and Myield can be calculated based on the codes. 

εu=Minelastic/Myieldεy (9) 
The statistical parameters of bridge 1-791 are shown in Table 3.   
 

TABLE 3. Statistical Parameters Bridge 1-791 

Items Bias COV Nominal Value (µε)  Distribution 
Resistance R 1.12 10% 1.16×1241=1440 Lognormal 
Dead Load D 1.03 8% 96 Normal 

Live Load (2-yr) L 1.09 12.3% 475.7 Gumbel 
MU/My=936/807=1.16  εy=36/29000=1241 µε   
 
Next, we will set the target reliability β.  Ideally, the selection of target β should be an 

economic issue that reflects both the cost of increasing the safety margins and the costs 
associated with component failures.  But the target β in current LRFD bridge design codes and 
LRFR manual are based on past performance experience and engineering judgment.  The 
implied target β 3.5 and 2.5 in LRFD design codes and LRFR manual are calculated based on the 
assumption that live load is normal distributed.  When the live load distribution is changed, the 
target β should be recalculated.  This is a tremendous work.  Unfortunately, we do not have the 
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time and resource to do that.  Some analysis (Li, 2004) shows when the live load distribution is 
changed from Normal to Gumbel while maintaining the bias and COV, the calculated target β 
will go down.  To avoid confusion and to be simple, the target β is conservatively set as 2.5 in 
the following calculation.   

Using Rackwitz-Fiessler procedure (1978) for FORM, it can be found that to reach reliability 
index 2.5 for 2-year flexural limit state of bridge 1-791, the required mean resistance 'Rµ = 
907.8 µε.  If the girder’s actual resistance is higher than this required resistance, this girder is 
safe.  Otherwise it is unsafe.  At the same time, the design point is found to be, r* = 790.1 µε, 
d* = 100 µε, *l  = 690.2 µε (Nowak et al., 2000).  The corresponding load and resistance 
factors for 2-year inspection period based on bridge 1-791 in-service data are following.   
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CONCLUSIONS 
Based on the site-specific bridge response data, the extreme live load distribution is found to 

be Gumbel.  The use of site-specific bridge response data (strain) allows us to eliminate a 
substantial portion of live load modeling uncertainty (i.e., site to site variation, dynamic impact 
uncertainty), as well as a substantial portion of bridge analysis modeling error (i.e., transverse 
distribution uncertainty).  So we can more accurately evaluate our bridges, and provide a 
uniform level of safety.   
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APPENDIX 
A sequence of observations, 1 2, ,..., ny y y , is said to have a Turning Point at i, 1 < i < n ,  if (i) 

1i iy y− <  and 1i iy y +> , or (ii) 1i iy y− >  and 1i iy y +<  .   If  the data constitute an iid sample, 
then the probability of yi , 1 < i < n ,  being a turing point is 2/3.  It can be shown that, T, the 
random number of turning points in an iid sample approaches the Normal distribution with mean, 
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µ = 2(n − 2)/3, and variance, 2 (16 29) / 90nσ = − .  Hence the null hypothesis that the sample is 

iid can be rejected at significance α if ( )/ 1 / 2t µ σ αΦ − > − , where Φ is the Normal 

distribution function and t is the observed number of turning points. 
The Difference-Sign Test counts the number of points at which the above series has an 

increment, i.e.,   1i iy y +< , i = 2, …, n. It can be shown that, S, the random number of points 
with a positive increment in an iid sample approaches the Normal distribution with mean, µ = (n 
− 1)/2, and variance, 2  ( 1) /12nσ = + .  The null hypothesis that the sample is iid can be 
evaluated in the same way as above.  

The Rank Correlation Test counts the number, P, of pairs (i, j),  j > i, such that yj > yi.  
There are n(n-1)/2 pairs (i, j) for which  j > i.  If the sequence 1 2, ,..., ny y y  is iid then the 
probability of {yj > yi} is ½.  It can be shown that P approaches the Normal distribution with 
mean n(n − 1)/4 and variance n(n − 1)(2n+5)/8.  The null hypothesis that the sample is iid can 
be evaluated in the same way as above.  

In each of the above three tests, if there are consecutive values in the sample that are identical, 
then they should be merged and considered as only one sample point.  These tests are described 
in the book: Brockwell and Davis (1991). 
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