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ABSTRACT 

Eigenstructure assignment (ESA) based model updating is a control based technique for systematic calibration 

of finite element models using measured response from real structure. Application of this technique in physical 

space restricts simultaneous updating of stiffness and damping matrices of any mechanical system. On the other 

hand ESA when used in state space domain demands state space eigenstructure to be identified which is a 

challenging job. It is not certain that the identified state space eigenstructure will be in the same order and 

orientation as desired by the ESA algorithm. In this paper we used Duncan form of state space model of the 

mechanical system so that assignable eigenstructure in this form can be easily constructed using modal 

properties of the system in its physical space and thus problems regarding orientation is avoided. To achieve 

compatibility between assignable state space eigenstructure and state space model the later has been reduced 

using structural equivalent reduction expansion program (SEREP). Assignable eigenstructure is then used along 

with ESA algorithm given by B.C. Moore to update the reduced primary model of the mechanical system to 

simultaneously update the stiffness and damping matrices. Proposed algorithm is tested on a Plate modeled 

using Mindlin-Reissner plate element and updated model demonstrated a good agreement with the desired 

result. 

Keywords:  Finite element model updating, Subspace identification, Eigenstructure assignment. 

1. INTRODUCTION 

Finite element models of real life structures fail to replicate the reality owing to Improper 

modeling approach and assumptions towards boundary condition, parameter values and 

model order. Systematic calibration of the primitive model is therefore required before using 

it as a reliable predictor model.  This can be achieved by combined use of system 

identification and model updating. System identification which mostly considers the real 

system as a black box, tries to identify important characteristic features (modal properties, 

nonlinearity etc.) of the real system through which the system can be interpreted. This is done 

by constructing parametric or nonparametric models using little analytical sense. Thus 

resulting model may or may not be physically understandable. Model updating take this effort 

one step further by using these characteristic features to alter a primary model constructed 

taking physics of the system into consideration. Updated model therefore retains the physical 
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significance while its response conforms to that of the real system. Finite element model 

updating therefore can be found as an interesting field of research especially in the fields of 

structural health monitoring for the past few decades. Existing methods for finite element 

model updating are mostly vibration based where modal properties which are basically 

physical space eigenstructure are used to update a model. Different optimization algorithms 

ranging from gradient or hessian based, sensitivity based, perturbation based to nature 

mimicking types (GA, PSO, Hybrid techniques) are tried by different researchers in this 

endeavor. Apart from the regular requirement of matching the modal properties of the FE 

model with the identified structure, conditions to qualify as a good FE model updating 

technique include ability to retain the exploitable properties (positive, symmetric, banded, 

and sparsity) of stiffness and mass matrix. Unfortunately most of the existing techniques 

suffer from problems regarding fulfillment of the second condition. Besides some follow 

sequential updating technique (first stiffness then mass or vice versa) and most don’t give 

much attention to update damping matrix. Besides these optimization algorithm has their own 

drawbacks including improper convergence, multiple possible solutions and computational 

expense.  

Control theory based eigenstructure assignment is on the other hand is a good approach to 

update any finite element model updating.  In this method desired eigenstructures (modal 

parameters) are embedded in to the system model so that updated model has the same 

eigenstructure as desired by the designer. Eigenvalue assignment or pole placement has 

always been an interesting field of research for control engineers. Generally pole placement 

techniques are used to control a system with minimum control effort possible. There are 

several pole placement techniques exist in literature. Arbitrary assignment of eigenvalues for 

a closed loop system has been discussed by Wonham [2]. B. C. Moore [3] was the first 

person to identify the flexibility offered by state feedback in multivariable systems beyond 

closed loop eigenvalue assignment. He further demonstrated in his paper that a specific 

number of elements of each eigenvector of a closed loop MIMO system can be freely 

assigned. Kautsky, et. al. [4], Srinathkumar [5] discussed robust pole assignment technique in 

linear time invariant system. Several other researchers (Sobel et. al. [6]) also developed 

algorithm to place eigenstructure for closed loop system.  

Eigenstructure assignment for model updating is however relatively new field. Generally 

vibration data and modal properties have been used for model updating in most of the 
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literature [7]. Quadratic Partial Eigenvalue Assignment and Partial Eigenstructure 

Assignment technique to update models are discussed by Datta [8]. J. Carvalho [9] showed 

how state estimates can be used to update an FE model using optimization techniques.  

However, symmetry and other exploitable properties of updated stiffness and damping matrix 

have always been a major concern. Several optimization techniques are used with different 

metaheuristics in different literature to maintain these properties 

ESA for model updating thus has been extensively used in both physical and state space 

domain for aerospace and vehicular motion control where the objective has been to control 

the path of a moving body with minimum control effort possible. However these types of 

problems do not have any special kinds of structure while state space model owns a very 

specific structure which can be exploited to gain lots of other information about the health of 

the system. Thus use of ESA in motion control problems is characteristically different from 

the use in case of FEM updating. Use of ESA based FEM updating is although exists in the 

literature. However most of the work that has been performed in this effort is cast in physical 

space domain while state space domain offers a greater flexibility of simultaneous updating 

of stiffness and damping matrices rendering the updating method to be more practical. But 

updating a state space model of a mechanical system maintaining its basic exploitable 

structure has its own challenges. First of all this demands that the eigenstructure in state space 

domain needs to be identified from the real structure in proper order and orientation 

compatible with the primary model which is supposed to be updated. However it may happen 

that identified state matrix can be rotated by a transposition matrix and it is not certain that 

the identified state matrix will be in the same orientation as the system model. Being 

coordinate independent eigenvalues can be identified easily, but problem arises while 

identifying eigenvectors in assignable orientation. In order to avoid this problem a different 

form of state space modeling namely Duncan form, has been adopted in this paper. 

Eigenstructure of state matrix in Duncan form of state space model has clear relation with 

modal properties of the system in its physical space. Therefore instead of identifying state 

space eigenstructure, modal properties of the system have been identified. Using these modal 

properties desired eigenstructure for Duncan form of state space model has been 

reconstructed. This eigenstructure is then used as the desired eigenstructure to update the 

system state matrix using ESA method.  
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2. THORY 

2.1 Discrete time stochastic subspace identification  

As proposed damage identification technique is finite element model updating based it starts 

with an identification step to extract the modal parameters of the system from its response. 

State space modeling is good approach to identify the system in this regard. Any n order 

differential equation of a system can be defined as 2n number of coupled first order equation, 

termed as state space form of the system. Considering a mechanical system in continuous 

time of mass M, stiffness K and damping D, state transposition matrix Ac, vector xt  and 

output matrix  Cc can be defined as: 
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Where    t a t v t d ty C q C q C q   
 
is the output vector and ,  ,  a v dC C C   are the output matrix for 

acceleration tq , velocity tq  and displacement tq   in continuous time respectively. Using these 

terms system model in continuous time can be expressed as: 
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The model structure is considered here to be a stochastic with unknown input. wt and vt are 

process noise and measurement noise respectively. Discrete time stochastic subspace 

identification algorithm given by Vanoverschee & Demoor [10] has been used to identify this 

continuous system using sampling.  This is a non-iterative approach of state space modeling. 

The discrete time state space model of the system can be written in state space form as: 

                                               
( 1) ( ) ( )
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x k Ax k w k

y k Cx k v k

  

                                                               3

 

Where A is state transposition matrix, C is output matrix relating state vector to output, x(k) is 

the discrete time state vector at k
th

 time instant, y(k) is output vector or measurement terms. 

Using Kalman’s [11] forward innovation technique the same system is described as: 
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Where ( )e k  is the innovation vector and Kg is called Kalman gain matrix. Using stochastic 

subspace identification algorithm given by Vanoverschee and Demoore state transposition 

matrix A, output matrix C and gain matrix Kg can be easily identified using output signal. 

Here we used output or measurement vector Y(k) which is the time history of acceleration 

response obtained from sensors placed at appropriate location of the structure. Identified 

system is then transformed in to continuous system using zero-order-hold technique yielding 

new set of state and output matrices in continuous domain. Post multiplying eigenvector of 

this new state matrix in with output matrix yields array of mode shape coordinates of the 

system in physical space in the predefined sensor locations. Eigenvalues however, being 

insensitive towards orientation of the state matrix, can be identified easily from the state 

matrix. These identified physical space eigenstructure is then used to construct eigenstructure 

for the Duncan form of state space model described in the following section. 

2.2 Duncan form 

Duncan form was first given by Duncan in his paper [12] In this state space form the 

dynamics of the continuous system is described by the following equations: 

                                                  ( )  ( ) ( )R x t K x t F t 
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M, K, D are the system mass, stiffness and damping matrices. To obtain the homogeneous 

solution of this first order system we assume a solution of this form: 

                                                              ( ) tx t e 
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Which gives a solution in the form:     [0]R K    . This equation is manipulated as an 

eigenvalue problem of a matrix term U as: 
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 and eigenvectors of this problem can be described using 

eigenvector of the system in its physical space as: 
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Where  n  is the eigenvector in the physical space i.e. eigenvector of the quadratic pencil: 
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In connection to the previous section it can be shown that eigenvectors of system described in 

Duncan form of state space i.e. n  can easily be constructed in its desired orientation using 

eigenstructure of the system in its physical space i.e. n  and 
n  which are actually mode 

shapes and natural frequencies. This approach has been tried in this paper. The eigenstructure 

in physical space identified using subspace identification algorithm described in previous 

section is used to construct desired eigenstructure for Duncan form. After updating is 

performed stiffness, mass and damping matrices are again extracted from the updated state 

matrix using following equation. However, one has to consider one of these matrices to be 

standard and unchanged even after updating. Mass matrix being most reliable in this regard 

has been considered to be standard in most other literatures dealing with these kind of 

simultaneous updating situation. We here adopt that same strategy to extract the other two 

system matrices using following equations:  
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2.3 Eigenstructure assignment 

Eigenstructure assignment is a control based technique to properly place desired 

eigenstructure in to a system. Transient response of a system is a function of its 

eigenstructure and to alter the system’s transient response eigenstructure has to be altered. 

ESA uses feedback to calculate a controller or gain matrix to update the eigenstructure of the 

system. Consider dynamics of a system has been described as: 
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Where x(k) is the state vector at k
th 

instant, A is state transposition matrix, B is input matrix, 

u(k) is input vector, C is output matrix and y(k) is measured output vector. If a input sequence 

is selected in a such a way that ( ) ( )cu k K x k  ; then equation can be rewritten as: 

 ( 1) ( ) ( )cx k Ax k BK x k    

Which then can be manipulated as:  

 ( 1) ( ) ( ) ( )cx k A BK x k A x k     

This yields altogether a new system with transposition matrix Awhich has the same 

eigenstructure as desired by the designer. This is termed as full state feedback where every 

state has been used. We here used algorithm given by B.C Moore [3] to assign desired 

eigenstructure in to the primary state matrix to update it in such a way that eigenstructure of 

the updated state matrix coincides with desired eigenstructure. The algorithm is described 

below. 

Algorithm: 

1. Define [ ]S I A B    and partition its basis vector as:  R N M    so that 

N has the same order as A, where   is desired eigenvalue. 

2. Define dynamics with desired eigenstructure [ , ]i iv  with an gain matrix cK as:  

 ( )c i i iA BK v Iv   

3. Compare these two equations:  

    0  and  0
i

i

i

i i

c i

N v
I A B I A B

K vM





 
    

      
   

 
This comparison signifies that 

i
N and 

iv spans the same vector space whereas 
i

M  and 

c iK v spans another vector space. 

3. Calculate iz  that relates two vector spaces of 
i

N and iv ;  and also vector spaces of  
i

M  

and c iK v using this equation as: †

ii iz N v  where † symbolizes Moore-Penrose pseudo 

inverse. 

4. Calculate gain matrix as: 1

c i iK M z v

   

5. Update the state matrix as: ( )cA A BK    
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In this method we virtually use an array of input vector which stabilizes the system (in this 

case match systems eigenstructure to the desired one). We here used an arbitrary B matrix 

which only ensures that  ( )iRank I A B n   . Using this B matrix we follow the algorithm 

given by B. Moore to obtain a gain matrix 
cK  which updates the state matrix A to match its 

eigenstructure to the desired values. 

 

3. FINITE ELEMENT MODEL UPDATING 

To update the primary model firstly assignable eigenstructure needs to be identified from the 

response history of the real structure. This is done by state space identification of the real 

system using subspace identification algorithm as described in the previous section. Identified 

system state matrix and output matrix (A and C) is the converted into continuous time domain 

by using Zero order hold technique. Modal parameters are the extracted from these two 

matrices using following equations:  

                                
     { ; }

     

n n

n n

Eigenstructue of A in state space

Eigenvector in physical space C





 

 
                                    13 

Thereafter using equation (9) assignable eigenstructure for the Duncan form of state space 

model is reconstructed. Primary FE model of the system is then reduced down to only 

measured degrees of freedom using Structural equivalent reduction expansion program 

(SEREP) algorithm to fulfill the order criteria of the assignable eigenstructure. ESA is then 

applied on the Duncan form of state space model constructed using reduced order system 

matrices. Updated stiffness and damping matrices are the identified using equation (11). 

4. NUMERICAL VALIDATION 

To validate the proposed method a numerical experiments have been performed on an 

aluminum plate. A finite element model of the plate is prepared with assumed parameter 

value listed in Table 1. This has been considered as the real system for which acceleration 

response history is simulated using Newmark-beta method with a sampling frequency 

500Hz. To demonstrate the noise sensitivity of the proposed method numerically obtained 

time signal has been contaminated using 10% noise. The plate is excited with a white 

noise sequence of zero mean and unit standard deviation to replicate ambient vibration 

excitation condition which is obvious in large size structural system identification. 

Simulated time history signal is then put through the stochastic subspace algorithm to 

obtain eigenstructure of identified state matrix. In this process we developed state space 
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model of different order and then using some human intervention based on practical 

constraints on the identified eigenvalues (e.g. practical value of damping i.e. negative and 

less than 20%, removing unstable eigenvalues) we collected only feasible eigenstructure 

of the identified state matrix. In the next step the eigenvalues of the identified state matrix 

and eigenvector of the system in physical space is extracted using equation (13). Desired 

eigenstructure for the Duncan form of state space model is then constructed from 

outcome of the last step using equation (9). A primary FE model is also prepared with a 

set of assumed elasticity values different from the original one and this model is 

considered as primary model (listed in table 1). The identified physical space eigenvector 

is having the same order as of the number of sensor points and its coordinate corresponds 

only to vertical degrees of freedom (DOF) (considering structure has been instrumented 

with accelerometer for vertical movement only). For that reason undamaged FE model of 

the system is reduced to the specified degrees of freedom by using SEREP algorithm so 

that identified eigenstructure can be used to update the undamaged model. Using this 

reduced stiffness, mass and damping matrices Duncan form representation for undamaged 

state of the system is constructed and updated using ESA method. Using equation (11) 

updated stiffness matrix are then extracted and compared with the initial stiffness matrix 

of the system. Figure 1lists the initial, target and updated frequencies of the finite element 

model which demonstrates very close conformation with the desired result. Figure 2 

shows the MAC values for first five modes is very close to the desired value of 1. Thus 

we can conclude that the updated model is representing the real system better than the 

initial model.  

Table 1: Assumed material properties for FE model 

Structure Aluminum plate 

Elasticity 63 GPa 

Poisson’s ratio 0.334 

Dimension 0.25 m x 0.45m x 0.006 m 

Density 2796.9 Kg/m
3 

Element Mindlin-Reissner Plate element 

Boundary condition Cantilever (Clamped-free-free-

free) 

Total elements 5x5=25 

Assumed elasticity 70% of original i.e. 44.1 GPa 
 

5. CONCLUSION 

In this paper we tried using ESA based finite element model updating technique to update a 

primary model of a Mindlin-Reissner plate. We also envisaged robustness of the proposed 
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method under presence of noise which enhances its applicability in the real field scenario. 

While existing methods uses gradient or hessian based or evolutionary algorithm based 

optimization technique to update FE models which are iterative in nature and most often 

leads to wrong result, proposed method is non-iterative in nature which updates the primary 

model in state space domain to embed desired state space eigenstructure in the updated FEM. 

 

Table 2: Comparison of natural frequencies between initial, target and updated FE models for 

first five modes 

Modes Target FE 

model 

Initial FE 

model 

Updated FE 

model First Mode 23.67 19.80 23.43 

Second Mode 90.52 75.73 89.52 

Third mode 161.43 135.07 159.72 

Fourth mode 319.43 267.26 316.03 

Fifth mode 516.99 432.54 518.76 

 

 

Figure 1: Frequency response function of initial, actual or target and updated FE 

models 

 

Unlike other optimization based FEM updating technique this method uses linear algebra 

application to have a computationally inexpensive solution of the said problem. Because of 

its non-iterative nature and less computation requirement this method is also justified to be 

taken up as an online damage identification technique.  In this paper we employed the 

proposed method in a Mindlin-Reissner Plate and for practicality white noise excitation has 

been used to simulate ambient vibration condition. Numerical experiments show that 

proposed method is capable of capturing damage features even in the presence of up to 10% 
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noise sufficiently. This same is also testified from numerical experimentation and results are 

satisfactorily close to actual scenario. The goodness of the method lies in the fact that it uses 

human intervention during state space identification of the damaged structure to separate real 

physical roots from the non-physical roots through the use of stabilization plots. These non-

physical roots are attributed to either computational outcome or presence of noise in the 

signal. Removing these non-physical roots by human intervention leads to removal of noise 

influence as well as making the job of working with noisy signals less complicated. Thus this 

method combines linear algebra application to have a non-iterative solution along with 

human decision which makes the method more practical to be used as damage identification 

for real life structure. 

 

 

Figure 2: MAC value for first five modes 
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