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ABSTRACT 

Modern day structural health monitoring involves prediction of structural health for possible future load cases 

for which structure may behave nonlinearly and thus rendering its simplistic linear predictor model obsolete. 

Among the existing nonlinear material models Bouc-Wen hysteresis model drew most of the attention in recent 

past due to its wide applicability for different material hysteresis types and ease of implementation. The 

accuracy of the response predicted by this model entirely depends on how correctly the model parameters have 

been selected. However due to the inherent nonlinearity and complexity in the model existing parameter 

identification algorithms are not always certain to produce exact parameter values using limited computational 

resources. In this article we demonstrate a new technique based on Extended Kalman filtering with adaptive 

selection of state and measurement covariance matrix to identify parameters of the nonlinear material model 

with the objective to reduce computational expense. Identification is performed using two different methods: 

first, in the “iterative” approach, in each iteration step the nonlinear model with estimated parameter is 

simulated and response is considered to be erroneous measurement which needs to be filtered, whereas, in the 

second (“sequential”) approach, at each time step current estimate of parameter is used to simulate the model to 

predict response for next time step and subsequently filtering is performed in real time and parameters are 

updated at each time step i.e. online. Pros and cons for both these methods are discussed and a conclusive 

suggestion has been given based on its field of applicability. 
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1. INTRODUCTION 

Research in structural health monitoring includes predicting the response of existing 

structures subjected to loading beyond their prescribed design limit. This prior capacity 

estimate helps to take decision whether the service life of existing and sometimes aging 

structures can further be prolonged under changed loading scenario without compromising 

required safety and serviceability restrictions. However, this additional load can cause 

nonlinear behavior in the structure for which response cannot be predicted by a simple linear 

model.  In order to have a reliable nonlinear model researchers rely on nonlinear hysteretic 

material models and of them Bouc-Wen model is most accepted in recent research. The ease 
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of implementation and broadband applicability on different material types helped Bouc-Wen 

model to be acknowledged as one of the most reliable approach to model hysteresis. The 

precision of this type of material model however depends entirely on the exactness of the 

model parameters which needs to be perfectly calibrated to obtain an accurate nonlinear 

predictor model. This problem of finding accurate model parameters can therefore be 

formulated as inverse problem where system parameters are identified using measured 

responses of an existing system. Gradient or Hessian based optimization or finding a global 

solution using evolutionary algorithms can be found as common approaches to solve these 

inverse problems. However because of the inherent nonlinearity within the system 

performance of gradient or hessian is not always certain. Although evolutionary algorithms 

are good approach to find global optimal solution for nonlinear problems, due to their 

demand for large number of model simulations they become impractical for complex 

expensive models owing to cost constraints. In this paper we have used filtering techniques to 

identify the parameters efficiently with an objective to keep model simulations as minimum 

as possible, in order to develop a computationally inexpensive parameter identification 

algorithm. Before going into details of the proposed algorithm, the nonlinear Bouc-Wen 

hysteretic model whose parameters are to be identified through its parameters is discussed in 

the next section. 

2. THE BOUC-WEN NONLINEAR HYSTERETIC MODEL 

The Bouc-Wen hysteretic material model was first introduced by Bouc [1, 2] and later 

developed by Wen [3]. This model is used extensively in charecterising magneto-rheological 

(MR) dampers found in vehicular vibration suppression systems because of its ability in 

reproducing hysteresis shapes [4, 5]. Apart from this there is proof in existing asserting 

capability in predicting hysteretic behavior of different materials. The governing differential 

equation of a nonlinear dynamic system using Bouc-Wen material model is given by: 

                                                          
( ) ( ) ( ) ( )mx t cx t F t u t   
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where, m is the mass of the system, c is the linear viscous damping parameter, u(t) is the 

external forcing on the system and F(t) is the nonlinear restoring force which is further 

described as: 

                                                          
( ) ( ) (1 ) ( )i iF t k x t k z t   
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α  is the ratio of post yield to the pre yield stiffness i.e. α  =kf / ki  where kf is post yield 

stiffness and ki is initial linear stiffness which can be obtained by dividing the yield force by 
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the yield displacement. z(t) is the hysteretic displacement which can be obtained as solution 

of the following equation: 

                                               

1
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From the above discussion we can identify that there are five principal model parameters 

defining a nonlinear hysteretic system completely which are A, α, β, γ, n. Of them α is termed 

as the rigidity ratio and takes a value in the range 0≤ α≤1. The values at the boundaries i.e. 0 

and 1 signify the material behavior to be completely nonlinear or completely linear 

respectively. β, γ are the parameters that define the shape of the hysteretic cycle. n determines 

the order of transition from linear to nonlinear zone and always takes a value greater than 1.  

A is the parameter responsible for amplitude of hysteresis and usually takes a value of 1. The 

same system can be described in state space form as:   
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3. PARAMETER IDENTIFICATION 

In order to predict the response of any hysteretic system through its nonlinear model we have 

to assign appropriate values for all the model parameters. For the case of Bouc-Wen material 

model parameter A is generally considered to be 1 and the other values are identified through 

optimization by minimizing the error in suitable selected objective function. Thus the 

parameter identification problem here is a problem in optimization defined as: 

                                          

minimize ( - ( ))

subjected to  

Y f






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where Θ is the parameter of the nonlinear model. In literature this optimization problem has 

been solved using various algorithms including least square methods, evolutionary algorithms 

[6, 8, 9] or hybrid techniques [7]. But because of the inherent nonlinearity in the system 

gradient or hessian based algorithms are not assured to converge. With the development in 

computation power researchers tried to use evolutionary algorithms to solve these types of 

nonlinear problems. For example Ye and Wang [8] used particle swarm optimization 

algorithm to solve for the model parameters, while Zhang and Huang [9] use GA to solve the 

same as an unconstrained optimization problem. However, no algorithm has emerged till date 

which can ensure finding the global minimum. Another problem related to evolutionary 

algorithm is its computational expense which restricts their use for complicated and 
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expensive models, efficiently. Among other approaches application of filtering techniques 

e.g. extended Kalman filtering [10, 11], unscented filtering or particle filtering to identify 

model parameters has also been explored. In these approaches the parameters have been 

appended as additional time invariant states which were then identified online along with 

response quantities.  

In this study we use the same first order extended Kalman filter (EKF) to address the problem 

of parameter identification. To handle the nonlinearity in process and measurement equations 

The EKF uses the Taylor series expansion upto first order to locally linearize the nonlinear 

equations. Details of these filtering techniques can be found in much celebrated articles of 

Julier and Uhlman [11] and Welch and Bishop [12]. In this study unlike existing filtering 

based techniques we defined the process equation as the time evolution of the model 

parameters only. The states in the process equation therefore are the parameters of the model 

while the measurement equation deals with the mismatch between measured response and the 

estimated response. The process and measurement equations of the system therefore can be 

defined as:   
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where  εk and vk  are process and measurement noise with covariance matrices Q and R 

respectively. FEM(*) is the nonlinear finite element model which uses Bouc-Wen model to 

describe its material and yobserved is the response measured on the structure. Therefore the 

identification problem is cast as a problem of filtering to obtain an optimum xk for which the 

error is minimum. We here propose two approaches for the solution, namely the iterative and 

the sequential which have been discussed in detail in following sections. 

3.1 Iterative method 

In this method in each iteration measurement equation simulates the nonlinear model for a 

predefined time span and compares the response array for the whole time span with the actual 

observed response. Because of the fact that nonlinear systems are very much sensitive 

towards the initial condition the initial value for the model simulation is taken to be same as 

the initial value of the real response. After calculating the error measure algorithm calculates 

the gain matrix and then returns to the process equation to predict states for the next iteration 

step.  

Algorithm 1: 
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1. Initialize xk which is the parameter estimate at iteration step k. 

2. Go to:  measurement equation  

a. Analyse the nonlinear model for time span 0 to t and obtain y
k
estimate. 

b. Calculate the error measure at k
th

 iteration step i.e. (yactual- y
k
estimate).  

3. Go to: Process equation  

a. Calculate gain. 

b. Predict parameters for next iteration step xk+1 by filtering. 

4. Repeat steps 2 and 3 till tolerance is achieved. 

 

 Thus in iterative algorithm filtering is done in pseudo-time where it has been represented as 

iteration steps. However as it analyses the system for complete duration in each iteration step 

this algorithms is computationally demanding. However the solution with acceptable 

tolerance can be achieved by increasing the number of iterations. 

2.2 Sequential method 

In the sequential approach parameter updating is done in real time. In each time step 

measurement equation simulates the nonlinear model to obtain model predicted response 

value for the next time step only. This response value is then compared with the observed 

response to obtain the error measure. Algorithm then returns to process equation to predict 

states for the next time step. This follows the sequential filtering procedure. 

Algorithm 2: 

1. Initialize xt which is parameter estimate at time instant t . 

2. Go to:  measurement equation  

a. Analyse the nonlinear model to obtain y
t+dt

estimate at time instant (t+dt). 

b. Calculate the error measure (y
t+dt

actual  - y
t+dt

estimate) at time instant (t+dt).  

3. Go to: Process equation  

a. Calculate gain. 

b. Predict parameter estimate xt+dt. 

4. Repeat steps 2 and 3 till time upto which the measurement is available. 

 

The sequential approach is computationally less demanding because of the fact that it doesn’t 

need to run the whole model for the entire time span and updating is performed only when 

new set of response data is available. However, in this algorithm the horizon to reach the 

optimum solution is limited by length of measured time signal and therefore it may or may 

not satisfy tolerance criteria before the signal ends.  

2.3 Adaptive scheme for Q and R 

In this paper performance of both these methods is compared based on their accuracy and 

computational demand. The problems related to both these methods are explored in this 
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endeavor in detail and sample results for a SDOF system are presented. The major short 

coming of these types of methods and possible break through is also discussed in this section. 

In this study the main problem that has been identified for both these methods are speed of 

convergence, required computation time and level of precision. It has been observed that fast 

convergence depends on the proper selection of the state and measurement error covariance 

matrices Q and R respectively. In the filtering techniques generally the process or 

measurement noises are modeled as zero mean gaussian noise sequence with constant 

covariance matrices whereas in the parameter identification problem the measurement noise 

accounts for both modeling (incorrect choice of parameter) and electronic noise in data 

acquisition. Thus covariance of this mismatch should not be represented by a constant entity 

and for the case of parameter identification we are free to choose this value. We can further 

observe that the gain is a function of covariance matrices Q and R and therefore theoretically 

we can actually control the gain if we exploit the freedom of choosing state and measurement 

noise covariances properly. 
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It is evident from the above equation that higher values for Q or lower value for R will force 

larger updating in each step for the parameters but upon reaching near to the actual solution it 

may oscillate around the actual value. On the other hand smaller Q and higher R will cause 

small updating in each step rendering the method to be time taking and computationally 

demanding. It is experienced that at initial phase of updating generally larger updating of 

parameters is needed which should get damped as the parameter values converge towards 

their respective true values. Therefore instead of using constant Q and R value throughout the 

iteration we can actually use an adaptive scheme to define time varying values for Q and R 

which can ensure rapid yet smooth convergence. This is a trivial issue for complex time 

consuming nonlinear FE model updating as rapid along with smooth convergence ensures 

reduced number of required simulations to achieve the optimum solution. The philosophy 

behind the adaptive scheme for Q is that at the initial steps when prior states are less reliable 

we can assume a high value for Q causing high gain but as these states get filtered causing 

decrease in measurement error Q should get decreased as well. This can be achieved by 

defining a time varying scheme for process noise covariance matrix which gets reduced on 

convergence of solution or increases if the solution diverges from the actual value in each 
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consecutive step. Because of the deterministic assumption on the parameter values state 

covariance matrix P holds the information about the variance in error between true and 

estimated states. We therefore can use this information to define an adaptive scheme for Q, 

which forces Q to take a higher value when P is high and as P decreases it forces Q to 

decrease as well. This adaptive scheme is given in the following equation as: 

                                    

1 1

1

1
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( )
  =  and  is assumed process noise.

( )

k k noise

k
noise
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The constant matrix Qnoise accounts for process noise due to other modeling errors which only 

becomes significant when the error associated to parameters diminishes to some lower values 

than Qnoise.  

It is already demonstrated that in this parameter identification problem, measurement 

equation accounts for the combined error due to incorrect parameter values and measurement 

noise. Both these errors act as noise in the measurement equation. Therefore it is quite 

practical to define measurement noise covariance matrix R as an inversely proportional 

function of measurement error itself. Therefore as the error decreases R increases reducing 

gain in each step. The adaptive scheme for R is described below:  

                                                         

4 10log ( )

3min( * , )k noiseR diag e R
   

                                                       9
 

where δ3 and δ4 are scaling parameter defining the increase in the value of R as error 

converges and should be defined taking initial error measure and desired precision level in to 

consideration. The error invariant part of the equation Rnoise describes the true measurement 

noise covariance which will be dominant when error dependent part becomes larger than 

Rnoise allowing the algorithm to incur noise effects as well. A sample damping scheme for R is 

described in Fig. 1 with different values of δ3 and δ4 for which initial error measure is 1000 

and desired precision level is 1×10
-12

. 
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Figure 1: Adaptive scheme for R with different δ3 and δ4 value 

 

This adaptive selection of Q and R helps to obtain rapid convergence and minimizes 

oscillation of the solution around its true value which is a major concern while using a 

constant Q and R value throughout the algorithm. 

3. NUMERICAL EXPERIMENTS 

The proposed methodology is applied on a SDOF system modeled using Bouc-Wen material 

model. The SDOF system is described by a single spring mass damper system with mass M, 

stiffness K and damping C (M=1 Kg; K=3 N/m; C=0.9 N-sec/m). We set parameters A, α, β, 

γ as the parameters which needs to be identified from a measured response data 

corresponding to the actual system. The order of transition n has been selected as 1.4. A 

model made with A=0.5, α=0.4, β=4 and γ=2.1 is firstly considered as actual system which 

needs to be identified using proposed method. This actual system is excited with a forcing 

function defined as F(t)=B sinωt with B=2 N and ω=1. This system is simulated using 

Runge-Kutta 4
th

 order algorithm with a sampling frequency of 100Hz for a time span of 5sec 

for iterative algorithm and 40 sec for sequential algorithm. The response signal is then 

contaminated with 2% noise to better represent field measurement scenario where noise 

contamination is obvious. Iterative and sequential algorithms are then applied on the noisy 

signal with a prior assumption on the parameter as A=1; α =0.8; β =2.2; γ =3. The required 

time to run the nonlinear model for a time span of 5 Sec is estimated to be 1.568×10
-2 

sec, 

whereas time taken to run for single time step is estimated to be 2.384×10
-4

 sec. Table 1 lists 

total time taken by each algorithm (iterative and sequential) with EKF and required iteration 

steps and corresponding time to reach two preset precision point (1×10
-3 

and 1×10
-5

) denoted 

as P1 and P2. The proposed method is also compared with conventional filtering technique 
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using constant covariance matrices and comparison is demonstrated in Fig. 2.  7th column of 

Table 1 lists required run time for model only which calculates how much time the algorithm 

has spared to simulate the model. This data is important in the sense that as the nonlinear 

model becomes complicated and computationally expensive time required to run only the 

model which is denominated in this article as Tmodel increases significantly whereas remaining 

part termed here as Texcess depends only on the order of calculation and therefore does not 

increase in that extent. Thus in order to achieve faster convergence Tmodel should be 

minimized which is the main cause of higher computational demand.  

 

Table 1: Comparison of required computation time between conventional filtering scheme using constant 

covariance matrix and using adaptive scheme for both iterative and sequential approach (ITR=Iterative, 

SEQ=Sequential, EKF=Extended Kalman filter, Const.=Constant covariance, Adapt= Adaptive selection 

of covariance) 

 

Case 

SDOF 

Total 

time 

Iteratio

n to 

reach 

P1 

Time to 

reach P1 

Iteration 

to reach 

P2 

Time to reach 

P2 

Computatio

n time for 

model only 

to reach P2 

ITR-EKF-

Const 
45.3512 132 20.6015 289 45.3512 21.6752 

SEQ-

EKF-

Const 

66.7525 1556 29.9430 
Not 

achieved 

Not 

applicable 

Not 

applicable 

ITR-EKF-

Adapt 
6.3988 29 4.5260 41 6.3988 3.0751 

SEQ-

EKF-

Adapt 

65.8152 458 7.5358 1571 25.8489 1.8066 

 

Figure 2: Comparison based on rate of convergence criteria for parameter identification between 

conventional filtering methods using constant covariance matrix (top) and using the adaptive scheme for 

covariance (bottom). P1 and P2 are the preset precision points. Four lines are due to four parameters α 

(Blue), β (Red), γ (Green) and n (cyan). 
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4. DISCUSSION  

The primary goal of the proposed algorithm has been to achieve rapid yet stable convergence 

in order to maintain minimum requirement for model run. Fig. 2 shows sample convergence 

result where it has been shown that how the proposed algorithm achieves this goal by 

controlling gain in every step through adaptive Q and R. This adaptive scheme helped to 

reduce the oscillation of the solution around its true value which in turn reduced the demand 

for numbers of the model evaluation drastically. With this reduction the convergence is 

achieved much faster than for the cases with constant Q and R matrix.  

From the result listed in Table 1 one can observe that for a simpler SDOF system adaptive 

scheme has reduced the time required to get converged result to a great extent. In both the 

cases (iterative and sequential) adaptive scheme has outperformed conventional filtering that 

uses constant covariance matrix. It can be further noticed that required time for convergence 

is much lesser for iterative algorithm compared to its sequential counterpart. Although upon 

considering the time taken for model run only i.e. TFEM, we obtain a better understanding on 

the efficiency of these proposed algorithms.  The total required time for both these algorithm 

to reach convergence is subdivided in to two parts, i.e., time taken for model run (TFEM) and 

time required for other calculations within the algorithm (TIdentification). The first part depends 

on the computational demand of the model which is bound to increase as the considered 

model becomes more and more complex whereas the remaining part may not increase to the 

same extent with increasing complexity in the model and mostly depends on the number of 

parameters to be identified. This guides us to the conclusion that in order to achieve an 

inexpensive algorithm number of model evaluation should be maintained at its minimum 

possible level. While considering the model run time for both these algorithm we can observe 

that although sequential approach has consumed more time to reach convergence it actually 

ran the model for lesser time than its iterative counterpart. The iterative algorithm 

outperforms for only the reason that TFEM is very small compared to TIdentification for this SDOF 

model. This difference is supposed to be more and more prominent with the increasing time 

demand of the model. 

However, if we consider the precision restriction for both these approach iterative scheme 

offers flexibility to choose the precision level whereas in the case of sequential algorithm 

required signal length has to be increased to obtain this flexibility. In the SDOF problem we 

achieved the required precision with a 5 sec. time span model simulation. Although to 

achieve that precision level the sequential algorithm needed response signal for 20 sec. 
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Therefore, this algorithm is not suitable for the cases when we have limited amount of data 

points. 

In a nutshell, we observe that the adaptive scheme for Q and R helps the algorithm to enhance 

its time efficiency to achieve convergence. Since these methods are computationally 

inexpensive they are capable of handling complex models. Iterative algorithm is found to be 

most suitable for simpler system model with less time demand, whereas for system models 

with large computational cost, sequential algorithm is best suited as it does not require 

simulating the complete system in successive iterations. Furthermore, while the iterative 

algorithm demands availability of the complete signal prior to the commencement of the 

algorithm which restricts its online applications, sequential algorithm uses new sets of 

measurement only when they are available thus can easily be integrated in an online 

parameter identification scheme. Thus iterative algorithm is suitable for simpler model with 

limited length of signal but sequential algorithm holds promise as an efficient online 

identification algorithm. 

5. CONCLUSION 

In the above said method the focus was to update FE models for which system matrices are 

not available. This has been done by updating the parameters which control the response of 

the structure. Proposed Kalman filtering based updating basically considers the FE model as a 

black box which has to be identified using only the output response. As the FE models itself 

are computationally expensive we therefore need a method which requires less numbers of 

evaluation of the model. To obtain better convergence these methods use an adaptive scheme 

for Q and R which ensure smooth and faster convergence of solution. This study also 

compares the pros and cons of sequential and iterative approach and suggests their ideal 

situation for application to parameter identification problem. The iterative approach gives 

more flexibility on the choice of tolerance as the horizon for the algorithm is infinite and 

therefore more accurate than its sequential counterpart as its horizon is limited by the number 

of samples in the time history signal. However sequential approach is computationally less 

expensive because unlike iterative approach it doesn’t have to run the whole system for the 

entire time frame in every iteration step and therefore can be applied for large structures.  
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