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ABSTRACT 
Ergodicity of the dynamics is a prerequisite for obtaining ensemble averaged results from a single time trajectory, 

making it a key requirement for calculating statistical mechanical properties through molecular dynamics 

simulations. Nosé-Hoover chain (NHC) thermostat is a popular way of constraining temperature in molecular 

dynamics simulations. Previously, it was thought that NHC imparts ergodicity to the dynamics, thereby removing 

the deficiencies of several other thermostats. However, very recently, doubt has been casted on the ergodic nature of 

dynamics due to a two-chain NHC thermostat. In this work, we build upon this doubt and show, with the help of a 

single harmonic oscillator, that even after long time duration, the conditional univariate distribution functions of 

position and velocity do not reach a Gaussian distribution in several Poincare sections. The deviations from the 

Gaussian distribution are computed using the symmetric form of Kullback-Leibler divergence, Hellinger distance 

and by analysing the moments. The significant deviation of the conditional univariate distribution functions from a 

Gaussian distribution suggests that the dynamics due to NHC thermostat is non-ergodic although it constrains the 

temperature of the single harmonic oscillator to a desired value in a long time averaged sense. 
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1. INTRODUCTION 

Thermostatting algorithms in molecular dynamics simulations provide us with the means of 

performing ―numerical experiments‖ that have close resemblance to the ―real life experiments‖ 

performed at constant temperature. Constant temperature (global and local) molecular dynamics 

has been used to calculate important transport properties like thermal conductivity [1, 2], 

diffusion constant [3, 4], viscosity [5] etc. for several systems. However, the ability of molecular 

dynamics to accurately evaluate these properties hinge on the ergodic nature of the dynamics [6]. 

In this context, the ergodic hypothesis may be stated as: given sufficiently long time, a single 

time trajectory would explore all the feasible regions of the phase space at a frequency in 

accordance with the theoretical probability distribution [7]. For constant temperature simulations, 

it means that the distribution function of position and velocity must follow the Gibbs distribution, 
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where, x and p represent the position and the velocity of the particles, respectively. H(x,p) is the 

energy of the system,  
1

Bk T


 and Z represents the partition function. A careful look at (1) 

suggests that the ergodic hypothesis may be loosely interpreted as phase-space filling nature of 

the dynamics [8].  

There are several ways of imposing constant temperature in molecular dynamics simulations. 

These methods can be broadly grouped into three categories – velocity rescaling [4, 9-11], 

stochastic thermostats [12-14] and deterministic thermostats [15-22]. The earliest and simplest 

temperature control algorithms involved velocity rescaling, but these algorithms did not allow 

temperature fluctuations [23]. Amongst the three categories, only the deterministic thermostats 

have the appeal of being deterministic, unlike the stochastic thermostats, and are autonomous 

while simultaneously allowing temperature fluctuations.  

Possibly, the best known deterministic thermostatting technique is the Nosé-Hoover (NH) 

thermostat [15, 16] whose equations of motion are: 
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In (2),  .  represents the potential energy of the system. The NH thermostat works by 

controlling the second moment of velocity through the reservoir variable ( ) whose mass is Q. If 

and only if the extended system is ergodic with respect to the invariant measure of the dynamics, 

the NH thermostat generates an ergodically consistent canonical distribution [23, 24]. Thus, only 

if the Gibbs distribution is satisfied, the underlying dynamics is ergodic.  

It is interesting to note that the NH thermostat fails to provide a canonical distribution for a 

system comprising of a few particles, despite maintaining the temperature of the system at a 

desired value [25-30]. Over the years, investigations on lack of ergodicity of NH dynamics have 

been studied with a single harmonic oscillator, possibly because it is difficult to thermalize and 

yet is simple to analyse. For a single harmonic oscillator of unit mass at a desired temperature of 

1 (with Boltzmann constant as unity), (2) may be written as: 
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The phase-space portrait of the dynamics for several initial conditions shows the presence of 

invariant tori, separating the phase-space into invariant regions [31]. Consequently, the resulting 



dynamics fail to satisfy the Gibbs distribution (1). It has been argued that the equations of motion 

(3) lose their ergodic property due to the periodic dynamics of the thermostat variable and the 

presence of conserved quantities that cause the energy of the system to be bounded [29, 32]. The 

problem of nonergodicity is not limited to systems with lesser number of degrees of freedom and 

can manifest in multi-particle systems as well [32]. 

This inherent deficiency of NH thermostat is thought to be resolved by two methods – the kinetic 

moments method, that simultaneously controls of the second and the fourth moments of velocity  

[18] and the Nosé-Hoover chain (NHC) method [17], that controls the fluctuations of the 

thermostat variables. However, very recently doubt has been casted on whether the NHC 

thermostat indeed produces an ergodically consistent dynamics [7]. In this work, we build upon 

the nonergodicity of the NHC thermostatted dynamics by analysing the univariate conditional 

distribution functions of position and velocity for a single harmonic oscillator coupled with a 

two-chain NHC thermostat. Our results support the previous findings and show that the 

univariate conditional distributions have a significant deviation from a Gaussian distribution, and 

hence the dynamics is not ergodic. This paper is organized as follows: in the next section we 

detail the Nosé-Hoover chain thermostat followed by numerical results and conclusions.  

 

2. THE NOSÉ-HOOVER CHAIN THERMOSTAT 

The Nosé-Hoover chain (NHC) thermostat aims to remove the nonergodicity of the NH 

thermostat by additional control of the fluctuations of reservoir variable   through the second 

reservoir variable. The fluctuations of the second reservoir variable can likewise be controlled 

with the third reservoir variable and so on. Hence, a chain of thermostatting variables is formed. 

The equations of motion of a k-chain NHC thermostat ( 1 2, ,..., k   ) coupled to a system 

comprising of N particles can be written as 
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The variable i in (4) is associated with the i
th

 reservoir whose mass is Qi. Empirical rule of 

selecting these thermostat masses is [17, 33]: 2

1 3 /BQ Nk T  and 
2

1 /j BQ Nk T   . The 



frequency,  defines the oscillations of kinetic energy between the system and the reservoirs. 

This rule has many approximations inbuilt into it, and usually, a suitable choice of thermostat 

masses is problem dependent. 

For the case of a single harmonic oscillator, having unit mass and spring constant, the equations 

of motion with two-chains ( and ) at β = 1, may be written as 
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The equilibrium distribution due to NHC, if the ergodic property is satisfied for the extended 

system, can be written as 
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In the past, it has been argued using numerical simulations that the equations of motion (5) is 

ergodically consistent and generates a distribution consistent with the extended Gibbs 

distribution (6). These studies had shown that the marginal velocity (and position) distribution, 

obtained by projecting the dynamics on to a particular position-velocity plane, has a Gaussian 

distribution, with the rationale being  
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However, very recently it has been argued that the projected dynamics is incapable of capturing 

any inherent holes present in the phase space [7]. This is because (7) represents a necessary but 

not a sufficient condition for ergodicity to hold true. To illustrate this, we generated 1 million 

four dimensional (n1-n2-n3-n4) joint standard normal data points, and then forcefully embedded a 

four dimensional hole of radius 0.25 in it. The projected dynamics along with the marginal 

distribution of n1 and n2 are shown in Figure 1. Neither the hole nor any deviations of the 

marginal distributions from a standard normal distribution could be observed. In fact, the first 

three marginal and the joint-moments of any two variables agree well with a standard normal 

distribution. 



 

Figure 1. Inability of the projected dynamics to capture a forcefully embedded 4-dimensional hole of radius 0.25 

within a four dimensional normally distributed data. The projected data is shown in the figure (a). Figures (b) and (c) 

plot the marginal distributions of the variables n1 and n2. It can clearly be observed that these marginal distributions 

conform to a standard normal distribution without any deviation. 

Possibly, a better and more stringent condition on ergodicity involves the conditional bivariate 

distribution of position and velocity, 
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In simpler terms, (8) means that the joint distribution of position and velocity must be jointly 

normal at every Poincaré section. Deviation of (8) from a joint normal distribution at any 

Poincaré section implies that (6) is not valid i.e. the dynamics does not sample canonical 

distribution correctly. Consequently, the dynamics must be nonergodic with holes of nonzero 

measure present in the phase-space. Recently, it has been shown that at several Poincaré sections 

(8) does not hold true [7].   

In this article, we go a step further and analyse the univariate conditional distributions of position 

and velocity at a triple Poincaré section. Our method is based on the argument that if the position 

and velocity variables are statistically independent (as is generally assumed in equilibrium), a 

further stringent condition on ergodicity may be obtained by 
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(9) is equivalent to saying that the conditional distribution functions of position at every triple 

Poincaré section defined by 0 0 0, ,p p       must be standard normal. Any deviation of 

LHS in (9) from a standard normal distribution implies that (8) is not satisfied which in turn 

suggests that (6) is incorrect. Thus, our method builds upon the recently suggested method [7] 



and represents a more stringent criteria on proving (or disproving) the ergodicity of thermostatted 

dynamics. The aforementioned discussion is equally applicable for both the cases of same and 

different thermostat masses. In the next section we present our findings. 

3. NUMERICAL SIMULATIONS AND RESULTS  

We simulated the two-chain NHC thermostatted dynamics of a single harmonic oscillator at 

1Bk T  using four different thermostat masses:          , 1,1 , 10,0.1 , 50,0.02 , 100,0.01Q Q   . 

We do not investigate the cases where Q Q  since effective thermalization of the thermostat 

variable   can occur if Q Q   i.e the relaxation time of the reservoir variable   is faster than 

 . The equations of motion (5) are integrated using a fourth order Runge-Kutta method for 200 

billion time steps with each time step being equal to 0.001. Various initial conditions were 

chosen. The canonical nature of the dynamics was investigated by analysing the probability 

distributions of position and velocity (see (9)) at different Poincaré sections. The position-

velocity plots in the some of the Poincaré sections investigated for the four different thermostat 

mass pairs are shown in Figure 2. 

 

Figure 2. Position-velocity plots corresponding to different Poincare sections for four different thermostat mass 

pairs. The system is initialized at    , , , 1.1,1.1,0,0x p    . None of sections are consistent with ergodic dynamics. 

Presence of holes can be clearly seen. 



 

Figure 3. Univariate conditional distribution of velocity (black bars) as calculated according to (9). The red line 

represents a sample standard normal density function evaluated using 50,000 data points. Notice the mismatch 

between the black bars and the red line. For (a) and (c), there is a sudden dip of bars near origin, suggesting incorrect 

statistical sampling. 

 

Figure 4. Univariate conditional distribution of position (black bars) as calculated according to (9). The red line 

represents a sample standard normal density function evaluated using 50,000 data points. the Notice the mismatch 

between the black bars and the red line. 



In the present work, we analyse the univariate conditional distribution of position and velocity 

for the data shown in Figure 2. A relatively wide slice (of width 0.1) has been considered at 

0x  ( 0p  ) for calculating the velocity (position) distribution function to compensate for the 

limited data points present in the double Poincaré section of Figure 2. The probability 

distributions (black bars) are plotted in Figure 3 and Figure 4. The red line indicates a standard 

normal density function evaluated using 50,000 simulated data points. It can clearly be observed 

that there is a substantial deviation between the black bars and the red line for each case, despite 

considering a considerably large slice. This, in turn, indicates that the LHS of (9) is not a 

standard normal, and hence, the dynamic is not ergodic.  

The deviations from standard normal distribution are evaluated numerically through: Kullback-

Leibler divergence [34] ( KLD ) and Hellinger distance [35] ( HD ): 
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In (10),  f i is the relevant univariate distribution function and  Nf i  is the corresponding 

standard normal distribution. Both the functions take a value 0 only if the two distributions are 

equal everywhere. The results are summarized in Table 1. It can be clearly observed that there is 

a significant deviation of the distribution functions from a standard normal distribution. 

Interestingly, the position distribution function shows a larger variation than the velocity 

distribution function.  

Table 1. Kullback-Leibler divergence and Hellinger distance for the velocity and position distribution functions 

from a standard normal distribution. (Number#1,Number#2) in the second row indicates the value of the thermostat 

mass pair  ,Q Q  . The deviation from the normal distribution is significant, especially for the position distribution 

function. 

 Velocity Distribution Function Position Distribution Function 

 (1,1) (10,0.1) (50,02) (100,0.01) (1,1) (10,0.1) (50,02) (100,0.01) 

KLD  0.1281 0.0544 0.0865 0.3827 1.2000 0.1804 0.1443 0.3188 

HD  0.1837 0.1292 0.1552 0.3017 0.6378 0.2121 0.1995 0.2762 

 

Next, we look at the first three even moments of position and velocity for the differen thermostat 

masses. The results are summarized in Table 2. We again observe significant deviation in most of 

the cases from the moments of a standard normal distribution (second moment = 1.0, fourth 



moment = 3.0 and sixth moment = 15.0). We again observe that the deviation from normal 

distribution is much more prominent for position distribution function than the velocity 

distribution function. 

Table 2: The first three even order moments of position and velocity for different thermostat mass pairs (shown in 

second row). Notice the deviation from the correct value of moments for most of the cases.  

 Velocity Distribution Function Position Distribution Function 

 (1,1) (10,0.1) (50,02) (100,0.01) (1,1) (10,0.1) (50,02) (100,0.01) 

Second Moment 1.02 0.99 1.14 0.70 0.98 0.93 1.06 0.82 

Fourth Moment 3.05 2.88 3.62 1.87 2.72 2.61 3.04 2.66 

Sixth Moment 15.23 13.66 18.83 8.94 11.45 12.07 13.68 15.23 

 

4. CONCLUSIONS 

In this work, we built upon the recent doubt casted on the ergodicity of the Nosé-Hoover chain 

thermostatted dynamics. Using a single harmonic oscillator thermostatted at 1Bk T  , we have 

shown that the equations represented by (9) represent a much stronger criteria for proving (or 

disproving) the ergodicity of thee dynamics. For the dynamics to be ergodic, (9) must be satisfied 

at every triple-Poincaré section. Any deviation of LHS from a standard normal distribution is an 

indicator of the underlying nonergodicity of the dynamics.  

We show through numerical simulations, for both the equal and unequal thermostat mass cases, 

that the LHS of (9) does not indeed come from a standard normal distribution. The deviations 

from a normal distribution, as calculated using the Kullback-Leibler divergence, the Hellinger 

distance and the first three even order moments, are significant. These deviations are much more 

for the position distribution function than the velocity distribution function. Our results support 

the recent findings on the nonergodicity of the two-chain NHC thermostatted dynamics.  
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