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ABSTRACT 

In this work, we highlight the relative advantages of using a deterministic thermostat that utilizes the entire phase-

space (PB) over other thermostats that use either the configurational (BT) or the kinetic (NH) space for temperature 

control. The efficacy of PB thermostat is demonstrated using a simple model of thermal conduction comprising of 

Lennard-Jones particles. Out of the three thermostats, only the PB dynamics generates a consistent temperature 

profile for (i) different system size, and (ii) large temperature difference between the hot and the cold thermostats. 

The difference in temperature profiles occurs due to the thermostat-dependent dynamical properties of the 

thermostatted system. We corroborate this finding by calculating the radial distribution functions (RDFs) due to the 

three thermostats. Our results indicate that, for nonequilibrium cases, with the increasing strength of nonlinearity 

(temperature difference), the disparity between the RDFs increases. We also show that only in equilibrium, all the 

three thermostats result in identical RDFs. With RDFs bearing a direct relationship to several thermodynamic 

variables, a different RDF implies a different macroscopic property of the system. Consequently, it becomes of 

utmost importance to select a proper thermostat for obtaining statistical-mechanical properties from thermostatted 

molecular dynamics simulations.  
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1. INTRODUCTION 

Thermostats in molecular dynamics simulations enable us to perform ―numerical experiments‖ 

that have close resemblance to the ―real life experiments‖ performed at constant temperature. 

These constant temperature (global and local) molecular dynamics has been used to calculate 

important transport properties like thermal conductivity [1, 2], diffusion constant [3, 4], viscosity 

[5] etc. for several systems. In general, a thermostatting algorithm works by withdrawing the 

excess heat from the system and therefore, are a must for simulating a driven nonequilibrium 

system, providing stability to these simulated processes. Temperature control can be done 

through velocity constraining [6-8], stochastic [9-11] or deterministic [4, 12-19] algorithms. 

Amongst the three, the deterministic ones are the most appealing for being autonomous, time 

reversible and physics preserving [20], despite the issues of nonergodicity associated with most 
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of them [21-25]. Regardless of the temperature being controlled, every deterministic thermostat 

generates a dynamics consistent with Gibbs distribution in equilibrium, 

    
1

, exp , ,f H
Z

   x p x p   (1) 

where, x and p represent the position and the velocity of the particles, respectively. H(x,p) is the 

energy of the system,  
1

Bk T


 and Z represents the partition function. The ability of different 

thermostats to provide equivalent results in equilibrium, despite controlling different measures of 

temperatures, occurs due to the equality of the kinetic, configurational and Rugh’s temperature 

[26-28]. The general relationship of temperature with an arbitrary phase-space function (B) [28] 

can be expressed through (2).  
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In (2),   represents the gradient operator carried with respect to all the phase space variables. 

Depending on functional form of B, different measures of temperature can be obtained: if B taken 

to be the total kinetic energy of the system, T represents the kinetic temperature, KINT , if B is 

taken to be the total potential energy of the system, T represents the configurational temperature, 

CONT : 
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The most common and well known thermostatting scheme, the Nosé-Hoover (NH) thermostat 

[12, 13], works by constraining KINT . However, controlling the kinetic part of temperature alone 

is not adequate for simulating some heat driven nonequilibrium molecular dynamics simulations 

[29, 30] like in presence of large gradients or simulations involving very long molecular systems 

(ex. polymers and proteins). The difficulties of kinetic temperature based temperature control get 

exemplified in flowing non-equilibrium systems as well where determining the spatial and time 

dependent streaming velocity is difficult. These problems can be alleviated with thermostats 

based on controlling the configurational temperature, for example the Braga-Travis (BT) 

configurational thermostat [31].  



Importantly, KIN CONT T T  does not hold true for nonequilibrium cases, except in situations 

where the system exhibits local thermodynamic equilibrium (LTE). In fact, different thermostats 

result in different dynamical properties of the system [32]. Consequently, using a correct 

thermostatting method becomes a key step for obtaining results commensurate with real life 

experiments. Additionally, the thermostats, based on controlling either the kinetic or 

configurational part of the temperatures, are usually unable to generate a temperature profile 

consistent with the predictions of LTE [33] – the system is in equilibrium locally and hence, the 

configurational and kinetic temperatures must be equal locally. To overcome these issues, a new 

thermostat has been recently proposed (PB) that simultaneously controls the kinetic as well as 

configurational temperatures [19]. It has been argued that the PB thermostat is a better algorithm 

for nonequilibrium situations (like thermal conduction) because of its ability to generate 

consistent temperature profile.  

In this work, we build upon the already known advantages of PB thermostat and show that it is 

able to provide better consistency in temperature control even when a large temperature gradient 

is imposed on the system as well as when the system size is increased. The results of PB 

thermostat are compared with the Nosé-Hoover (NH) kinetic thermostat and the Braga-Travis 

(BT) configurational thermostat. We also qualitatively analyse the difference in the dynamical 

properties due to the different thermostats by computing the radial distribution functions (RDFs). 

This paper is organized as following: in the next section we detail the three different thermostats, 

following which we look at simulation results for both equilibrium and nonequilibrium cases, 

and lastly, we summarize the findings. 

 

2. THE DIFFERENT THERMOSTATS AND THERMAL CONDUCTION MODEL 

Although, chronologically developed last, we begin with the PB thermostat [19], since one can 

modify its equations of motion to obtain the other well-known kinetic and configurational 

thermostats. The equations of motion of PB thermostat for a three dimensional system 

comprising of N particles constrained at a temperature 0T  are:  
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  (4) 

The terms iQ  denote the mass of the i
th

 reservoir variable. In (4) the variables   and   act on the 

generalized position and velocity of the particle to constrain the configurational and kinetic 

temperatures, respectively. The temperature of the system is fixed by making the time derivatives 

of these feedback variables dependent on the instantaneous difference between the desired 

temperature and the instantaneous temperature corresponding to feedback variable.  

The easiest route to develop (4) is analogous to the derivation (the guessing method) first 

highlighted for NH thermostat by Hoover [34]. We begin by assuming that the coupling between 

the position and velocity variables is according to the first two sub-equations of (4). Next, the 

extended phase space Liouville’s equation is solved keeping in mind that the dynamics must 

satisfy the extended canonical distribution function. The outcome of this procedure gives the 

time evolution of the thermostat variables - the last two sub-equations of (4). Under the given 

nature of coupling, (4) is the only solution that simultaneously satisfies the extended phase space 

Liouville’s equation and generates a canonical distribution i.e. the solution is unique. 

The thermostat variables fluctuate around a mean value (usually zero), implying that the long-

time averaged value of the temporal evolution of thermostat variables is zero i.e. 0    . 

As a result, it is not very difficult to see that from the third equation of (4) results in control of 

CONT  (see (3)) while the fourth equation of (4) results in control of KINT . The PB thermostat 

satisfies the general temperature control algorithm for arbitrary coupling between the different 

variables. One can obtain the NH thermostat by setting 0    in (4). The BT thermostat can 

be obtained by setting 0    in (4).  

For all the three thermostats chosen in this study, the rate of convergence to the canonical 

ensemble is dependent on the proper choice of thermostat mass factors [35, 36]. Since, the 

appropriate value of these masses is dependent on the problem being studied, a unified principle 



for their selection is difficult to determine. We would also like to stress that all the three 

thermostats satisfy the extended Liouville’s equation even if the coupling terms are augmented 

with a switching function in such a manner that only a small subdomain is thermostatted. This 

kind of a partial thermostatting is able to generate a canonical distribution as well. The utility of 

partial thermostatting is manifold – especially for situations that demand different regions to be 

thermostatted at different temperatures.  

  

Figure 1: Thermostatting Scheme - Full Thermostatting (a) and Partial Thermostatting (b). Shaded area represents 

thermostatted regions. Particles of the unshaded regions are governed by the usual Hamilton’s equations of motion. 

 

Figure 1 represents the thermostatting scheme for both the full as well partial thermostatting case. 

TLEN represents the proportion of the system under the influence of the thermostatting scheme. 

This kind of arrangement ensures that periodic boundary conditions can be implemented without 

breaking symmetry. The PB equations of motion, augmented with a switching function, for this 

kind of arrangement can be written as: 
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The switch S(ri) is an indicator function taking up a value of 1 when the i
th

 particle is in the 

thermostatted region. It is interesting to note that (5) reduces to the usual Hamilton’s equations 

for the particles that are not under the influence of any thermostats (i.e. in the unshaded region). 

The NH and BT EOM are generalized similarly. A thermal conduction process is simulated by 

1 2 1 

2 x TLEN TLEN TLEN 

X 

Y 

Z 

(a) (b) 



keeping the regions 1 and 2 at different temperatures, thereby requiring four thermostat variables 

(two for hot and two for cold temperatures) and two switching functions. The selection of 

thermostat masses is done in a manner that the mean-squared feedback of the kinetic variables is 

roughly two orders of magnitude larger than the mean-squared feedback of the configurational 

variables. This is done to ensure that the configurational variables relax slowly than the kinetic 

variables. 

3. NUMERICAL SIMULATIONS AND RESULTS 

The numerical simulations have been designed in such a manner that they are able to capture the 

equivalence/difference between the different thermostats. Extensive equilibrium simulations have 

been performed to show that the radial distribution function due to the different thermostats is 

identical. The difference between the different thermostats is captured using nonequilibrium 

simulations. To be more specific, we look at the (i) radial distribution function, and (ii) 

consistency in temperature profile for the problem of nonequilibrium thermal conduction for 

varied system size and temperature difference. 

For all the cases, we have chosen a number density of 0.725 (a highly dense system). The system 

domain is a cubic box with periodic boundary conditions in all the directions. Initial particle 

positions are sampled from a uniform distribution and their velocities from the Maxwell-

Boltzmann distribution. Pair wise interaction (
ij ) of Lennard-Jones type with a cut-off radius of 

2.5 is assumed: 
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Equilibration is achieved in two steps: first a conjugate gradient based energy minimization 

followed by 50,000 MD steps. The integration in MD is performed using the Gear Predictor-

Corrector algorithm [37] for the PB and NH thermostats, and the Velocity-Verlet algorithm for 

BT thermostat, the time step being 0.001fs for both. TLEN was assumed to be 10% of the 

simulation box length. 

i. Equilibrium Simulations: 

We look at the radial distribution function for the three thermostats. At equilibrium, radial 

distribution function contributes towards the entropy in totality. Thus, if the different thermostats 

yield the same radial distribution function, it would imply that all these thermostats result in 



identical thermodynamic properties at equilibrium. This is because entropy is directly related to 

different thermodynamic quantities through exact mathematical expressions. In fact, one can 

relate radial distribution function to properties like structure factor, potential of mean force, 

potential energy, pressure etc. The system temperature was kept at 2.0. Figure 2 shows the RDF 

for the different thermostats as well as system size (at fixed number density). 

 

Figure 2: Radial Distribution Function for the system in equilibrium using the three thermostats. The RDFs due to 

the three thermostats overlap each other, suggesting that in equilibrium dynamical properties are not thermostat 

dependent. 

It can be clearly observed that the RDFs due to the different thermostats at equilibrium overlap. 

The equality of RDFs, and consequently the macroscopic properties of the system, indicate that 

the different thermostats perform comparably well in equilibrium. Choice of thermostats, 

therefore, for studying equilibrium properties is irrelevant.  

 

ii. Nonequilibrium Simulations: 

The difference between the different thermostats can be observed clearly using nonequilibrium 

simulations. For these cases, the PB thermostat has been shown to be the only thermostat that is 

able to generate a consistent temperature profile. In the present study, we simulate a thermal 

conduction process by keeping the regions 1 and 2 of Figure 1(b) at different temperatures. In 

this study, we check if the consistency in temperature profile is still maintained at higher 

temperature difference.  



  

 

 

Figure 3: Comparison of the configurational (dotted 

bars) and kinetic (solid bars) temperature profiles (y 

axis) at the five bins (x axis) for different thermostats 

(black = BT, red = NH and blue = PB) under varied 

temperature gradient: (a) ΔT = 1.0, (b) ΔT = 2.0, and (c) 

ΔT = 5.0. The system size is chosen to be 1000 particles. 

For NH and BT, the difference between the 

configurational and the kinetic temperatures at a bin 

increases with increasing temperature difference. PB 

thermostat, on the other hand, is able to generate very 

consistent temperature profiles.  

 

 

Figure 3 shows the effect of increasing the temperature difference (ΔT) on the temperature 

profiles for a system comprising of 1000 particles. Due to the symmetry, we only study half of 

the system, which is divided into 5 spatial bins of equal spacing. It can be observed clearly that 

with increasing temperature difference, the difference between the kinetic and configurational 

temperatures due to NH and BT thermostats increases. In fact in some of the cases (see Figure 

3(c)), the BT thermostat is not even able to keep the temperature of the higher end at the desired 

value. The PB thermostat, on the other hand, is able to generate a relatively consistent 

temperature profile even for large temperature difference, highlighting its superiority over other 

thermostats. We observed a similar behaviour when the system size was increased to 2000 

particles. The PB thermostat still performed the best amongst the three thermostats. From Figure 

3, it is clear that the properties due to the three thermostats, despite being identical in 

equilibrium, are not the same in nonequilibrium.  

To emphasize the difference between the different thermostats, we will next show that the 

nonequilibrium RDFs due to the three thermostats are not the same. Although, RDFs in 
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nonequilibrium are not a sufficient metric to evaluate ―nonequilibrium entropy‖, for the present 

purpose we deem it sufficient enough to highlight the qualitative differences of the dynamics due 

to the different thermostats.  

 

Figure 4: Radial distribution functions due to the three thermostats (black = BT, red = NH and blue = PB) for 

different temperature differences: (a) ΔT = 1.0, (b) ΔT = 2.0, and (c) ΔT = 5.0. At low temperature differences, the 

RDFs due to the three thermostats are similar. However, as temperature difference increases, the difference between 

the RDFs due to the thermostats also increases. The system comprises of 1000 particles. 

The RDFs due to the three thermostats are shown in Figure 4. It is interesting to see that at low 

temperature difference, the RDFs for all three thermostats nearly overlap. As the temperature 

difference increases, so does the disparity between the RDFs. A similar behaviour was observed 

by increasing the system size to 2000 particles. At this point, we would like to highlight that we 

do not have sufficient data / knowledge to comment upon which of the three RDFs is more 

accurate. However, when combined with the results regarding consistency of temperature 

profiles, our judgement is that the PB thermostat is likely to provide more accurate results.  

 

4.  CONCLUSIONS 

In this work, we highlighted the relative advantages of using the Patra-Bhattacharya (PB) 

thermostat, that constrains both the kinetic as well as the configurational temperatures, over other 

thermostats that constrain either the kinetic (the Nosé-Hoover thermostat) or the configurational 

(the Braga-Travis thermostat) temperature. To demonstrate these advantages, we perform 

nonequilibrium molecular dynamics simulations by bringing the system in contact with two 

thermal reservoirs kept at different temperatures. The resulting temperature difference drives a 

heat flow in the system. Only the systems under the influence of PB thermostats have a 



consistent temperature profile. For both the NH as well as the BT thermostatted systems, the 

difference between the kinetic and the configurational temperatures is substantially large. 

Further, this difference increases upon increasing the imposed temperature difference.  

The difference in the temperature profiles for the different thermostats in the nonequilibrium 

scenario suggests strong thermostat dependent dynamical properties of the system, as has been 

observed previously. On the other hand, equilibrium simulations using these thermostats suggest 

that equilibrium properties are thermostat independent.  

To concretize our argument we calculated the nonequilibrium radial distribution functions 

(RDFs) due to the three thermostats. RDF is an important parameter that can be closely 

connected to several physical and thermodynamic variables. Our results suggest that at low 

temperature difference, like in equilibrium, the RDFs due to the different thermostats are nearly 

the same. However, at larger temperature differences, the RDFs show significant deviation from 

each other. 

To conclude, in this work, we have shown (i) the different thermostats yield similar dynamical 

properties in equilibrium, (ii) in nonequilibrium cases thermostat dependent dynamical properties 

can be observed, and (iii) the Patra-Bhattacharya thermostat is able to generate relatively more 

consistent temperature profiles even under large temperature difference, suggesting its 

superiority over the other thermostats.  
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