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ABSTRACT: Observing a load process above high thresholds, modeling it as a pulse process with random
occurrence times and magnitudes, and extrapolating life-time maximum or design loads from the data is a
common task in structural reliability analyses. In this paper, we consider a stationary live load sequence that
arrive according to a dependent point process and allow for a weakened mixing-type dependence in the load
pulse magnitudes that asymptotically decreases to zero with increasing separation in the sequence. The scale
of fluctuation of the loading process is used to identify clusters of exceedances above high thresholds which
in turn is used to estimate the extremal index of the process. The pulse arrival instants are modeled as a Cox
process governed by a stationary lognormal intensity. An illustrative example utilizes in-service peak strain data
from ambient traffic collected on a high volume highway bridge, and analyzes the asymptotic behavior of the
maximum load.

1 INTRODUCTION

A general formulation of the time-dependent reliabil-
ity problem corresponding to an “overload” type limit
state is:

R is the resistance of the structural component, possi-
bly time dependent due to aging effects. L, W , S etc.
represent time-varying live, wind, snow loads and so
on, respectively. In almost every relevant load case,
the life-time maximum of one of these load processes
must be evaluated (ASCE, 2002). The dead load (D) is
generally assumed not to vary with time. Simplifica-
tion is possible if R(τ) is replaced by a representative
resistance, Re, that is independent of time. A typical
example can be formulated as:

where Lmax,t is the maximum live load on the struc-
ture during (0, t]. Live loads often have discontinuous
sample functions with jumps occurring at random
instants of time, τi, with random magnitudes, Li.
If the duration of the individual live load is small
compared to the reference time (or if a filtering
with a high threshold is employed in data collec-
tion), the live load process may be idealized as a
pulse process with random occurrence times. The

maximum of the observed live load magnitudes is then
simply,

Nt is the random number of loading events during the
interval [0, t].

The simplest model for predicting the life-time
maximum distribution from an observed sequence of
size n (n finite) is to assume that the magnitudes, Li, are
mutually independent and are identically distributed
(the so-called “i.i.d.” assumption) and independent
of the occurrence times as well. In many practical
instances, each member of the observed sequence
L1, L2, . . ., Ln actually represents the “block maxi-
mum” to facilitate computations; the cost, however,
is the wastage of a large number of potentially useful
data points.

Powerful generalizations can be made when the
sample size, n, of the i.i.d. sequence approaches infin-
ity. Under very general conditions that are satisfied
by most parent distributions, the maximum, L̂max,t , of
the i.i.d. sequence approaches one of the three classi-
cal extreme value distributions, Hc (elaborated later).
Also, even if the occurrence times did not originally
constitute a renewal process, they do become rarer on
the time axis and approach the Poisson distribution as
the said threshold becomes higher.

Nevertheless, the i.i.d. assumption cannot be always
justified in maximum live load modeling. There may
be significant dependence in the loading sequence
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(both in regard to load magnitudes and occurrence
times) that would make the results from classical i.i.d.
analyses conservative at best and erroneous in gen-
eral. This paper presents a methodology that accounts
for more generalized loading sequences including
dependence in the occurrence point process and its
associated marks. The formulation will be restricted to
stationary and aperiodic sequences while the method-
ology will be demonstrated on a strain response
data collected under ambient traffic on a highway
bridge.

2 THE MAXIMUM LIVE LOAD FROM A
STATIONARY DEPENDENT SEQUENCE

Let F denote the common marginal distribution of
the strictly stationary and dependent sequence, {Ln},
and let Mn denote the maximum of the sequence. The
dependence structure of {Ln} is such that Leadbetter’s
(Leadbetter et al., 1983) Conditions D(un) and D′(un)
are satisfied.

Condition D(un) is a type of distributional mix-
ing (a much weakened form of strong mixing)
and ensures that subsequences of {Ln} becomes
asymptotically independent with increasing separa-
tion between them. Let Fi1 , . . . , Lin (x) denote the
joint distribution function of Li1 , . . ., Lin evaluated
at the common point x. Condition D(un) is said to
hold for some given real sequence {un}, if for any
integers 1 ≤ i1 < · · · < ip < j1 < · · · < jp′ ≤ n for which
j1 − ip ≥ l, we have

and αn,ln → 0 as n → ∞ for some sequence ln = o(n).
The second, Condition D′(un), limits the possibility

of clustering of exceedances from the sequence above
a high threshold and is said to hold for the strictly sta-
tionary sequence {Ln} if for some given real sequence
{un},

where [ ] denotes the integer part.
The importance of Conditions D(un) and D′(un)

comes from the following two very appealing prop-
erties (Leadbetter et al., 1983):

1. The asymptotic distribution of Mn has only three
possible forms, namely, the three classical extreme
value distribution types. The rate of convergence,
however, is slower than in the i.i.d. case, and can
be quantified using the extremal index, θ, of the
sequence, defined below.

2. The point process constituting the instants when
the sequence {Ln} exceeds the threshold un con-
verges in distribution to a Poisson process as n
increases. Consequent of the asymptotic Poisson
behavior, the maxima in disjoint time intervals
become asymptotically independent as well.

2.1 The extremal index

The extremal index of a sequence can be interpreted as
the reciprocal of the mean limiting cluster size above
high thresholds, and is given by (Leadbetter et al.,
1983):

if for some τ > 0 there exists sequence {un(τ)} such
that

The extremal index, which is a number between 0
and 1, measures the strength of the dependence in
the sequence {Ln}. Heuristically, θ = 0 corresponds
to an infinitely long memory sequence, 0 < θ < 1
corresponds to a short memory sequence, and θ = 1
corresponds to a memoryless sequence (Hsing,
1993).

It is convenient at this point to formally introduce
the “associated” i.i.d. sequence {L̂n} (we have alluded
to it earlier) that has the same marginal (or “parent”)
distribution, F . Let M̂n be the maximum of the i.i.d.
sequence {L̂n}. Under suitable regularity conditions
that are satisfied by most common parent distributions,
F , the distribution of the maximum M̂n, when suitably
normalized by constants {an} and {bn}, converges to
one of the three classical types, Hc (Galambos, 1987;
Castillo, 1998):

where 1 + cz > 0, z = (x − ε)/δ in which ε and δ > 0
are appropriate location and scale parameters of the
distribution. Eq. (8) represents the generalized extreme
value distribution, in which the parameter c determines
the type of the distribution: It is of (i) Type I (the Gum-
bel type) if c = 0, (ii)Type II (the Frechet type) if c > 0,
and (iii) Type III (the Weibull type) if c < 0.

If Eq. (8) holds, the distribution of Mn also con-
verges, with the same set of normalizing constants {an}
and {bn} (or with one set altered) as above, to the type of
(Hc)θ , where the exponent θ > 0 is the extremal index
of {Ln}:
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The converse is also true. Clearly, Hc and (Hc)θ are
of the same type for any given value of c. (Two dis-
tribution G and H are of the same type if there are
constants a and b > 0 such that G(x) = H (a + bx)).
The significance of this result is that the distribution of
the maximum Mn of a stationary dependent sequence,
provided it converges (which can be guaranteed by
Conditions D(un) and D′(un)), may be estimated, at
least in the right tail, simply with the help of the
marginal distribution F and the extremal index θ of
the underlying process, as:

for sufficiently high un and large but finite n.
Eq. (10) is significant also as it highlights the degree

of conservatism that may be introduced by the common
and sometimes indiscriminate engineering practice of
assuming a sequence to be i.i.d. when estimating the
distribution of its maximum .(Bhattacharya, 2007).

It is therefore clear that, the distribution of the
maximum of a stationary dependent sequence may
conveniently be estimated in two steps: first by obtain-
ing the distribution of the maximum of the associated
i.i.d. sequence, and second, by estimating the extremal
index of the parent process. We take up the latter
problem first; the estimation of the associated i.i.d.
sequence will be taken up subsequently.

2.2 Estimating θ

There are two acceptable methods for estimating θ :
the blocks method and the runs method. Under suit-
able conditions, both estimators are consistent for
the extremal index, but we choose the runs method
because it usually has the smaller bias of the two
(Smith &Weissman, 1994;Weissman & Novak, 1998).
Considering the extremal index as threshold dependent
and estimating it at various values of the threshold has
also been suggested (Tawn, 1990; Smith & Weissman,
1994), but we do not adopt that approach in this paper.

Defining Mp,q = max{Lp, . . ., Lq}, the runs estima-
tor of the extremal index, θ̂R, is given by:

in which IA,i (·) and IB,i (·) are indicator functions
verifying the truth of the respective condition in
parentheses. The estimate is basically the recipro-
cal of the average cluster size above high thresholds
(x) in which two consecutive exceedances are part
of the same cluster if they are less than r obser-
vations apart (i.e., a run of observations below x
of length r or greater are deemed to separate two

adjacent clusters). Eq. (11) is based on the prop-
erty of dependent stationary sequences that, for some
appropriately chosen r (Hsing, 1993),

such that R(q(x)) → 0 as q(x) = 1 − F(x) → 0 (i.e., as
x → x0 where x0 = sup{x : F(x) (x) < }).

The quality of the estimate in Eq. (11) depends on
R which, however, is not known a priori. Nevertheless,
it has been suggested(Hsing, 1993) that R has a simple
log-linear form for a large class of processes:

This relation, in conjunction with the set of esti-
mates obtained using Eq. (11) for a range of x, may be
used to obtain a minimum squared error estimate for
θ in Eq. (12).

Note that θ̂R depends also on the run length, r, a
parameter that must be chosen with care. Attempts
have been made to provide optimal estimates of rbased
on minimum absolute bias considerations (Smith &
Weissman, 1994). r must be short enough so as not
to group relatively independent observations in the
same cluster, at the same time long enough to reflect
the dependence structure of the underlying physical
nature of the sequence, e.g., the average storm length
in case of wave data. We propose Vanmarcke’s, {1983
#71} scale of fluctuation, τc, as an estimate of the run
length, r:

where r ≥ 2, (r integer). γ(T ) is the variance function
of a stationary process X (t) and is defined as the ratio
of the variance of the local average over a window of
length T and the variance, σ2, of the process X (t).

2.3 Modeling the random load occurrence times

The distribution of the maximum load provides only
the first part to the solution to the time-dependent
problem. The statistical description of the number of
occurrences during the given time interval is required
to complete the picture.

The Poisson model i.e., a renewal process with
exponential inter-arrival times or, equivalently, a pro-
cess with independent increments and a constant rate
of occurrence – is analytically attractive, but may
prove too simplistic for most loading processes. Nev-
ertheless, the pure Poisson process can be used as
the building block for a large variety of processes
showing clustering, dependence, non-stationarity etc.
Clustering phenomena can be accounted for by the
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Neymann-Scott and the Bartlett-Lewis processes (Cox
& Isham, 2000). A Polya process, which is a non-
stationary version of the pure birth process, can also
be used to model clustering (Wen, 1990).

A more versatile generalization of the pure Poisson
process occurs if the rate, �(t) ≥ 0, itself is considered
to be a random process yielding what is known as a
doubly stochastic Poisson process (or Cox process)
(Cox & Isham, 2000). The mean measure of the point
process in the interval [0,t] is a random variable and
is given by:

Then, conditioned on Mt = mt (where mt is any positive
number for given t), the point process N (t) becomes
a (generally non-homogeneous) Poisson process, i.e.,
the counts are distributed according to:

We choose the Cox process to model the stochastic
arrival rate for the load pulses first for its versatil-
ity, and then due to the asymptotic Poisson nature of
the filtered point process above high thresholds that is
consistent with the conditional Poisson characteristic
of the Cox process. There is a rich collection of results
pertaining to modeling the random rate function, �(t);
the two most common of which are the Markov mod-
ulated Poisson process (Fischer & Meier-Hellstern,
1992) and the exponentiated Gaussian process (i.e. the
lognormal process) (Moller et al., 1998).

We can now look at the maximum, L̂max,t , of the
associated i.i.d. peak strain sequence L̂1, L̂2 , . . . , L̂Nt .
for fixed Nt = n and Mt = mt , the distribution of
L̂max,t is,

Removing the conditioning on Nt = n first, we
obtain:

Further, if the distribution of the mean measure,Mt ,
is known, the unconditional distribution of L̂max,t can
be given by:

2.4 Inclusion of sampling-related uncertainties

The maximum live load is estimated based on observed
data. Hence, it is important that uncertainties due to

sampling be accounted for. For any given l, the true
value of F is unknown (see, e.g., (Galambos, 1993)),
hence we can describe it as a random variable P with
(prior) probability density function f ′

P . The unknown
P is estimated from the sample as:

It can be shown (Bhattacharya, 2007) that the poste-
rior density of P is f ′′

P (p) = (c′/C)p(k + 1)θ(1 − p)k̄θ(1),
0 ≤ p ≤ 1, which is clearly of the Beta type, allowing
us to write:

The two parameters of the distribution are:

where n is the number of observations, and the esti-
mate p̂ is given by Eq. (20). The mean and variance
of this distribution are, respectively, α1/(α1 + α2) and
α1α2/(α1 + α2)2(α1 + α2 + 1). Hence, the updated
mean of P is very close to the estimate p̂ regardless
of the value of θ ; its variance, however, is inversely
proportional to the extremal index.

In light of the above formulation, Eq. (18) can now
be interpreted as the conditional distribution of the
maximum of the associated i.i.d. sequence during an
interval of length t given fixed values of the parent
distribution. Assuming the sampling uncertainty to
be independent of the rate process, the unconditional
distribution of the maximum of the associated i.i.d.
sequence, L̂max,t , is:

which may be estimated numerically using Monte-
Carlo simulations. Finally, using the extremal index,
the unconditional distribution of the maximum of the
original sequence {Ln} can be given by:

3 A NUMERICAL EXAMPLE INVOLVING
BRIDGE IN-SERVICE DATA

We now demonstrate the proposed methodology to
estimate the maximum live load on a highway bridge
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Figure 1. Time-line of loading events spanning 11 days in
August 1998 (Inset: Distribution of interarrival times).

using data collected under ambient traffic. The in-
service strain monitoring system is analogous to a
weigh-in-motion system, and measures peak live-load
bridge strains due to site-specific traffic over extended
periods of time (Shenton III et al., 2000). The system
continuously digitizes an analog signal at 1,200 Hz,
and waits for a pre-specified strain threshold to be
exceeded. When this threshold is exceeded, the sys-
tem records, among others, the time at which the event
took place and the peak strain during the event.

It should be highlighted that this data acquisition
system looks at structural response under ambient
unrestricted traffic and thus naturally includes all pos-
sible single and multiple presence truck loading cases.

The bridge selected for instrumentation and data
acquisition was Bridge 1-791 which is a 3-span contin-
uous, slab-on-steel girder structure carrying two lanes
of Interstate-95 over Darley Road in Delaware. In-
service strain data were recorded at midspan of the
critical girder of the approach span (beneath the right
travel lane) during an approximately 11-day period in
August 1998 (Figure 1). The trigger level was set at 85
µε so that only 533 rather large loading events were
recorded during the 11 day period.

The data was filtered by raising the threshold, u
(Eqs (4) – (7)), and the interarrival times were found
to become increasingly Exponential in nature (Bhat-
tacharya, 2007) thus corroborating item 2 in Section
2 above.

3.1 The run length and the extremal index

The extremal index of the loading sequence, {Ln}, is
estimated using Eq. (11).As detailed in (Bhattacharya,
2007), the estimate θ̂ shows a decreasing trend with
increasing r for any particular value of u, which is

Figure 2. Minimum squared error estimate of θ (for r = 2).

consistent with the property that the extremal index is
the reciprocal of the average number of exceedances
per cluster, and with increasing run length the number
of cluster goes down.

Recall that r is an integer equal to or greater than 2.
Three different series are used for estimating the run
length: (i) the peak strain series, (ii) the hourly maxi-
mum series, and (iii) the two-hourly maximum series
(Bhattacharya, 2007). For the first series, τ̂c, converges
between 1 and 3 as T grows large. We then look at the
scale of fluctuation in the hourly maximum and two-
hourly maximum loads. For both these sequences, the
scale of fluctuation is found to converge to around 1
hour (∼1 × 1 hr and ∼0.5 × 2 hr, respectively). Cou-
pled with the observation that the average number of
loading events is around 2 per hour (the mean interar-
rival time being about 29.3 min.), we adopt a value of
2 for r in this analysis.

The runs estimator θ̂R(u; r = 2) (Eq. (11)) is now
calculated as a function of the exceedance probability,
q(u) ≡ 1 − p(u), corresponding to u running from 100
to 175 in increments of 5. The exceedance probability
q(u) ≡ 1 − p(u) is estimated from Eq. (20). We apply
Eqs (12) and (13) to obtain the minimum squared error
estimate of the extremal index:

where y(u) ≡ θ̂R(u; r = 2) corresponds to the estimate,
and α ≡ θ corresponds to the true value (cf. Eq. (12)).
The minimum squared error fit to the data according to
Eq. (25) are shown in Figure 2, yielding a value of the
extremal index as θ = 0.93. This value of θ close to 1
indicates that the load sequence is almost independent,
a likely consequence of the rather high trigger of 85
microstrain set for the in-service recording device.

3.2 Cox process with lognormal arrival rate

For the Cox process model for the load occurrence
process, we assume a simple stationary model that
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gives non-negative smooth sample functions, namely,
a lognormal process given by:

where µ and σ are constants, and z(t) is a zero-mean
unit-variance stationary Gaussian process with auto-
correlation function ρ(τ). The stationary mean and
coefficient of variation (c.o.v.) of �(t) are, respec-
tively, µ� = exp[µ + σ2/2] and δ� = √

exp(σ2) − 1.
We further assume that the autocorrelation function
(ACF) of z(t) is exponentially decaying with corre-
lation length, τ0, i.e., ρ(τ) = exp(−|τ|/τ0). The ACFs
of �(t) and z(t) are not equal, being related through
ρ(τ) = ln (1 + ρ�(τ)δ2

�)/ ln (1 + δ2
�) (der Kiureghian

& Liu, 1985), although, the difference becomes negli-
gible for δ� < 0.3.The random mean measure, Mt (Eq.
(15)), then has its first two moments as:

where σ2
� is the stationary variance of the process �.

We estimate the unknown parameters µ, τ0 and σ
as follows: First, estimate E [Mt] for different val-
ues of t, minimize the error with Eq. (27) and hence
obtain least square estimate for µ�. Then, estimate var
[Mt] for different values of t and minimize the error
with Eq. (28); hence obtain least square estimates for
τ0 and σ�. Use the estimates of σ� and µ� in turn
to obtain µ and σ. Non-linear least square analyses
of the data yielded the following estimated param-
eters: µ� = 1.99/hr, σ� = 1.50/hr and τ0 = 19.40 hrs.
Thus the estimated lognormal parameters are (Eq.
(26)): µ = 0.53 and σ = 0.56 when t is expressed in
hours.

3.3 Distribution of the maximum of the
associated i.i.d. sequence

The distribution of the maximum load, L̂max,t , during
the interval (0, t] of the associated i.i.d. sequence is
estimated next. We select the time interval t = 1 day.
Point estimates of the empirical CDF, p̂, of the load
sequence {Ln} at nine different strain values (l) are
obtained. A Bayesian updating of the CDF is per-
formed (re. Eq. (21) with θ = 1).The c.o.v. of P is found
to become smaller and smaller as one moves along the
upper tail – a result of the reasonably large sample
size. 10,000 Monte Carlo simulations were used in
estimating Eq. (23) for each value of l to obtain the
unconditional CDF of the daily maximum, L̂max,1d , of
the associated i.i.d. sequence (details are provided in
(Bhattacharya, 2007)).
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Figure 3. (a) Gumbel and (b) Frechet probability fit of daily
maximum of the associated i.i.d. live-load sequence.

The maximum from an i.i.d. sequence approaches
one of the three classical extreme value distributions
for largest values. The Gumbel fit was better than the
Frechet one in the present case (Figure 3) and was
adopted for L̂max,1d in this paper:

where α̂ and û are the scale and mode, respectively, of
the maximum of the associated i.i.d. sequence. The
Weibull distribution for maxima was not tried here
since it is limited on the right which appeared to be
an unreasonable restriction, although this property of
the Weibull distribution can be attractive in situations
where geometric or any other constraint puts a well-
defined upper limit on the vehicular load on the bridge.
Figure 3 also gives the best fit straight line through the
data from which the parameters can be estimated as
α̂1d = 0.0260 and û1d = 157.4 microstrain.

3.4 Maximum live load for various time intervals

Recall that the distribution of the maximum of the
associated i.i.d. sequence and the actual dependent
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Table 1. Maximum live load statistics for different time intervals and effect of dependence in the parent loading process.

Statistics of maximum live load, Lmax,t

θ = 1 θ = 0.93 θ = 0.75 θ = 0.50

Time, t Mean c.o.v. Mean c.o.v. Mean c.o.v. Mean c.o.v.

1 day 178.0 0.275 177.0 0.279 168.7 0.293 153.3 0.322
1 year 407.7 0.121 404.1 0.122 395.9 0.125 380.1 0.130
2 years 434.5 0.114 430.8 0.115 422.6 0.117 406.7 0.121

10 years 496.6 0.0997 492.8 0.100 484.6 0.102 468.6 0.105
50 years 558.7 0.0886 554.7 0.0890 546.6 0.0904 530.5 0.0930
75 years 574.4 0.0862 570.3 0.0866 562.2 0.0879 546.1 0.0903

stationary sequence are of the same type (cf. Eqs.
(8), (9) and (24)) differing only in terms of the shape
parameter by the factor θ. For the Gumbel family
which is closed under maximization, this leads to an
unchanged α (hence an unchanged variance) and a
mode (and mean) shifted to the left by an amount
(1/α)ln(1/θ), 0 < θ ≤ 1. The closer θ is to 1, the more
modest is this shift. Hence, the Gumbel parameters of
the actual maximum, Lmax,rd , corresponding to r days
(r = integer) can be given by:

The mean and c.o.v. of the maximum live load for
various time intervals, t, up to 75 years and for var-
ious values of θ are listed in Table 1. As expected,
with increasing t, the maximum live load distribution
becomes narrower and shifts to the right. The case
of θ = 1 signifying an i.i.d. assumption, is tabulated
first. For the purpose of comparison, the consequence
of lower values of θ, signifying increasingly greater
dependence in the parent process, is also demonstrated
in the Table. The extent of conservatism in the i.i.d.
assumption is evident. In general, including the effect
of dependence in the parent loading process decreases
the mean and increases the c.o.v. of the maximum load.
As may be expected, the influence of dependence in the
parent loading process on the maximum diminishes
with increasing t.

4 CONCLUSION

The methodology outline here allows the use of in-
service data to obtain a realistic probabilistic model of
extreme live loads. A considerable part of the method-
ology involved accounting for possible dependence
in the parent loading process which was formalized
as weak mixing type. Dependence in the arrival rate
process as well as in the associated load magnitudes

was considered. Inclusion of dependence eliminates
the unnecessary conservatism introduced by the poten-
tially unrealistic i.i.d. assumption.

The methodology was used to predict maximum live
load on a highway bridge. The asymptotic behavior of
extremes from the sample with increasing thresholds
was investigated. The dependence was characterized
using the extremal index and the marginal distribu-
tion of the parent process. The scale of fluctuation of
the loading process was used to identify clusters of
exceedances above high thresholds.A Bayesian updat-
ing, derived from the distribution of order statistics in
a dependent stationary series, was performed on the
sample distribution function. The parameters of the
random arrival rate process modeled as a Cox process
with stationary lognormal intensity were determined.
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