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ABSTRACT: Mechanical response of deformable bodies is often concerned with either the sum or the extreme
of an underlying random process. This paper investigates the asymptotic statistical properties of ultimate strength
(0,) and compliance (C) of single-walled nanotubes (SWNTs) containing random defects using the technique
of atomistic simulation (AS). Under a weak dependence condition among the segment strengths (that decay to
zero with increasing distance between the segments), consistent with the non-local nature of atomic interactions,
formalized here in the form of strong mixing, the asymptotic properties of o, (as the extreme of the strong mixing
sequence) and C (as the sum of a related strong mixing sequence) are studied with increasing tube length, /. The
extremal index, measuring the stochastic dependence in the strength field, is estimated. These results appear to

validate the strong mixing property of the strength field.

1 INTRODUCTION

1.1 Statistics of material response

All real materials have defects. Depending on the scale,
such defects may have significant effects on mechani-
cal properties. A large class of problems in mechanical
behavior of materials can be modeled by assuming a
body, €2, to consist of a two-phase material — say, the
matrix and defects. The defects are distributed ran-
domly in the matrix according a spatial point process,
I1. Depending on the process in which the material
is manufactured or loaded, this point process is not
necessarily homogeneous.

In the special case when the numbers of defects
in non-overlapping regions are independent, the pro-
cess I1 can be modeled as a spatial Poisson process in
state space R® with mean measure,iu(B) = [, A (z) dz,
where B is a bounded set in R and A(z) is the inten-
sity of the process. The Poisson assumption is clearly
violated, however, when factors such as finite size of
defects, coalescence of several defects into one defect,
or the disintegration of one defect into several etc. are
considered.

At the initial time #, the domain €2 and every region
within it are in thermodynamic equilibrium. Now con-
sider the properties of the defects. A defect at location
z may be characterized at time ¢ by a set of properties
(i.e.,marks), ©(z, t), that, depending on the application

of interest, could variously include its volume, surface
area, density, orientation, elastic modulus, ultimate
strength, damage state, nearest-neighbor distance, etc.
In general, ©(z, ¢) is random in nature.

Independence between marks at two different loca-
tions and between the marks and the point process,
as often considered, is too restrictive. It is more rea-
sonable to suppose that the influence decreases with
increasing separation in space and time.

Let us now focus on some important property,
R(z, 1), of the defects. Let the randomness in the matrix
be negligible compared to that of R so that the ran-
domness in material response is governed by R.. Let
us concentrate on a volume elementA )V around z in
and time ¢ such that it contains N(AV (z))defects. Let
R; be the response of the i th defect located at z;.

Stochastic modeling of material response quite
often involves looking at either sums (or, equiva-
lently, averages) or extremes of the process R(z,?)
over AV (Lu and Bhattacharya 2006). The former
leads to bulk or globally averaged properties such
as stiffness, while the latter leads to strength prop-
erties sensitive to local features such as fracture
strength.

1.2 Scope of this work

In this paper, we investigate the asymptotic proper-
ties including dependence of the extremum and the



sum of processes related to R at the atomistic scale
and how they affect material response and failure.
The subject structure is the single walled carbon nan-
otube (SWNT) with finite sized Stone-Wales defects.
The “sum” in question is tube compliance, and the
“extreme” refers to the the tube’s strength. A nanotube
may be considered to be composed of n segments
of length A; for i=1,..., n. The length of the tube,
l,= Z:‘: | A, depends on n. The strength, 17, of the
tube is the minimum of the sequence {#,} of indi-
vidual segment strengths, and the compliance, C(,), of
the tube is the sum of the sequence of individual com-
pliances, {C,}. The two sequences {W¥,} and {C,} are
related.

We assume that the strength random field in
the tube is stationary and statistically dependent
(owing to the non-local nature of atomic interac-
tions) such that the dependence falls off with increas-
ing separation among the segments. The extremal
index, measuring the amount of statistical depen-
dence in a random sequence,is determined for
the SWNT random strength field. The mechanical
behaviour of the SWNTSs are studied with atomistic
simulations.

1.3 Carbon nanotubes and their defects

Carbon nanotubes (CNTs) are one or more layers of
helical carbon microtubules, in which each layer can
be described as rolling a single sp? graphene sheet into
acylinder along a vector called the chiral vector (m, n).

The study of carbon nanotubes has been moti-
vated largely due to their extraordinary electronic,
mechanical and optical properties (Salvetat et al. 1999;
Yakobson and Avouris 2001; Bernholc etal. 2002). The
combination of high stiffness, high strength and good
ductility with unique electronic properties (e.g., CNTs
can be metallic or semiconducting depending on chi-
rality) make the carbon nanotube a potentially very
useful material. CNT's are now used as fibers in com-
posites, scanning probe tips, field emission sources,
electronic actuators, sensors, Lithium ion and hydro-
gen storage and other electronic devices. Also, CNTs
can be coated or doped to alter their properties for
further applications.

Defects such as vacancies, metastable atoms, pen-
tagons, heptagons, Stone-Wales (SW or 5-7-7-5)
defects, heterogeneous atoms, discontinuities of walls,
distortion in the packing configuration of CNT
bundles, etc. are widely observed in CNTs (lijima
et al. 1992; Zhou et al. 1994; Charlier 2002). Such
defects can be the result of the manufacturing process
itself: according to an STM observation of the SWNTs
structure, about 10% of the samples were found to
exhibit stable defect features under extended scanning
(Ouyang et al. 2001). Defects can also be introduced
by mechanical loading and electron irradiation.

Figure 1. An SW defect showing bond rotation.

2 INCORPORATING RANDOM STONE-WALES
DEFECTS IN SWNT MECHANICS

The Stone-Wales (SW) defect is composed of two
pentagon-heptagon pairs, and can be formed by rotat-
ing an sp? bond by 90 degrees (Figure 1). SW defects
are stable and often present in carbon nanotubes, and
are believed to play important roles in the mechan-
ical, electronic, chemical, and other properties of
carbon nanotubes. For example, Chandra et al.(2004)
found that the SW defect significantly reduced the
elastic modulus of single-walled nanotubes. Lu and
Bhattacharya (2004) investigated the role of one SW
defect (located at the midsection of an armchair
SWNT) on tensile properties over a range of loading
speeds, and found that the presence of the defect sig-
nificantly affects ultimate strength as well as ultimate
strain at all loading speeds; the effect of the defect
on stiffness is much less. Mielke et al. (2004) com-
pared the role of various defects (vacancies, holes
and SW defects) in fracture of carbon nanotubes,
and found that various one- and two-atom vacancies
can reduce the failure stresses by 14~26%. The SW
defects were also found to reduce the strength and fail-
ure strain, although their influence was less significant
than vacancies and holes.

It has been found that SWNTs, under certain con-
ditions, respond to the mechanical stimuli via the
spontaneous formation of SW defect beyond a cer-
tain value of applied strain around 5%~6% (Nardelli
et al. 1998).

More interestingly, the SW defect can introduce
successive SW rotations of different C-C bonds, which
lead to gradual increase of tube length and shrinkage
of tube diameter, resembling the necking phenomenon
in tensile tests at macro scale. This process also gradu-
ally changes in chirality of the CNT, from armchair to
zigzag direction. This whole response is plastic, with
necking and growth of a “line defect”, resembling the
dislocation nucleation and moving in plastic deforma-
tion of crystal in many ways. Yakobson (1998) thus
applied dislocation theory and compared the brittle



and ductile failure path after the nucleation of the SW
defect.

Song et al. (2006) have claimed that formation of
SW defects is a precursor to fracture of SWNTs. The
SW rotation occurs before the bond breakage occurs
as it is energetically favoured, but beyond a certain
point, the bond breakage becomes favorable, and a
bond in the vicinity the defect will break. Importantly
the rotated bond itself does not break.

The formation of SW defects due to mechani-
cal strains has also been reported by other groups
of researchers. In their atomistic simulation study,
Liew et al. (2004) showed that SW defects formed
at 20~25% tensile strain for single-walled and multi-
walled nanotubes with chirality ranging from (5,5)
to (20,20). The formation of SW defects explained
the plastic behavior of stress-strain curve. They also
predicted failure strains of those tubes to be about
25.6%.

There is not enough information in the experimen-
tal literature to provide a clear picture of statistics of
SW defects (e.g., location, density, clustering tendency
etc.), it is reasonable to start with the assumption that
the defects occur in a completely random manner,
which implies an underlying homogeneous Poisson
spatial process (Lu and Bhattacharya 2005). However,
we also need to account for the fact that the SW defect
is not a point defect but has a finite area and there
should be no overlap between neighboring defects.
Therefore, we adopt a Matern hard-core point process
(Matern 1960) for the defect field. The Matern pro-
cess has the property that any two points are at least
h apart. The intensity of Matern hard-core process is
Ay = pnA where X is intensity of the underlying homo-
geneous Poisson point process and py, is the probability
that an arbitrary point from the underlying Poisson
process will survive the Matern thinning. Thus, the
average number of SW defects on an area A, is 1,4;.
Details about the defect field on the finite SWNT may
be found in Lu (2005).

With the equilibrium sp? C-C bond length being
1.42 A, the major axis diameter of a Stone-Wales
defectis about 7.1 A. Based on this, we conservatively
fix the minimum-neighbor distance 4 of the Matern
process at 8.0 A.

Once the location of the SW defect is generated,
the sp? bond closest to the defect point is found, and
then the bond is rotated by 90° to form an SW defect.
Randomly occurring SW defects can thus be located
on a graphene sheet, which in turn, can be wrapped to
produce the corresponding SWNT (Figure 2).

For the atomistic simulation part of this study, a
modified Morse potential model for describing the
interaction among carbon atoms (Belytschko et al.
2002) is applied. This potential model does not have
some of the shortcomings of the bond order poten-
tial models (Dumitrica et al. 2003; Troya et al. 2003).

Figure 2. A (6,6) SWNT, two SW defects are highlighted.

It corresponds with the Brenner potential for strains
below 10% (Belytschko, Xiao et al. 2002).

‘We adopt the cutoff distance (.) as well as the crit-
ical inter-atomic separation (7y) as: 7y =7.=1.77 Ain
this paper. The distance between neighboring carbon
atoms on the graphene sheet, ay, is 1.42 A, which is
the C-C sp? bond length in equilibrium. The initial
atomic positions are obtained by wrapping a graphene
sheet into a cylinder along the chiral vector C, =m
a| +na; such that the origin (0,0) coincides with the
point (m,n). The tube diameter is thus obtained as
d = ag\/3(m?* + n® + mn)/.

The initial atomic velocities are randomly chosen
according to a uniform distribution (between the limits
—0.5 and 0.5) and then rescaled to match the initial
temperature (300 K in this example). The mechanical
loading is applied through moving the atoms at both
ends away from each other at constant speed without
relaxing until fracture occurs.

In order to study the asymptotic behavior of strength
and compliance, we start with a single-walled nan-
otube (SWNT) in (6,6) armchair configuration. The
tube diameter is 8.14A. The length, /, of the tube is
49.2 A. The total number of atoms in the simulation is
480. A typical time history of tensile loading to fracture
generated for such a tube can be found in Bhattacharya
and Lu (2006).

Benchmarking studies investigating the tensile and
fracture behavior of such simulations have already
been reported in the literature (Lu and Bhattacharya
2004; Lu and Bhattacharya 2005; Lu and Bhattacharya
2005; Lu and Bhattacharya 2006).

Figure 3 shows the first two moments of SWNT
ultimate strength as a function of the average number
of SW defects on the tube. For each average num-
ber of defects, 33 SWNTSs were analyzed. The average
number of defects in Figure 3 range from 0 to 3.9.
Zero average defects imply a defect-free tube. The
next higher value of 0.9 is arrived at thus: We start
with A =0.8 x 1073/A? as the rate of the underly-
ing Poisson field; this value of A produces an average
of 1 Poisson point on the tube, and after the Matern
thinning imposed by #=8.0 A, leaves an average of
0.9 SW defects on the same tube. The value of 3.9
average defects correspond to A =4.8 x 1073 /A2,



The strength variability in the absence of any defect
(zero average defects) in Figure 3 arises solely from
thermal fluctuations.

The ultimate strength is calculated at the maximum
force point, oy, = Finax /Ao, Where F is the maximum
axial force, Ay is the cross section area assuming the
thickness of tube wall is 0.34 nm. The tube compliance
is determined as the reciprocal of the initial stiffness,
E. The initial stiffness is determined by first fitting
a quadratic curve between the initial portion of the
potential energy, P, vs. axial deformation, x (up to the
point corresponding to 3.48% axial strain), as P = ax?.
The initial stiffness is linearly related to the parameter
a through the initial geometry of the tube.

3 ASYMPTOTIC MECHANICAL BEHAVIOR
OF SWNTS WITH INCREASING TUBE
LENGTH

3.1 Increasing length and its effect on strength

Recall that a tube may be considered to be composed
of nsegments of length A, fori =1, ..., n. The length
of the tube, [, = >/_, A;, depends on n, as does the

1

strength of the tube, W(,):

/4

(o = min{W,, W,

— (€]

where W; is the strength of the ith segment. Owing to
the presence of random defects and random velocities
of the atoms, each W; is random in nature; conse-
quently W, is random as well. It is reasonable to
assume that the strength field is statistically homo-
geneous, hence, if A; =/, for each i, then each ¥; has
the same marginal cumulative distribution function
(CDF), Fyy.

If the W; ’s are i.i.d. (independent and identi-
cally distributed) and possess some very general
properties that are satisfied by all common distri-
bution functions, extreme value theory (Galambos
1987) shows that the probability distribution of the
minimum, W, ;is), under appropriate normalization,
vu(z) = ¢, + d,z, converges as n — 0oto:

v,(2)=c, +d,z, converges asn— oo to:

P[VVlde) < V":I =L, (Vn)g) L.(2)=

I—exp[—(l—cz)" ‘}, l-cz>0 @

where L. is one of the three classical asymptotic
extreme value distributions and depends on the param-
eter, c.

The i.i.d. assumption on strength of the tube seg-
ments appears unrealistic, since there is likely to be
dependence among strengths of neighboring segments
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Figure 3. Statistics of SWNT ultimate strength and compli-
ance as a function of average number of defects on the tube
(dashed line = mean, vertical bar = mean +/— one standard
deviation).

due to the non-local nature of atomic interactions. For-
tunately, the above classical results can be extended
to the dependent stationary case as well, as long as
the dependence reduces with increasing separationi.e.,
there is no long-range memory effect and there is no
clustering of very low values.

This decaying dependence can be formalized by
a strong mixing condition applied to minima of sta-
tionary sequences. The strong mixing condition on a
strictly stationary sequence of random variables {7, }
ensures that the sigma-algebras, 2( and 28 generated,
respectively, by the sub-sequences {1, ..., W,} and
{(Wyoss Wpik+1, ...}, become asymptotically inde-
pendent as the distance between them (i.e., k) becomes
large (Leadbetter et al. 1983).

We now introduce two conditions, D(u,) and D' (u,,),
that help establish limiting distributions of extrema
from dependent stationary sequences. The former
ensures that there is no long-term memory effect in
the sequence, while the latter ensures that there is no
clustering of very low values.



Condition D(u,) is a much weakened version of
(and implied by) strong mixing and apply, not to the
entire sigma-algebras generated by the subsequences,
but only to certain sequence of events of the type
{W;>u,}. The strong mixing requirement above is
not essential for the asymptotic distribution of min-
ima to exist — the much weaker Condition D(u,)
along with D’(u,) would suffice, but strong mixing
is required for the central limit theorem to hold for
partial sums of the sequence and the asymptotic inde-
pendence between minima and the partial sums of the
sequence demonstrated later in the paper.

The importance of conditions D(u,) and D'(u,) is
that under them, the asymptotic distribution of the min-
ima of the dependent sequence is still one of three
classical types — Weibull, Gumbel or Frechet (Eq. (2)),
although the convergence is slower than that in the
i.i.d. case:

(n) —

P[W <v”:|—>L: (z)=1—exp[—¢9(l—cz)_”‘} 3

where 1 — ¢z > 0,0 <0 < 1. The rate of convergence
is governed by the extremal index, 6, of the sequence
and is discussed in Section 3.2.

Let us now investigate how the distribution of nan-
otube strength approaches its limiting form as the tube
length increases. Of the three limiting distributions,
we focus on the Weibull model only since the Weibull
model is widely adopted for the “weakest link” type
strength variables for materials and systems across
spatial scales and materials. Of course, there are other
types of “size effects” besides the statistical type being
considered here ...(Bazant 2000), but those are outside
the scope of this paper and will be taken up elsewhere.

We continue with the (6,6) armchair SWNT con-
figuration and increase its length, /, while keeping the
average rate of occurrence of SW defects per unit tube
surface area constant (A =1.59 x 1073/A2, h=8A).
We start with the smallest length [y = 49.2A, and
analyze tubes up to 492 A long in steps of
l(), 2[0, 310, 4[0, 510, 6[() and 1010 The corresponding
loading rates are 2.5, 5.0, 7.5, 10.0, 12.5, 15.0 and
25.0 nm/ns such that the strain rate is constant. 33 sam-
ples are generated for each value of /. Since the tube
is prismatic, the cross-sectional area of each segment
is equal (denoted by Ay) and all discussion pertain-
ing to tube strength above applies equally well when it
is normalized by A4y. We thus adopt the more com-
mon stress-based description of mechanical strength
here (rather than force-based) and present the results
in terms of ultimate strength, o, , of the nanotubes.

Table 1 shows the statistics and Weibull goodness-
of-fit of the 33 samples of the ultimate strength of
SWNTs with Stone-Wales defects as the tube length
increases from [y to 10/, The mean and variance were
estimated from each set of 33 samples first, following

Table 1.  Statistics of SWNT ultimate strength as a function
of tube length.
Weibull Weibull goodness
parameters  of fit
Tube level of
length, u [3) X2 signifi-
n 1(A) (Gpa) V(%) (Gpa) k statistic cance
1 49.19 8730 124 919 9.73 203 1.49%x 1074
2 9838 86.04 698 887 17.7 113 0.2004
3 147.6 84.68 574 86.8 21.7 3.18 0.3644
4 196.8 82.89 4.03 844 31.1 682 0.0779
5 2460 7938 597 815 20.8 3091 0.2714
6 2952 78.64 695 81.0 17.8 1.73 0.6309
10 492.0 76.63 596 78.6 20.8 3.55 0.3149

Based on 33 samples for each /, © =mean, V = coefficient
of variation (s.d./mean), =Weibull scale parameter,
k = Weibull shape parameter.

which the two Weibull parameters were determined.
The goodness-of-fit test was based on these estimated
parameters.

It is clear that the distribution shifts to the left (i.c.,
mean decreases) and becomes narrower (i.e., C.0.V.
decreases) with increasing /: this is consistent with the
behavior of extremes from a stationary population. The
quality of Weibull fit (judged from the level of signif-
icance of the Chi-squared test) among this set of data
is found to generally improve with increasing /, and is
best when [/ = 61,

3.2  The extremal index of the strength field

We now investigate the degree of dependence in the
strength field in terms of its extremal index. The
extremal index, 6, is a positive fraction between zero
and one. The value of =1 corresponds to the i.i.d.
case while the case of #=0 is degenerate and implies
long-range dependence. In the context of characteriz-
ing the minima of a stationary sequence, the extremal
index may be interpreted as the reciprocal of the lim-
iting mean cluster size below a low threshold. This
interpretation will be formalized later in obtaining
numerical estimates of the extremal index for the
carbon nanotubes.

The extremal index also helps underline the degree
of conservatism in making the i.i.d. hypothesis when
predicting the distribution of the minima from a ran-
dom sequence. Egs. (2) and (3) clearly show that L.
(obtained from the i.i.d. assumption) and L, (the actual
CDF) are not only of the same type for any given value
of ¢, but also for any value of z, we always get L. >ic.
In other words, the distribution with the i.i.d. assump-
tion is always to the left of the actual (that considers
dependence) and thus underpredicts the strength.
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Figure 4. Limiting extremal index as a function of tube
length.

We can estimate the extremal index if we have the
statistics of nanotube strength for known values of n:

é:llnGW(n)(x) @
n InGy,, (x)

where Gy () is the complementary distribution func-
tion of a nanotube of length nly. It is apparent from
Eq. (4) that the estimated extremal index depends
on the threshold x, although what we are ultimately
interested in is its limiting value as x — 0. Based
on results from maxima of a stationary dependent
sequence ..(Hsing 1993), we propose the following
threshold dependent form for the extremal index:

P[M,, > x|W, <x]|=6+R(F,(x)) 5)

where » is an integer denoting “run length”.
This form is regardless of the type of limit-
ing distribution for the sequence (Eq. (3)). The
quantity M,, = min {W,, ..., W,} and the residual
R (FW(x)) — Oasx — xo=inf(x : Fy(x)>0).
From this representation, the limiting value @0, atx =0,
may be estimated (Lu and Bhattacharya 2006).

Figure 4 plots the limiting value 6y as function of
tube length. A strong dependence in the strength field
is suggested in Figure 4, the extremal index is seen to
approach the numerical value of around 0.16. Costly
atomistic simulations will no longer be required for
predicting the strength distribution of longer tubes,
the extremal index can be used in conjunction with
Eq. (4) to estimate at least the left tail for any value
of n. The estimate of 6 can also be instrumental in
deciphering the underlying correlation structure in the
random strength field, although it is outside the scope
of this work.

3.3 Compliance statistics and its asymptotic
independence from strength

We continue with the above formulation of a nan-
otube being composed of n segments of equal length,
cross-sectional area 4y and random strength W; with
marginal distribution F' (independent of 7). The com-
pliance of the entire tube, C,), as a function of n,
can be given as the sum of the individual segment
compliances, C;:

C(n) =Cy+ ZLICI (6)

where Cj is the contribution from inertial effects.
We now make use of the fundamental description of
mechanical failure that we have used in atomistic sim-
ulation for solids above, namely, fracture of solids is
displacement based. An atomic bond is regarded as
broken if the inter-atomic separation exceeds the crit-
ical value ry. If the tube segments are small enough,
and the static force-displacement behavior of each seg-
ment can be assumed to be linear up to failure, then
compliance of each segment may be approximated as:

ar,
C = i_f (7)
I W,
where « is constant for given tube chirality and /y. The
compliance of the entire tube can then be given by:

n ]

" ®

A
Con=Co +I—°W,/~Z

0

If the stationary sequence {W,} is strongly mixing, so
is {1/W,}. It is known that (i) sums of stationary and
strong mixing sequences are asymptotically normal;
further, (ii) these sums are asymptotically indepen-
dent of the extrema of the sequences (Anderson and
Turkman 1991; Hsing 1995). It will be instructive
to determine how well our results support these two
important properties of strong mixing sequences.

Table 2 shows the statistics of the compliance of
SWNTs with Stone-Wales defects as a function of tube
length, /. The distribution shifts slowly to the right and
narrows slightly with increasing / : this is consistent
with the behavior of partial sums from a stationary
sequence (Eq. (8)). We also investigate the goodness
of Normal fit on the SWNT compliance data as the
tube length increases from /y to 10/y. Using the first
two moments calculated from the 33 data points, a Chi-
squared goodness of fit is performed in each case with
6 equi-probable intervals, i.e., 3 degrees of freedom. It
is clear from Table 2 that the accuracy of the Normal
hypothesis improves as / increases.

Finally, Figure 5 shows the correlation coef-
ficient between the compliance and the ultimate
strength of the tube as the tube length increases.



Table 2. Statistics of SWNT compliance as a function of
tube length.

Normal goodness of

fit

Tube Level

length, 1 %% sta-  of signifi-
n I (A) (1/TPa) V tistic cance
1 49.2 03682  2.61% 8.27 0.0407
2 98.4 0.4267  5.20% 337 2.26e-07
3 147.6 04316  4.81%  30.1 1.32¢-06
4 196.8 0.4281 1.19% 245 0.484
5 246.0 0.4309  0.83% 1.73 0.631
6 295.2 0.4561 1.12%  1.00 0.801
10 492.0 0.4660  0.78%  1.00 0.803

Based on 33 samples for each n, © =mean, V = coefficient
of variation (s.d./mean)
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Figure 5. Asymptotic independence of tube strength and
compliance.

If the strong mixing property holds, the sum and
extremum form a sequence should become asymptot-
ically independent. Figure 5, which shows the dimin-
ishing correlation coefficient between the compliance
and the ultimate strength as /increases, indeed sug-
gests that the strong mixing assumption holds for
SWNTs.

4 SUMMARY AND CONCLUSIONS

Defects are commonly present in materials and they
occur/evolve randomly in space and time. These
defects may have significant effects on the material
properties. Material properties governed by sums (or
averages) of some underlying stochastic phenomena
can be shown to diverge from and become independent

of properties governed by extremes arising of the
same phenomena. In this paper we considered ran-
dom Stone-Wales (SW) defects in carbon nanotubes
(CNTs) and, through the technique of atomistic simu-
lation, quantified their effect on the asymptotic behav-
ior of ultimate strength and compliance as the tube
length increases.

The existence of dependence in the ultimate
strength random field of the nanotube (that decreases
with increasing separation), consistent with the non-
local nature of atomic interactions, was considered, —
a strong mixing condition was assumed for the field to
formalize the dependence structure. Limiting expres-
sions for the distribution of strength as tube length
became large was developed. The extremal index,
which can be used to characterize the strength of said
dependence was estimated. It can help avoid costly
numerical simulations for predicting the strength dis-
tribution of longer tubes.

The conservatism introduced by the commonly
made i.i.d. (independent and identically distributed)
assumption was also discussed. The distribution of
ultimate strength, o,,, and compliance, C, with increas-
ing tube length, /, of (6,6) armchair SWNTs was
investigated. The average rate of occurrence of SW
defects per unit tube surface area was kept constant.
Seven values of / spanning an order of magnitude
were considered (from 49 to 490 Angstroms) and the
loading was adjusted such that the strain rate was
the same for each tube length. The strength distri-
bution was found to shift to the left and become
narrower with increasing /, and also appeared to fit
the Weibull distribution rather well. The distribution
of C as the scaled sum of the reciprocal of the strong
mixing strength sequence was studied with increas-
ing tube length as well. The compliance of the tube
increased with increasing length and became asymp-
totically Normal. Finally, the compliance and strength
of the tube were found to be asymptotically uncor-
related. These results appeared to validate the strong
mixing property of the strength field. These findings
can be used in future studies to better model the ran-
dom mechanical behavior of nanotubes and nanotube
based devices.
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